1
|
Gan T, Liu Y, Qiao Y, Dong Y, Feng J, Chen X, Zhu L. Translation regulation in Bacillus subtilis and its applications in heterologous protein expression: A review. Int J Biol Macromol 2025; 311:143653. [PMID: 40311986 DOI: 10.1016/j.ijbiomac.2025.143653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/11/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Bacillus subtilis is widely used for industrial enzyme production due to its food safety and good capability of protein synthesis and secretion. However, the production of heterologous proteins is often inefficient, partly due to poor compatibility and versatility of genetic elements in B. subtilis. Recent study shows that transcription and translation is uncoupled in B. subtilis, which is quite different from general knowledge about the transcription-translation coupling mechanism in bacteria. The uncoupling mechanism in B. subtilis shows that the transcription rate is much faster than translation rate. Therefore, the translation regulation will play an important role in highly-effective synthesis of heterologous protein. To better understanding the different regulation strategies at the translation level in B. subtilis, this review will summarize the translation process in B. subtilis cell and its regulatory mechanisms as well as the differences in comparison to other bacteria. Besides, the genetic engineering strategies for engineering the translation regulatory elements are also summarized.
Collapse
Affiliation(s)
- Tian Gan
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yidi Liu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ying Qiao
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yangyang Dong
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiacheng Feng
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaolong Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Linjiang Zhu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
2
|
Callan K, Prince CR, Feaga HA. The ribosome-associated quality control pathway supports survival in the absence of non-stop ribosome rescue factors. mBio 2024; 15:e0232224. [PMID: 39535229 PMCID: PMC11633108 DOI: 10.1128/mbio.02322-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
In bacteria, if a ribosome translates an mRNA lacking a stop codon it becomes stalled at the 3' end of the message. These ribosomes must be rescued by trans-translation or the alternative rescue factors (ArfA or ArfB). However, mounting evidence suggests that the ribosome quality control (RQC) pathway may also rescue non-stop ribosomes. Here, we surveyed the conservation of ribosome rescue pathways in >15,000 bacterial genomes. We found that trans-translation is conserved in >97% of bacterial genomes, while the other rescue pathways are restricted to particular phyla. We did not detect the gene encoding RqcH, the major mediator of RQC, in Proteobacteria (Pseudomonadota). In all Proteobacteria investigated to date, trans-translation is essential in the absence of the Arf proteins. Therefore, we tested whether expression of RQC components from Bacillus subtilis could rescue viability in the absence of trans-translation and ArfA in Escherichia coli. We found that the RQC pathway indeed functions in E. coli and rescues the well-documented synthetic lethal phenotype of ∆ssrA∆arfA. Moreover, we show that the RQC pathway in B. subtilis is essential in the absence of trans-translation and ArfA, further supporting a role for the RQC pathway in the rescue of non-stop ribosomes. Finally, we report a strong co-occurrence between RqcH and the ribosome splitting factor MutS2, but present experimental evidence that there are likely additional ribosome splitting factors beyond MutS2 in B. subtilis. Altogether, our work supports a role for RQC in non-stop ribosome rescue and provides a broad survey of ribosome rescue pathways in diverse bacteria. IMPORTANCE In bacteria, it is estimated that 2%-4% of all translation reactions terminate with the ribosome stalled on a damaged mRNA lacking a stop codon. Mechanisms that rescue these ribosomes are essential for viability. We determined the functional overlap between the ribosome quality control pathway and the classical non-stop rescue systems [alternative rescue factor (ArfA) and trans-translation] in a representative Firmicute and Proteobacterium, phyla that are evolutionarily distinct. Furthermore, we used a bioinformatics approach to examine the conservation and overlap of various ribosome rescue systems in >15,000 species throughout the bacterial domain. These results provide key insights into ribosome rescue in diverse phyla.
