1
|
Fjelstrup S, Dupont DM, Bus C, Enghild J, Jensen J, Birkenkamp-Demtröder K, Dyrskjøt L, Kjems J. Differential RNA aptamer affinity profiling on plasma as a potential diagnostic tool for bladder cancer. NAR Cancer 2022; 4:zcac025. [PMID: 36004048 PMCID: PMC9394167 DOI: 10.1093/narcan/zcac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/08/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
The molecular composition of blood is a signature of human health, reflected in the thousands of blood biomarkers known for human diseases. However, establishing robust disease markers is challenging due to the diversity of individual samples. New sequencing methods have simplified biomarker discovery for circulating DNA and RNA while protein profiling is still laborious and costly. To harness the power of high-throughput sequencing to profile the protein content of a biological sample, we developed a method termed APTASHAPE that uses oligonucleotide aptamers to recognize proteins in complex biofluids. We selected a large pool of 2'Fluoro protected RNA sequences to recognize proteins in human plasma and identified a set of 33 cancer-specific aptamers. Differential enrichment of these aptamers after selection against 1 μl of plasma from individual patients allowed us to differentiate between healthy controls and bladder cancer-diagnosed patients (91% accuracy) and between early non-invasive tumors and late stage tumors (83% accuracy). Affinity purification and mass spectrometry of proteins bound to the predictive aptamers showed the main target proteins to be C4b-binding protein, Complement C3, Fibrinogen, Complement factor H and IgG. The APTASHAPE method thus provides a general, automated and highly sensitive platform for discovering potential new disease biomarkers.
Collapse
Affiliation(s)
- Søren Fjelstrup
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Daniel M Dupont
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Claus Bus
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark
| | - Jørgen B Jensen
- Department of Urology, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical medicine, Aarhus University, Aarhus, Denmark
| | - Karin Birkenkamp-Demtröder
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical medicine, Aarhus University, Aarhus, Denmark
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical medicine, Aarhus University, Aarhus, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Inhibition of Human Urokinase-Type Plasminogen Activator (uPA) Enzyme Activity and Receptor Binding by DNA Aptamers as Potential Therapeutics through Binding to the Different Forms of uPA. Int J Mol Sci 2022; 23:ijms23094890. [PMID: 35563278 PMCID: PMC9100121 DOI: 10.3390/ijms23094890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Urokinase-type plasminogen activator is widely discussed as a marker for cancer prognosis and diagnosis and as a target for cancer therapies. Together with its receptor, uPA plays an important role in tumorigenesis, tumor progression and metastasis. In the present study, systematic evolution of ligands by exponential enrichment (SELEX) was used to select single-stranded DNA aptamers targeting different forms of human uPA. Selected aptamers allowed the distinction between HMW-uPA and LMW-uPA, and therefore, presumably, have different binding regions. Here, uPAapt-02-FR showed highly affine binding with a KD of 0.7 nM for HMW-uPA and 21 nM for LMW-uPA and was also able to bind to pro-uPA with a KD of 14 nM. Furthermore, no cross-reactivity to mouse uPA or tissue-type plasminogen activator (tPA) was measured, demonstrating high specificity. Suppression of the catalytic activity of uPA and inhibition of uPAR-binding could be demonstrated through binding with different aptamers and several of their truncated variants. Since RNA aptamers are already known to inhibit uPA-uPAR binding and other pathological functions of the uPA system, these aptamers represent a novel, promising tool not only for detection of uPA but also for interfering with the pathological functions of the uPA system by additionally inhibiting uPA activity.