Collapse
Affiliation(s)
- Katrina Callan
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Cassidy R. Prince
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Heather A. Feaga
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
3
|
Callan K, Prince CR, Feaga HA. RqcH supports survival in the absence of non-stop ribosome rescue factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603306. [PMID: 39026760 PMCID: PMC11257542 DOI: 10.1101/2024.07.12.603306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Ribosomes frequently translate truncated or damaged mRNAs due to the extremely short half-life of mRNAs in bacteria. When ribosomes translate mRNA that lacks a stop codon (non-stop mRNA), specialized pathways are required to rescue the ribosome from the 3' end of the mRNA. The most highly conserved non-stop rescue pathway is trans-translation, which is found in greater than 95% of bacterial genomes. In all Proteobacteria that have been studied, the alternative non-stop ribosome rescue factors, ArfA and ArfB, are essential in the absence of trans-translation. Here, we investigate the interaction between non-stop rescue pathways and RqcH, a ribosome quality control factor that is broadly conserved outside of Proteobacteria. RqcH does not act directly on non-stop ribosomes but adds a degron tag to stalled peptides that obstruct the large ribosomal subunit, which allows the stalled peptide to be cleared from the ribosome by peptidyl-tRNA hydrolase (PTH). We show that Bacillus subtilis can survive without trans-translation and BrfA (Bacillus ArfA homolog), due to the presence of RqcH. We also show that expression of RqcH and its helper protein RqcP rescues the synthetic lethality of ΔssrAΔarfA in Escherichia coli. These results suggest that non-stop ribosome complexes can be disassembled and then cleared because of the tagging activity of RqcH, and that this process is essential in the absence of non-stop ribosome rescue pathways. Moreover, we surveyed the conservation of ribosome rescue pathways in >14,000 bacterial genomes. Our analysis reveals a broad distribution of non-stop rescue pathways, especially trans-translation and RqcH, and a strong co-occurrence between the ribosome splitting factor MutS2 and RqcH. Altogether, our results support a role for RqcH in non-stop ribosome rescue and provide a broad survey of ribosome rescue pathways in diverse bacterial species.
Collapse
Affiliation(s)
- Katrina Callan
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| | | | - Heather A. Feaga
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
4
|
Ishida S, Ngo PHT, Gundlach A, Ellington A. Engineering Ribosomal Machinery for Noncanonical Amino Acid Incorporation. Chem Rev 2024; 124:7712-7730. [PMID: 38829723 DOI: 10.1021/acs.chemrev.3c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The introduction of noncanonical amino acids into proteins has enabled researchers to modify fundamental physicochemical and functional properties of proteins. While the alteration of the genetic code, via the introduction of orthogonal aminoacyl-tRNA synthetase:tRNA pairs, has driven many of these efforts, the various components involved in the process of translation are important for the development of new genetic codes. In this review, we will focus on recent advances in engineering ribosomal machinery for noncanonical amino acid incorporation and genetic code modification. The engineering of the ribosome itself will be considered, as well as the many factors that interact closely with the ribosome, including both tRNAs and accessory factors, such as the all-important EF-Tu. Given the success of genome re-engineering efforts, future paths for radical alterations of the genetic code will require more expansive alterations in the translation machinery.
Collapse
Affiliation(s)
- Satoshi Ishida
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Phuoc H T Ngo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Arno Gundlach
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrew Ellington
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Zafar H, Hassan AH, Demo G. Translation machinery captured in motion. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1792. [PMID: 37132456 DOI: 10.1002/wrna.1792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/14/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023]
Abstract
Translation accuracy is one of the most critical factors for protein synthesis. It is regulated by the ribosome and its dynamic behavior, along with translation factors that direct ribosome rearrangements to make translation a uniform process. Earlier structural studies of the ribosome complex with arrested translation factors laid the foundation for an understanding of ribosome dynamics and the translation process as such. Recent technological advances in time-resolved and ensemble cryo-EM have made it possible to study translation in real time at high resolution. These methods provided a detailed view of translation in bacteria for all three phases: initiation, elongation, and termination. In this review, we focus on translation factors (in some cases GTP activation) and their ability to monitor and respond to ribosome organization to enable efficient and accurate translation. This article is categorized under: Translation > Ribosome Structure/Function Translation > Mechanisms.
Collapse
Affiliation(s)
- Hassan Zafar
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ahmed H Hassan
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Gabriel Demo
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
6
|
Abstract
Accurate protein synthesis (translation) relies on translation factors that rectify ribosome fluctuations into a unidirectional process. Understanding this process requires structural characterization of the ribosome and translation-factor dynamics. In the 2000s, crystallographic studies determined high-resolution structures of ribosomes stalled with translation factors, providing a starting point for visualizing translation. Recent progress in single-particle cryogenic electron microscopy (cryo-EM) has enabled near-atomic resolution of numerous structures sampled in heterogeneous complexes (ensembles). Ensemble and time-resolved cryo-EM have now revealed unprecedented views of ribosome transitions in the three principal stages of translation: initiation, elongation, and termination. This review focuses on how translation factors help achieve high accuracy and efficiency of translation by monitoring distinct ribosome conformations and by differentially shifting the equilibria of ribosome rearrangements for cognate and near-cognate substrates. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Andrei A Korostelev
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA;
| |
Collapse
|
7
|
Shirokikh NE. Translation complex stabilization on messenger RNA and footprint profiling to study the RNA responses and dynamics of protein biosynthesis in the cells. Crit Rev Biochem Mol Biol 2021; 57:261-304. [PMID: 34852690 DOI: 10.1080/10409238.2021.2006599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During protein biosynthesis, ribosomes bind to messenger (m)RNA, locate its protein-coding information, and translate the nucleotide triplets sequentially as codons into the corresponding sequence of amino acids, forming proteins. Non-coding mRNA features, such as 5' and 3' untranslated regions (UTRs), start sites or stop codons of different efficiency, stretches of slower or faster code and nascent polypeptide interactions can alter the translation rates transcript-wise. Most of the homeostatic and signal response pathways of the cells converge on individual mRNA control, as well as alter the global translation output. Among the multitude of approaches to study translational control, one of the most powerful is to infer the locations of translational complexes on mRNA based on the mRNA fragments protected by these complexes from endonucleolytic hydrolysis, or footprints. Translation complex profiling by high-throughput sequencing of the footprints allows to quantify the transcript-wise, as well as global, alterations of translation, and uncover the underlying control mechanisms by attributing footprint locations and sizes to different configurations of the translational complexes. The accuracy of all footprint profiling approaches critically depends on the fidelity of footprint generation and many methods have emerged to preserve certain or multiple configurations of the translational complexes, often in challenging biological material. In this review, a systematic summary of approaches to stabilize translational complexes on mRNA for footprinting is presented and major findings are discussed. Future directions of translation footprint profiling are outlined, focusing on the fidelity and accuracy of inference of the native in vivo translation complex distribution on mRNA.
Collapse
Affiliation(s)
- Nikolay E Shirokikh
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
8
|
Korostelev AA. Diversity and Similarity of Termination and Ribosome Rescue in Bacterial, Mitochondrial, and Cytoplasmic Translation. BIOCHEMISTRY (MOSCOW) 2021; 86:1107-1121. [PMID: 34565314 DOI: 10.1134/s0006297921090066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
When a ribosome encounters the stop codon of an mRNA, it terminates translation, releases the newly made protein, and is recycled to initiate translation on a new mRNA. Termination is a highly dynamic process in which release factors (RF1 and RF2 in bacteria; eRF1•eRF3•GTP in eukaryotes) coordinate peptide release with large-scale molecular rearrangements of the ribosome. Ribosomes stalled on aberrant mRNAs are rescued and recycled by diverse bacterial, mitochondrial, or cytoplasmic quality control mechanisms. These are catalyzed by rescue factors with peptidyl-tRNA hydrolase activity (bacterial ArfA•RF2 and ArfB, mitochondrial ICT1 and mtRF-R, and cytoplasmic Vms1), that are distinct from each other and from release factors. Nevertheless, recent structural studies demonstrate a remarkable similarity between translation termination and ribosome rescue mechanisms. This review describes how these pathways rely on inherent ribosome dynamics, emphasizing the active role of the ribosome in all translation steps.
Collapse
Affiliation(s)
- Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA.
| |
Collapse
|
9
|
Su T, Kudva R, Becker T, Buschauer R, Komar T, Berninghausen O, von Heijne G, Cheng J, Beckmann R. Structural basis of l-tryptophan-dependent inhibition of release factor 2 by the TnaC arrest peptide. Nucleic Acids Res 2021; 49:9539-9547. [PMID: 34403461 PMCID: PMC8450073 DOI: 10.1093/nar/gkab665] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/13/2021] [Accepted: 08/14/2021] [Indexed: 12/20/2022] Open
Abstract
In Escherichia coli, elevated levels of free l-tryptophan (l-Trp) promote translational arrest of the TnaC peptide by inhibiting its termination. However, the mechanism by which translation-termination by the UGA-specific decoding release factor 2 (RF2) is inhibited at the UGA stop codon of stalled TnaC-ribosome-nascent chain complexes has so far been ambiguous. This study presents cryo-EM structures for ribosomes stalled by TnaC in the absence and presence of RF2 at average resolutions of 2.9 and 3.5 Å, respectively. Stalled TnaC assumes a distinct conformation composed of two small α-helices that act together with residues in the peptide exit tunnel (PET) to coordinate a single L-Trp molecule. In addition, while the peptidyl-transferase center (PTC) is locked in a conformation that allows RF2 to adopt its canonical position in the ribosome, it prevents the conserved and catalytically essential GGQ motif of RF2 from adopting its active conformation in the PTC. This explains how translation of the TnaC peptide effectively allows the ribosome to function as a L-Trp-specific small-molecule sensor that regulates the tnaCAB operon.