Collapse
|
3
|
Valero J, Civit L, Dupont DM, Selnihhin D, Reinert LS, Idorn M, Israels BA, Bednarz AM, Bus C, Asbach B, Peterhoff D, Pedersen FS, Birkedal V, Wagner R, Paludan SR, Kjems J. A serum-stable RNA aptamer specific for SARS-CoV-2 neutralizes viral entry. Proc Natl Acad Sci U S A 2021; 118:e2112942118. [PMID: 34876524 PMCID: PMC8685691 DOI: 10.1073/pnas.2112942118] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 12/23/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has created an urgent need for new technologies to treat COVID-19. Here we report a 2'-fluoro protected RNA aptamer that binds with high affinity to the receptor binding domain (RBD) of SARS-CoV-2 spike protein, thereby preventing its interaction with the host receptor ACE2. A trimerized version of the RNA aptamer matching the three RBDs in each spike complex enhances binding affinity down to the low picomolar range. Binding mode and specificity for the aptamer-spike interaction is supported by biolayer interferometry, single-molecule fluorescence microscopy, and flow-induced dispersion analysis in vitro. Cell culture experiments using virus-like particles and live SARS-CoV-2 show that the aptamer and, to a larger extent, the trimeric aptamer can efficiently block viral infection at low concentration. Finally, the aptamer maintains its high binding affinity to spike from other circulating SARS-CoV-2 strains, suggesting that it could find widespread use for the detection and treatment of SARS-CoV-2 and emerging variants.
Collapse
Affiliation(s)
- Julián Valero
- Interdisciplinary Nanoscience Center, Aarhus University DK-8000 Aarhus, Denmark;
- Centre for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus DK-8000, Denmark
| | - Laia Civit
- Interdisciplinary Nanoscience Center, Aarhus University DK-8000 Aarhus, Denmark
| | - Daniel M Dupont
- Interdisciplinary Nanoscience Center, Aarhus University DK-8000 Aarhus, Denmark
| | - Denis Selnihhin
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Line S Reinert
- Department of Biomedicine, Aarhus University DK-8000 Aarhus, Denmark
| | - Manja Idorn
- Department of Biomedicine, Aarhus University DK-8000 Aarhus, Denmark
| | - Brett A Israels
- Interdisciplinary Nanoscience Center, Aarhus University DK-8000 Aarhus, Denmark
- Department of Chemistry, Aarhus University, DK-8000, Aarhus, Denmark
| | - Aleksandra M Bednarz
- Interdisciplinary Nanoscience Center, Aarhus University DK-8000 Aarhus, Denmark
- Department of Chemistry, Aarhus University, DK-8000, Aarhus, Denmark
| | - Claus Bus
- Interdisciplinary Nanoscience Center, Aarhus University DK-8000 Aarhus, Denmark
| | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene/Molecular Microbiology (Virology), Regensburg University 93053 Regensburg, Germany
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene/Molecular Microbiology (Virology), Regensburg University 93053 Regensburg, Germany
| | - Finn S Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Victoria Birkedal
- Interdisciplinary Nanoscience Center, Aarhus University DK-8000 Aarhus, Denmark
- Department of Chemistry, Aarhus University, DK-8000, Aarhus, Denmark
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene/Molecular Microbiology (Virology), Regensburg University 93053 Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg 93053, Germany
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University DK-8000 Aarhus, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center, Aarhus University DK-8000 Aarhus, Denmark;
- Centre for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus DK-8000, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
4
|
Overview of the Therapeutic Potential of Aptamers Targeting Coagulation Factors. Int J Mol Sci 2021; 22:ijms22083897. [PMID: 33918821 PMCID: PMC8069679 DOI: 10.3390/ijms22083897] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022] Open
Abstract
Aptamers are single-stranded DNA or RNA sequences that bind target molecules with high specificity and affinity. Aptamers exhibit several notable advantages over protein-based therapeutics. Aptamers are non-immunogenic, easier to synthesize and modify, and can bind targets with greater affinity. Due to these benefits, aptamers are considered a promising therapeutic candidate to treat various conditions, including hematological disorders and cancer. An active area of research involves developing aptamers to target blood coagulation factors. These aptamers have the potential to treat cardiovascular diseases, blood disorders, and cancers. Although no aptamers targeting blood coagulation factors have been approved for clinical use, several aptamers have been evaluated in clinical trials and many more have demonstrated encouraging preclinical results. This review summarized our knowledge of the aptamers targeting proteins involved in coagulation, anticoagulation, fibrinolysis, their extensive applications as therapeutics and diagnostics tools, and the challenges they face for advancing to clinical use.