Collapse
Affiliation(s)
- Ting Su
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Renuka Kudva
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-10691, Sweden.,Science for Life Laboratories, Solna 17165, Sweden
| | - Thomas Becker
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Robert Buschauer
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Tobias Komar
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Otto Berninghausen
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-10691, Sweden.,Science for Life Laboratories, Solna 17165, Sweden
| | - Jingdong Cheng
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Roland Beckmann
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| |
Collapse
|
10
|
Usachev KS, Yusupov MM, Validov SZ. Hibernation as a Stage of Ribosome Functioning. BIOCHEMISTRY (MOSCOW) 2021; 85:1434-1442. [PMID: 33280583 DOI: 10.1134/s0006297920110115] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In response to stress, eubacteria reduce the level of protein synthesis and either disassemble ribosomes into the 30S and 50S subunits or turn them into translationally inactive 70S and 100S complexes. This helps the cell to solve two principal tasks: (i) to reduce the cost of protein biosynthesis under unfavorable conditions, and (ii) to preserve functional ribosomes for rapid recovery of protein synthesis until favorable conditions are restored. All known genes for ribosome silencing factors and hibernation proteins are located in the operons associated with the response to starvation as one of the stress factors, which helps the cells to coordinate the slowdown of protein synthesis with the overall stress response. It is possible that hibernation systems work as regulators that coordinate the intensity of protein synthesis with the energy state of bacterial cell. Taking into account the limited amount of nutrients in natural conditions and constant pressure of other stress factors, bacterial ribosome should remain most of time in a complex with the silencing/hibernation proteins. Therefore, hibernation is an additional stage between the ribosome recycling and translation initiation, at which the ribosome is maintained in a "preserved" state in the form of separate subunits, non-translating 70S particles, or 100S dimers. The evolution of the ribosome hibernation has occurred within a very long period of time; ribosome hibernation is a conserved mechanism that is essential for maintaining the energy- and resource-consuming process of protein biosynthesis in organisms living in changing environment under stress conditions.
Collapse
Affiliation(s)
- K S Usachev
- Kazan Federal University, Kazan, 420008, Russia
| | - M M Yusupov
- Kazan Federal University, Kazan, 420008, Russia. .,Institute of Genetics and Molecular and Cellular Biology, Illkirch-Graffenstaden, 67400, France
| | | |
Collapse
|
11
|
Albers S, Beckert B, Matthies MC, Mandava CS, Schuster R, Seuring C, Riedner M, Sanyal S, Torda AE, Wilson DN, Ignatova Z. Repurposing tRNAs for nonsense suppression. Nat Commun 2021; 12:3850. [PMID: 34158503 PMCID: PMC8219837 DOI: 10.1038/s41467-021-24076-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
Three stop codons (UAA, UAG and UGA) terminate protein synthesis and are almost exclusively recognized by release factors. Here, we design de novo transfer RNAs (tRNAs) that efficiently decode UGA stop codons in Escherichia coli. The tRNA designs harness various functionally conserved aspects of sense-codon decoding tRNAs. Optimization within the TΨC-stem to stabilize binding to the elongation factor, displays the most potent effect in enhancing suppression activity. We determine the structure of the ribosome in a complex with the designed tRNA bound to a UGA stop codon in the A site at 2.9 Å resolution. In the context of the suppressor tRNA, the conformation of the UGA codon resembles that of a sense-codon rather than when canonical translation termination release factors are bound, suggesting conformational flexibility of the stop codons dependent on the nature of the A-site ligand. The systematic analysis, combined with structural insights, provides a rationale for targeted repurposing of tRNAs to correct devastating nonsense mutations that introduce a premature stop codon.
Collapse
Affiliation(s)
- Suki Albers
- grid.9026.d0000 0001 2287 2617Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Bertrand Beckert
- grid.9026.d0000 0001 2287 2617Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Marco C. Matthies
- grid.9026.d0000 0001 2287 2617Center for Bioinformatics, University of Hamburg, Hamburg, Germany
| | - Chandra Sekhar Mandava
- grid.8993.b0000 0004 1936 9457Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Raphael Schuster
- grid.9026.d0000 0001 2287 2617Institute of Organic Chemistry, University of Hamburg, Hamburg, Germany
| | | | - Maria Riedner
- grid.9026.d0000 0001 2287 2617Institute of Organic Chemistry, University of Hamburg, Hamburg, Germany
| | - Suparna Sanyal
- grid.8993.b0000 0004 1936 9457Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Andrew E. Torda
- grid.9026.d0000 0001 2287 2617Center for Bioinformatics, University of Hamburg, Hamburg, Germany
| | - Daniel N. Wilson
- grid.9026.d0000 0001 2287 2617Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Zoya Ignatova
- grid.9026.d0000 0001 2287 2617Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
12
|
Zarechenskaia AS, Sergiev PV, Osterman IA. Quality Control Mechanisms in Bacterial Translation. Acta Naturae 2021; 13:32-44. [PMID: 34377554 PMCID: PMC8327144 DOI: 10.32607/actanaturae.11401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/15/2021] [Indexed: 12/24/2022] Open
Abstract
Ribosome stalling during translation significantly reduces cell viability, because cells have to spend resources on the synthesis of new ribosomes. Therefore, all bacteria have developed various mechanisms of ribosome rescue. Usually, the release of ribosomes is preceded by hydrolysis of the tRNA-peptide bond, but, in some cases, the ribosome can continue translation thanks to the activity of certain factors. This review describes the mechanisms of ribosome rescue thanks to trans-translation and the activity of the ArfA, ArfB, BrfA, ArfT, HflX, and RqcP/H factors, as well as continuation of translation via the action of EF-P, EF-4, and EttA. Despite the ability of some systems to duplicate each other, most of them have their unique functional role, related to the quality control of bacterial translation in certain abnormalities caused by mutations, stress cultivation conditions, or antibiotics.
Collapse
Affiliation(s)
- A. S. Zarechenskaia
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Moscow, 119992 Russia
| | - P. V. Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143028 Russia
- Lomonosov Moscow State University, Institute of functional genomics, Moscow, 119992 Russia
- Lomonosov Moscow State University, Department of Chemistry, Moscow, 119992 Russia
| | - I. A. Osterman
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143028 Russia
- Lomonosov Moscow State University, Department of Chemistry, Moscow, 119992 Russia
- Sirius University of Science and Technology, Genetics and Life Sciences Research Center, Sochi, 354340 Russia
| |
Collapse
|
13
|
Cheng-Guang H, Gualerzi CO. The Ribosome as a Switchboard for Bacterial Stress Response. Front Microbiol 2021; 11:619038. [PMID: 33584583 PMCID: PMC7873864 DOI: 10.3389/fmicb.2020.619038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/03/2020] [Indexed: 12/29/2022] Open
Abstract
As free-living organisms, bacteria are subject to continuous, numerous and occasionally drastic environmental changes to which they respond with various mechanisms which enable them to adapt to the new conditions so as to survive. Here we describe three situations in which the ribosome and its functions represent the sensor or the target of the stress and play a key role in the subsequent cellular response. The three stress conditions which are described are those ensuing upon: a) zinc starvation; b) nutritional deprivation, and c) temperature downshift.
Collapse
|
14
|
Carbone CE, Demo G, Madireddy R, Svidritskiy E, Korostelev AA. ArfB can displace mRNA to rescue stalled ribosomes. Nat Commun 2020; 11:5552. [PMID: 33144582 PMCID: PMC7641280 DOI: 10.1038/s41467-020-19370-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Ribosomes stalled during translation must be rescued to replenish the pool of translation-competent ribosomal subunits. Bacterial alternative rescue factor B (ArfB) releases nascent peptides from ribosomes stalled on mRNAs truncated at the A site, allowing ribosome recycling. Prior structural work revealed that ArfB recognizes such ribosomes by inserting its C-terminal α-helix into the vacant mRNA tunnel. In this work, we report that ArfB can efficiently recognize a wider range of mRNA substrates, including longer mRNAs that extend beyond the A-site codon. Single-particle cryo-EM unveils that ArfB employs two modes of function depending on the mRNA length. ArfB acts as a monomer to accommodate a shorter mRNA in the ribosomal A site. By contrast, longer mRNAs are displaced from the mRNA tunnel by more than 20 Å and are stabilized in the intersubunit space by dimeric ArfB. Uncovering distinct modes of ArfB function resolves conflicting biochemical and structural studies, and may lead to re-examination of other ribosome rescue pathways, whose functions depend on mRNA lengths.
Collapse
Affiliation(s)
- Christine E Carbone
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, 01605, United States
| | - Gabriel Demo
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, 01605, United States
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Rohini Madireddy
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, 01605, United States
- Medicago Inc., 7 Triangle drive, Durham, NC, 27713, USA
| | - Egor Svidritskiy
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, 01605, United States.