Collapse
|
5
|
Bjerregaard N, Dupont DM, Andreasen PA. A Conjugate of Two tPA-Binding RNA Aptamers Efficiently Inhibits Fibrinolysis. Nucleic Acid Ther 2017; 27:95-104. [PMID: 28051346 DOI: 10.1089/nat.2016.0637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Uncontrolled bleeding is a major cause of mortality. Lysine analogues are routinely used in the management of bleeding, but several studies indicate a risk of serious detrimental effects upon their administration. In this study, we report a bivalent conjugate "3218" of two RNA aptamers selected for binding to the serine protease tissue-type plasminogen activator (tPA), the principal initiator of fibrinolysis in mammals. The constituent monomeric aptamers, K32v2 and K18v2, were previously demonstrated to weakly inhibit fibrinolysis. We now show that K32v2 and K18v2 recognize distinct binding sites, presumably in the A- and B-chain of tPA, respectively. Both aptamers bind tPA with low nanomolar affinity and inhibit tPA-mediated activities in a way that is consistent with the proposed localization of their binding sites. The 3218 conjugate possesses the inhibitory activities of both K32v2 and K18v2 and additionally exhibits increased inhibitory efficiency relative to the monomeric aptamers. The 3218 conjugate proved an efficient inhibitor of fibrinolysis and may find application in the management of bleeding as a substitute for, or in combination with, currently used lysine analogues.
Collapse
Affiliation(s)
- Nils Bjerregaard
- 1 Department of Molecular Biology and Genetics, Aarhus University , Aarhus, Denmark
| | - Daniel M Dupont
- 1 Department of Molecular Biology and Genetics, Aarhus University , Aarhus, Denmark .,2 Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Aarhus, Denmark
| | - Peter A Andreasen
- 1 Department of Molecular Biology and Genetics, Aarhus University , Aarhus, Denmark
| |
Collapse
|
6
|
Bjerregaard N, Andreasen PA, Dupont DM. Expected and unexpected features of protein-binding RNA aptamers. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:744-757. [PMID: 27173731 DOI: 10.1002/wrna.1360] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 04/03/2016] [Accepted: 04/04/2016] [Indexed: 12/28/2022]
Abstract
RNA molecules with high affinity to specific proteins can be isolated from libraries of up to 1016 different RNA sequences by systematic evolution of ligands by exponential enrichment (SELEX). These so-called protein-binding RNA aptamers are often interesting, e.g., as modulators of protein function for therapeutic use, for probing the conformations of proteins, for studies of basic aspects of nucleic acid-protein interactions, etc. Studies on the interactions between RNA aptamers and proteins display a number of expected and unexpected features, including the chemical nature of the interacting RNA-protein surfaces, the conformation of protein-bound aptamer versus free aptamer, the conformation of aptamer-bound protein versus free protein, and the effects of aptamers on protein function. Here, we review current insights into the details of RNA aptamer-protein interactions. WIREs RNA 2016, 7:744-757. doi: 10.1002/wrna.1360 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Nils Bjerregaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Peter A Andreasen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Daniel M Dupont
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
7
|
Dellafiore MA, Montserrat JM, Iribarren AM. Modified Nucleoside Triphosphates for In-vitro Selection Techniques. Front Chem 2016; 4:18. [PMID: 27200340 PMCID: PMC4854868 DOI: 10.3389/fchem.2016.00018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/05/2016] [Indexed: 12/22/2022] Open
Abstract
The development of SELEX (Selective Enhancement of Ligands by Exponential Enrichment) provides a powerful tool for the search of functional oligonucleotides with the ability to bind ligands with high affinity and selectivity (aptamers) and for the discovery of nucleic acid sequences with diverse enzymatic activities (ribozymes and DNAzymes). This technique has been extensively applied to the selection of natural DNA or RNA molecules but, in order to improve chemical and structural diversity as well as for particular applications where further chemical or biological stability is necessary, the extension of this strategy to modified oligonucleotides is desirable. Taking into account these needs, this review intends to collect the research carried out during the past years, focusing mainly on the use of modified nucleotides in SELEX and the development of mutant enzymes for broadening nucleoside triphosphates acceptance. In addition, comments regarding the synthesis of modified nucleoside triphosphate will be briefly discussed.