- Sanofi, 49 New York Ave, Suite 3660, Framingham, MA, 01701, USA.
| | - Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, 01605, United States.
| |
Collapse
|
15
|
Li W, Chang STL, Ward FR, Cate JHD. Selective inhibition of human translation termination by a drug-like compound. Nat Commun 2020; 11:4941. [PMID: 33009412 PMCID: PMC7532171 DOI: 10.1038/s41467-020-18765-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
Methods to directly inhibit gene expression using small molecules hold promise for the development of new therapeutics targeting proteins that have evaded previous attempts at drug discovery. Among these, small molecules including the drug-like compound PF-06446846 (PF846) selectively inhibit the synthesis of specific proteins, by stalling translation elongation. These molecules also inhibit translation termination by an unknown mechanism. Using cryo-electron microscopy (cryo-EM) and biochemical approaches, we show that PF846 inhibits translation termination by arresting the nascent chain (NC) in the ribosome exit tunnel. The arrested NC adopts a compact α-helical conformation that induces 28 S rRNA nucleotide rearrangements that suppress the peptidyl transferase center (PTC) catalytic activity stimulated by eukaryotic release factor 1 (eRF1). These data support a mechanism of action for a small molecule targeting translation that suppresses peptidyl-tRNA hydrolysis promoted by eRF1, revealing principles of eukaryotic translation termination and laying the foundation for new therapeutic strategies.
Collapse
Affiliation(s)
- Wenfei Li
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Stacey Tsai-Lan Chang
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
| | - Fred R Ward
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Jamie H D Cate
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Chemistry, University of California, Berkeley, CA, USA.
| |
Collapse
|
16
|
Ghosh S, Guimaraes JC, Lanzafame M, Schmidt A, Syed AP, Dimitriades B, Börsch A, Ghosh S, Mittal N, Montavon T, Correia AL, Danner J, Meister G, Terracciano LM, Pfeffer S, Piscuoglio S, Zavolan M. Prevention of dsRNA-induced interferon signaling by AGO1x is linked to breast cancer cell proliferation. EMBO J 2020; 39:e103922. [PMID: 32812257 PMCID: PMC7507497 DOI: 10.15252/embj.2019103922] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 01/05/2023] Open
Abstract
Translational readthrough, i.e., elongation of polypeptide chains beyond the stop codon, was initially reported for viral RNA, but later found also on eukaryotic transcripts, resulting in proteome diversification and protein‐level modulation. Here, we report that AGO1x, an evolutionarily conserved translational readthrough isoform of Argonaute 1, is generated in highly proliferative breast cancer cells, where it curbs accumulation of double‐stranded RNAs (dsRNAs) and consequent induction of interferon responses and apoptosis. In contrast to other mammalian Argonaute protein family members with primarily cytoplasmic functions, AGO1x exhibits nuclear localization in the vicinity of nucleoli. We identify AGO1x interaction with the polyribonucleotide nucleotidyltransferase 1 (PNPT1) and show that the depletion of this protein further augments dsRNA accumulation. Our study thus uncovers a novel function of an Argonaute protein in buffering the endogenous dsRNA‐induced interferon responses, different than the canonical function of AGO proteins in the miRNA effector pathway. As AGO1x expression is tightly linked to breast cancer cell proliferation, our study thus suggests a new direction for limiting tumor growth.
Collapse
Affiliation(s)
- Souvik Ghosh
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Joao C Guimaraes
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Manuela Lanzafame
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Afzal Pasha Syed
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Beatrice Dimitriades
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Anastasiya Börsch
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Shreemoyee Ghosh
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Nitish Mittal
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Thomas Montavon
- Architecture et Réactivité de l'ARN, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, Strasbourg, France
| | - Ana Luisa Correia
- Department of Biomedicine, University of Basel/University Hospital Basel, Basel, Switzerland
| | - Johannes Danner
- Department of Biochemistry, Department of Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Department of Biochemistry, Department of Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | | | - Sébastien Pfeffer
- Architecture et Réactivité de l'ARN, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, Strasbourg, France
| | - Salvatore Piscuoglio
- Institute of Pathology, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel/University Hospital Basel, Basel, Switzerland
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
17
|
Kurita D, Abo T, Himeno H. Molecular determinants of release factor 2 for ArfA-mediated ribosome rescue. J Biol Chem 2020; 295:13326-13337. [PMID: 32727848 DOI: 10.1074/jbc.ra120.014664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/27/2020] [Indexed: 02/01/2023] Open
Abstract
Translation termination in bacteria requires that the stop codon be recognized by release factor RF1 or RF2, leading to hydrolysis of the ester bond between the peptide and tRNA on the ribosome. As a consequence, normal termination cannot proceed if the translated mRNA lacks a stop codon. In Escherichia coli, the ribosome rescue factor ArfA releases the nascent polypeptide from the stalled ribosome with the help of RF2 in a stop codon-independent manner. Interestingly, the reaction does not proceed if RF1 is instead provided, even though the structures of RF1 and RF2 are very similar. Here, we identified the regions of RF2 required for the ArfA-dependent ribosome rescue system. Introduction of hydrophobic residues from RF2 found at the interface between RF2 and ArfA into RF1 allowed RF1 to associate with the ArfA-ribosome complex to a certain extent but failed to promote peptidyl-tRNA hydrolysis, whereas WT RF1 did not associate with the complex. We also identified the key residues required for the process after ribosome binding. Our findings provide a basis for understanding how the ArfA-ribosome complex is specifically recognized by RF2 and how RF2 undergoes a conformational change upon binding to the ArfA-ribosome complex.