Collapse
Affiliation(s)
- María A Dellafiore
- Laboratorio de Química de Ácidos Nucleicos, INGEBI (CONICET) Ciudad Autónoma de Buenos Aires, Argentina
| | - Javier M Montserrat
- Laboratorio de Química de Ácidos Nucleicos, INGEBI (CONICET)Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Ciencias, Universidad Nacional de General SarmientoLos Polvorines, Argentina
| | - Adolfo M Iribarren
- Laboratorio de Química de Ácidos Nucleicos, INGEBI (CONICET)Ciudad Autónoma de Buenos Aires, Argentina; Laboratorio de Biotransformaciones, Universidad Nacional de QuilmesBernal, Argentina
| |
Collapse
|
8
|
Dupont DM, Bjerregaard N, Verpaalen B, Andreasen PA, Jensen JK. Building a Molecular Trap for a Serine Protease from Aptamer and Peptide Modules. Bioconjug Chem 2016; 27:918-26. [PMID: 26926041 DOI: 10.1021/acs.bioconjchem.6b00007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In drug development, molecular intervention strategies are usually based on interference with a single protein function, such as enzyme activity or receptor binding. However, in many cases, protein drug targets are multifunctional, with several molecular functions contributing to their pathophysiological actions. Aptamers and peptides are interesting synthetic building blocks for the design of multivalent molecules capable of modulating multiple functions of a target protein. Here, we report a molecular trap with the ability to interfere with the activation, catalytic activity, receptor binding, etc. of the serine protease urokinase-type plasminogen activator (uPA) by a rational combination of two RNA aptamers and a peptide with different inhibitory properties. The assembly of these artificial inhibitors into one molecule enhanced the inhibitory activity between 10- and 10,000-fold toward several functions of uPA. The study highlights the potential of multivalent designs and illustrates how they can easily be constructed from aptamers and peptides using nucleic acid engineering, chemical synthesis, and bioconjugation chemistry. By aptamer to aptamer and aptamer to peptide conjugation, we created, to the best of our knowledge, the first trivalent molecule which combines three artificial inhibitors binding to three different sites in a protein target. We hypothesize that by simultaneously preventing all of the functional interactions and activities of the target protein, this approach may represent an alternative to siRNA technology for a functional knockout.
Collapse
Affiliation(s)
- Daniel M Dupont
- Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| | - Nils Bjerregaard
- Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| | - Ben Verpaalen
- Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| | - Peter A Andreasen
- Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| | - Jan K Jensen
- Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| |
Collapse
|
9
|
Jarczewska M, Kékedy-Nagy L, Nielsen JS, Campos R, Kjems J, Malinowska E, Ferapontova EE. Electroanalysis of pM-levels of urokinase plasminogen activator in serum by phosphorothioated RNA aptamer. Analyst 2016; 140:3794-802. [PMID: 25620243 DOI: 10.1039/c4an02354d] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein biomarkers of cancer allow a dramatic improvement in cancer diagnostics as compared to the traditional histological characterisation of tumours by enabling a non-invasive analysis of cancer development and treatment. Here, an electrochemical label-free assay for urokinase plasminogen activator (uPA), a universal biomarker of several cancers, has been developed based on the recently selected uPA-specific fluorinated RNA aptamer, tethered to a gold electrode via a phosphorothioated dA tag, and soluble redox indicators. The binding properties of the uPA-aptamer couple and interference from the non-specific adsorption of bovine serum albumin (BSA) were modulated by the electrode surface charge. A nM uPA electroanalysis at positively charged surfaces, complicated by the competitive adsorption of BSA, was tuned to the pM uPA analysis at negative surface charges of the electrode, being improved in the presence of negatively charged BSA. The aptamer affinity for uPA displayed via the binding/dissociation constant relationship correspondingly increased, ca. three orders of magnitude, from 0.441 to 367. Under optimal conditions, the aptasensor allowed 10(-12)-10(-9) M uPA analysis, also in serum, being practically useful for clinical applications. The proposed strategy for optimization of the electrochemical protein sensing is of particular importance for the assessment and optimization of in vivo protein ligand binding by surface-tethered aptamers.
Collapse
Affiliation(s)
- Marta Jarczewska
- Interdisciplinary Nanoscience Center (iNANO) and Center for DNA Nanotechnology (CDNA), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | | | |
Collapse
|
10
|
Dupont DM, Larsen N, Jensen JK, Andreasen PA, Kjems J. Characterisation of aptamer-target interactions by branched selection and high-throughput sequencing of SELEX pools. Nucleic Acids Res 2015; 43:e139. [PMID: 26163061 PMCID: PMC4666376 DOI: 10.1093/nar/gkv700] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/30/2015] [Indexed: 01/05/2023] Open
Abstract
Nucleic acid aptamer selection by systematic evolution of ligands by exponential enrichment (SELEX) has shown great promise for use in the development of research tools, therapeutics and diagnostics. Typically, aptamers are identified from libraries containing up to 1016 different RNA or DNA sequences by 5–10 rounds of affinity selection towards a target of interest. Such library screenings can result in complex pools of many target-binding aptamers. New high-throughput sequencing techniques may potentially revolutionise aptamer selection by allowing quantitative assessment of the dynamic changes in the pool composition during the SELEX process and by facilitating large-scale post-SELEX characterisation. In the present study, we demonstrate how high-throughput sequencing of SELEX pools, before and after a single round of branched selection for binding to different target variants, can provide detailed information about aptamer binding sites, preferences for specific target conformations, and functional effects of the aptamers. The procedure was applied on a diverse pool of 2′-fluoropyrimidine-modified RNA enriched for aptamers specific for the serpin plasminogen activator inhibitor-1 (PAI-1) through five rounds of standard selection. The results demonstrate that it is possible to perform large-scale detailed characterisation of aptamer sequences directly in the complex pools obtained from library selection methods, thus without the need to produce individual aptamers.
Collapse
Affiliation(s)
- Daniel M Dupont
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark Danish-Chinese Centre for Proteases and Cancer, Aarhus University, 8000 Aarhus C, Denmark
| | - Niels Larsen
- iNANO Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Jan K Jensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark Danish-Chinese Centre for Proteases and Cancer, Aarhus University, 8000 Aarhus C, Denmark
| | - Peter A Andreasen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark Danish-Chinese Centre for Proteases and Cancer, Aarhus University, 8000 Aarhus C, Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark iNANO Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
11
|
Sensitive ligand-based protein quantification using immuno-PCR: A critical review of single-probe and proximity ligation assays. Biotechniques 2015; 56:217-28. [PMID: 24919231 DOI: 10.2144/000114164] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Quantitative PCR (qPCR) of reverse-transcribed mRNA has revolutionized gene expression analyses. qPCR analysis is based on the prevalent assumption that mRNA transcript numbers provide an adequate measure of specific biomarker expression. However, taking the complexity of protein turnover into account, there is a need to correlate qPCR-derived transcriptional patterns with protein translational patterns so as to not leave behind important pathobiological details. One emerging approach in protein analysis is PCR-coupled protein quantification, often denoted as immuno-PCR (iPCR), which targets soluble proteins. Here we review recent trends and applications in iPCR assays that may bridge the gap between classical enzyme-linked immunosorbent assays and mass spectrometry methodologies in terms of sensitivity and multiplexing.