Collapse
Affiliation(s)
- Daisuke Kurita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan.
| | - Tatsuhiko Abo
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Hyouta Himeno
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan.
| |
Collapse
|
18
|
Tollerson R, Ibba M. Translational regulation of environmental adaptation in bacteria. J Biol Chem 2020; 295:10434-10445. [PMID: 32518156 DOI: 10.1074/jbc.rev120.012742] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/08/2020] [Indexed: 01/26/2023] Open
Abstract
Bacteria must rapidly respond to both intracellular and environmental changes to survive. One critical mechanism to rapidly detect and adapt to changes in environmental conditions is control of gene expression at the level of protein synthesis. At each of the three major steps of translation-initiation, elongation, and termination-cells use stimuli to tune translation rate and cellular protein concentrations. For example, changes in nutrient concentrations in the cell can lead to translational responses involving mechanisms such as dynamic folding of riboswitches during translation initiation or the synthesis of alarmones, which drastically alter cell physiology. Moreover, the cell can fine-tune the levels of specific protein products using programmed ribosome pausing or inducing frameshifting. Recent studies have improved understanding and revealed greater complexity regarding long-standing paradigms describing key regulatory steps of translation such as start-site selection and the coupling of transcription and translation. In this review, we describe how bacteria regulate their gene expression at the three translational steps and discuss how translation is used to detect and respond to changes in the cellular environment. Finally, we appraise the costs and benefits of regulation at the translational level in bacteria.
Collapse
Affiliation(s)
- Rodney Tollerson
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | - Michael Ibba
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
19
|
Aleksashin NA, Szal T, d'Aquino AE, Jewett MC, Vázquez-Laslop N, Mankin AS. A fully orthogonal system for protein synthesis in bacterial cells. Nat Commun 2020; 11:1858. [PMID: 32313034 PMCID: PMC7170887 DOI: 10.1038/s41467-020-15756-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Ribosome engineering is a powerful approach for expanding the catalytic potential of the protein synthesis apparatus. Due to the potential detriment the properties of the engineered ribosome may have on the cell, the designer ribosome needs to be functionally isolated from the translation machinery synthesizing cellular proteins. One solution to this problem was offered by Ribo-T, an engineered ribosome with tethered subunits which, while producing a desired protein, could be excluded from general translation. Here, we provide a conceptually different design of a cell with two orthogonal protein synthesis systems, where Ribo-T produces the proteome, while the dissociable ribosome is committed to the translation of a specific mRNA. The utility of this system is illustrated by generating a comprehensive collection of mutants with alterations at every rRNA nucleotide of the peptidyl transferase center and isolating gain-of-function variants that enable the ribosome to overcome the translation termination blockage imposed by an arrest peptide.
Collapse
Affiliation(s)
- Nikolay A Aleksashin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.,Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Teresa Szal
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Anne E d'Aquino
- Interdisciplinary Biological Science Program, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA.,Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.,Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA. .,Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
20
|
d’Aquino AE, Azim T, Aleksashin NA, Hockenberry AJ, Krüger A, Jewett MC. Mutational characterization and mapping of the 70S ribosome active site. Nucleic Acids Res 2020; 48:2777-2789. [PMID: 32009164 PMCID: PMC7049736 DOI: 10.1093/nar/gkaa001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/06/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022] Open
Abstract
The synthetic capability of the Escherichia coli ribosome has attracted efforts to repurpose it for novel functions, such as the synthesis of polymers containing non-natural building blocks. However, efforts to repurpose ribosomes are limited by the lack of complete peptidyl transferase center (PTC) active site mutational analyses to inform design. To address this limitation, we leverage an in vitro ribosome synthesis platform to build and test every possible single nucleotide mutation within the PTC-ring, A-loop and P-loop, 180 total point mutations. These mutant ribosomes were characterized by assessing bulk protein synthesis kinetics, readthrough, assembly, and structure mapping. Despite the highly-conserved nature of the PTC, we found that >85% of the PTC nucleotides possess mutational flexibility. Our work represents a comprehensive single-point mutant characterization and mapping of the 70S ribosome's active site. We anticipate that it will facilitate structure-function relationships within the ribosome and make possible new synthetic biology applications.