Collapse
|
12
|
Bjerregaard N, Bøtkjær KA, Helsen N, Andreasen PA, Dupont DM. Tissue-type plasminogen activator-binding RNA aptamers inhibiting low-density lipoprotein receptor family-mediated internalisation. Thromb Haemost 2015; 114:139-49. [PMID: 25855589 DOI: 10.1160/th14-08-0686] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/10/2015] [Indexed: 01/29/2023]
Abstract
Recombinant tissue-type plasminogen activator (tPA, trade name Alteplase), currently the only drug approved by the US Food and Drug Administration and the European Medicines Agency for the treatment of cerebral ischaemic stroke, has been implicated in a number of adverse effects reportedly mediated by interactions with the low-density lipoprotein (LDL) family receptors, including neuronal cell death and an increased risk of cerebral haemorrhage. The tissue-type plasminogen activator is the principal initiator of thrombolysis in human physiology, an effect that is mediated directly via localised activation of the plasmin zymogen plasminogen at the surface of fibrin clots in the vascular lumen. Here, we sought to identify a ligand to tPA capable of inhibiting the relevant LDL family receptors without interfering with the fibrinolytic activity of tPA. Systematic evolution of ligands by exponential enrichment (SELEX) was employed to isolate tPA-binding RNA aptamers, which were characterised in biochemical assays of tPA association to low density lipoprotein receptor-related protein-1 (LRP-1, an LDL receptor family member); tPA-mediated in vitro and ex vivo clot lysis; and tPA-mediated plasminogen activation in the absence and presence of a stimulating soluble fibrin fragment. Two aptamers, K18 and K32, had minimal effects on clot lysis, but were able to efficiently inhibit tPA-LRP-1 association and LDL receptor family-mediated endocytosis in human vascular endothelial cells and astrocytes. These observations suggest that coadministration alongside tPA may be a viable strategy to improve the safety of thrombolytic treatment of cerebral ischaemic stroke by restricting tPA activity to the vascular lumen.
Collapse
Affiliation(s)
- Nils Bjerregaard
- Nils Bjerregaard, Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark, Tel.: +45 87 15 49 07, Fax: +45 86 12 31 78, E-mail:
| | | | | | | | | |
Collapse
|
13
|
Dupont DM, Thuesen CK, Bøtkjær KA, Behrens MA, Dam K, Sørensen HP, Pedersen JS, Ploug M, Jensen JK, Andreasen PA. Protein-binding RNA aptamers affect molecular interactions distantly from their binding sites. PLoS One 2015; 10:e0119207. [PMID: 25793507 PMCID: PMC4368798 DOI: 10.1371/journal.pone.0119207] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/11/2015] [Indexed: 11/28/2022] Open
Abstract
Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126) with therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA). We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A) controlling uPA activities. One of the aptamers (upanap-126) binds to the area around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12) binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro-uPA complex. The results suggest and highlight that the size and shape of an aptamer as well as the domain organization of a multi-domain protein such as uPA, may provide the basis for extensive sterical interference with protein ligand interactions considered distant from the aptamer binding site.
Collapse
Affiliation(s)
- Daniel M. Dupont
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Aarhus, Denmark
- * E-mail:
| | - Cathrine K. Thuesen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Aarhus, Denmark
| | - Kenneth A. Bøtkjær
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Aarhus, Denmark
| | - Manja A. Behrens
- iNANO Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, Aarhus, Denmark
- Department of Chemistry, Lund University, Lund, Sweden
| | - Karen Dam
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Hans P. Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Aarhus, Denmark
| | - Jan S. Pedersen
- iNANO Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Michael Ploug
- Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Aarhus, Denmark
- Finsen Laboratory, Rigshospitalet and Biotech Research & Innovation Centre, Copenhagen, Denmark
| | - Jan K. Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Aarhus, Denmark
| | - Peter A. Andreasen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Aptamer-based therapeutics of the past, present and future: from the perspective of eye-related diseases. Drug Discov Today 2014; 19:1309-21. [PMID: 24598791 DOI: 10.1016/j.drudis.2014.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 02/04/2014] [Accepted: 02/25/2014] [Indexed: 01/22/2023]
Abstract
Aptamers have emerged as a novel and powerful class of biomolecules with an immense untapped potential. The ability to synthesise highly specific aptamers against any molecular target make them a vital cog in the design of effective therapeutics for the future. However, only a minutia of the enormous potential of this dynamic class of molecule has been exploited. Several aptamers have been studied for the treatment of eye-related disorders, and one such strategy has been successful in therapy. This review gives an account of several eye diseases and their regulatory biomolecules where other nucleic acid therapeutics have been attempted with limited success and how aptamers, with their exceptional flexibility to chemical modifications, can overcome those inherent shortcomings.
Collapse
|
15
|
Varmira K, Hosseinimehr SJ, Noaparast Z, Abedi SM. An improved radiolabelled RNA aptamer molecule for HER2 imaging in cancers. J Drug Target 2013; 22:116-22. [PMID: 24098950 DOI: 10.3109/1061186x.2013.839688] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2) expression has been shown to be increased in several types of human tumours. In this study, for the imaging of HER2-related tumours, a modified RNA aptamer with HER2-specific targeting was labelled with (99m)Tc, by using hydrazino nicotinamide (HYNIC) as the chelator in the presence of tricine or ethylenediamine-N,N'-diacetic acid (EDDA) as the co-ligand. Stability testing of the radiolabelled aptamers in the serum was performed through SDS-PAGE. The aptamer-radionuclide conjugate was evaluated for its cellular HER2-specific binding in ovarian cancer cells (SKOV-3), and its biodistribution properties were assessed in normal and SKOV-3 tumour-bearing mice. In the presence of either tricine or EDDA, the HYNIC-RNA aptamers were labelled with (99m)Tc at a high yield and radiochemical purity. Cellular experiments confirmed the specific binding of the RNA aptamer to the HER2 receptor. In the animal biodistribution study, uptake of the EDDA-co-liganded (99m)Tc-HYNIC-RNA aptamer by the liver and spleen was remarkably lower than that of the aptamer with tricine. Tumours also showed a higher accumulation of radioactivity with the EDDA-co-liganded aptamer complex. This study demonstrated EDDA to be better than tricine for use as a co-ligand with the RNA aptamer, which can be a potential tool for the molecular imaging of HER2-overexpressing cancers.
Collapse
Affiliation(s)
- Kambiz Varmira
- Department of Radiopharmacy, Pharmaceutical Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences , Sari , Iran and
| | | | | | | |
Collapse
|
16
|
Varmira K, Hosseinimehr SJ, Noaparast Z, Abedi SM. A HER2-targeted RNA aptamer molecule labeled with 99mTc for single-photon imaging in malignant tumors. Nucl Med Biol 2013; 40:980-6. [PMID: 23953624 DOI: 10.1016/j.nucmedbio.2013.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/01/2013] [Accepted: 07/05/2013] [Indexed: 01/06/2023]
Abstract
A modified RNA aptamer with HER2-specific binding was conjugated to hynic and labeled with (99m)Tc, for potential use as a radiopharmaceutical for diagnostic imaging of ovarian cancer cells (SKOV-3) with high HER2 expression. The aptamer was radiolabeled with (99m)Tc by using hynic as the chelator and tricine as the co-ligand. Stability testing of the radioconjugated aptamer was performed via ITLC and SDS-PAGE in normal saline and serum. The aptamer-radionuclide conjugate was evaluated for cellular HER2-specific binding, saturation affinity, and cellular internalization in SKOV-3 and MCF-7 cells, and its biodistribution properties were assessed in normal and SKOV-3 tumor-bearing mice. Radiolabeling of the aptamer was achieved with high yield and radiochemical purity, and the (99m)Tc-hynic-RNA aptamer was highly stable in normal saline and serum. Cellular experiments showed specific binding of the aptamer to the HER2 receptor with a dissociation constant of 27 nM. Rapid blood clearance was observed after injection of the (99m)Tc-hynic-RNA aptamer, and the main excretion route was via the hepatobilary system. While the radioconjugated aptamer bound specifically to the HER2 receptor on cells in vitro, it did not show any significant tumor-to-blood or tumor-to-muscle ratios in mice. Modifications to radiolabeled aptamer will require improving its pharmacokinetic properties and tumor uptake in vivo.
Collapse
Affiliation(s)
- Kambiz Varmira
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | | | | |
Collapse
|
17
|
Botkjaer KA, Deryugina EI, Dupont DM, Gårdsvoll H, Bekes EM, Thuesen CK, Chen Z, Chen Z, Ploug M, Quigley JP, Andreasen PA. Targeting tumor cell invasion and dissemination in vivo by an aptamer that inhibits urokinase-type plasminogen activator through a novel multifunctional mechanism. Mol Cancer Res 2012; 10:1532-43. [PMID: 23038812 DOI: 10.1158/1541-7786.mcr-12-0349] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Data accumulated over the latest two decades have established that the serine protease urokinase-type plasminogen activator (uPA) is a potential therapeutic target in cancer. When designing inhibitors of the proteolytic activity of serine proteases, obtaining sufficient specificity is problematic, because the topology of the proteases' active sites are highly similar. In an effort to generate highly specific uPA inhibitors with new inhibitory modalities, we isolated uPA-binding RNA aptamers by screening a library of 35 nucleotides long 2'-fluoro-pyrimidine RNA molecules using a version of human pro-uPA lacking the epidermal growth factor-like and kringle domains as bait. One pro-uPA-binding aptamer sequence, referred to as upanap-126, proved to be highly specific for human uPA. Upanap-126 delayed the proteolytic conversion of human pro-uPA to active uPA, but did not inhibit plasminogen activation catalyzed by two-chain uPA. The aptamer also inhibited the binding of pro-uPA to uPAR and the binding of vitronectin to the preformed pro-uPA/uPAR complex, both in cell-free systems and on cell surfaces. Furthermore, upanap-126 inhibited human tumor cell invasion in vitro in the Matrigel assay and in vivo in the chick embryo assay of cell escape from microtumors. Finally, upanap-126 significantly reduced the levels of tumor cell intravasation and dissemination in the chick embryo model of spontaneous metastasis. Together, our findings show that usage of upanap-126 represents a novel multifunctional mechanistic modality for inhibition of uPA-dependent processes involved in tumor cell spread.
Collapse
Affiliation(s)
- Kenneth A Botkjaer
- Department of Molecular Biology and Genetics, Aarhus University, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Todorović-Raković N, Vujasinović T, Abu Rabi Z. Selection of clinically useful angiogenesis-related biomarkers: an update. Int J Biol Markers 2012; 27:e65-e81. [PMID: 22307386 DOI: 10.5301/jbm.2012.8989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2011] [Indexed: 11/20/2022]
Abstract
Angiogenesis is a complex phenomenon that involves interaction between growth factors/cytokines and their receptors, and proteolytic enzymes and their inhibitors, which, in addition to and in accordance with their main roles, act together during this multistep process. Cancer angiogenesis is specific, because the same factors that enable angiogenesis are involved in the process of carcinogenesis. The aim of this review was to analyze the current knowledge regarding the significance of selected biomarkers in cancer angiogenesis, with emphasis on their prognostic value in the circulation.
Collapse
Affiliation(s)
- Nataša Todorović-Raković
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade - Serbia.
| | | | | |
Collapse
|
19
|
Lam BJ, Joyce GF. An isothermal system that couples ligand-dependent catalysis to ligand-independent exponential amplification. J Am Chem Soc 2011; 133:3191-7. [PMID: 21322594 DOI: 10.1021/ja111136d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A system was devised that enables quantitative, ligand-dependent exponential amplification for various ligands that can be recognized by an RNA aptamer. The aptamer is linked to an RNA enzyme that catalyzes the joining of two oligonucleotide substrates. The product of this reaction is another RNA enzyme that undergoes self-sustained replication at constant temperature, increasing in copy number exponentially. The concentration of the ligand determines the amount of time required for the replication products to reach a threshold concentration. A standardized plot of time to threshold versus ligand concentration can be used to determine the concentration of ligand in an unknown sample. This system is analogous to quantitative polymerase chain reaction (PCR), linking rare recognition events to subsequent exponential amplification, but unlike PCR can be applied to the quantitative detection of non-nucleic acid ligands.
Collapse
Affiliation(s)
- Bianca J Lam
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|