Collapse
Affiliation(s)
- Anne E d’Aquino
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Tasfia Azim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Nikolay A Aleksashin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Adam J Hockenberry
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Antje Krüger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Michael C Jewett
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
21
|
Fleming I, Cavalcanti ARO. Selection for tandem stop codons in ciliate species with reassigned stop codons. PLoS One 2019; 14:e0225804. [PMID: 31770405 PMCID: PMC6879139 DOI: 10.1371/journal.pone.0225804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
The failure of mRNA translation machinery to recognize a stop codon as a termination signal and subsequent translation of the 3' untranslated region (UTR) is referred to as stop codon readthrough, the frequency of which is related to the length, composition, and structure of mRNA sequences downstream of end-of-gene stop codons. Secondary in-frame stop codons within a few positions downstream of the primary stop codons, so-called tandem stop codons (TSCs), serve as backup termination signals, which limit the effects of readthrough: polypeptide product degradation, mislocalization, and aggregation. In this study, ciliate species with UAA and UAG stop codons reassigned to code for glutamine are found to possess statistical excesses of TSCs at the beginning of their 3' UTRs. The overrepresentation of TSCs in these species is greater than that observed in standard code organisms. Though the overall numbers of TSCs are lower in most species with alternative stop codons because they use fewer than three unique stop codons, the relatively great overrepresentation of TSCs in alternative-code ciliate species suggests that there exist stronger selective pressures to maintain TSCs in these organisms compared to standard code organisms.
Collapse
Affiliation(s)
- Ira Fleming
- Department of Molecular Biology, Pomona College, Claremont, CA, United States of America
| | - Andre R. O. Cavalcanti
- Department of Molecular Biology, Pomona College, Claremont, CA, United States of America
- * E-mail:
| |
Collapse
|
22
|
Svidritskiy E, Demo G, Loveland AB, Xu C, Korostelev AA. Extensive ribosome and RF2 rearrangements during translation termination. eLife 2019; 8:46850. [PMID: 31513010 PMCID: PMC6742477 DOI: 10.7554/elife.46850] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/28/2019] [Indexed: 12/31/2022] Open
Abstract
Protein synthesis ends when a ribosome reaches an mRNA stop codon. Release factors (RFs) decode the stop codon, hydrolyze peptidyl-tRNA to release the nascent protein, and then dissociate to allow ribosome recycling. To visualize termination by RF2, we resolved a cryo-EM ensemble of E. coli 70S•RF2 structures at up to 3.3 Å in a single sample. Five structures suggest a highly dynamic termination pathway. Upon peptidyl-tRNA hydrolysis, the CCA end of deacyl-tRNA departs from the peptidyl transferase center. The catalytic GGQ loop of RF2 is rearranged into a long β-hairpin that plugs the peptide tunnel, biasing a nascent protein toward the ribosome exit. Ribosomal intersubunit rotation destabilizes the catalytic RF2 domain on the 50S subunit and disassembles the central intersubunit bridge B2a, resulting in RF2 departure. Our structures visualize how local rearrangements and spontaneous inter-subunit rotation poise the newly-made protein and RF2 to dissociate in preparation for ribosome recycling.
Collapse
Affiliation(s)
- Egor Svidritskiy
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
| | - Gabriel Demo
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
| | - Anna B Loveland
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
| | - Chen Xu
- Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Andrei A Korostelev
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States.,Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
23
|
The structural basis for release-factor activation during translation termination revealed by time-resolved cryogenic electron microscopy. Nat Commun 2019; 10:2579. [PMID: 31189921 PMCID: PMC6561943 DOI: 10.1038/s41467-019-10608-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/14/2019] [Indexed: 11/08/2022] Open
Abstract
When the ribosome encounters a stop codon, it recruits a release factor (RF) to hydrolyze the ester bond between the peptide chain and tRNA. RFs have structural motifs that recognize stop codons in the decoding center and a GGQ motif for induction of hydrolysis in the peptidyl transfer center 70 Å away. Surprisingly, free RF2 is compact, with only 20 Å between its codon-reading and GGQ motifs. Cryo-EM showed that ribosome-bound RFs have extended structures, suggesting that RFs are compact when entering the ribosome and then extend their structures upon stop codon recognition. Here we use time-resolved cryo-EM to visualize transient compact forms of RF1 and RF2 at 3.5 and 4 Å resolution, respectively, in the codon-recognizing ribosome complex on the native pathway. About 25% of complexes have RFs in the compact state at 24 ms reaction time, and within 60 ms virtually all ribosome-bound RFs are transformed to their extended forms. Translation termination is under strong selection pressure for high speed and accuracy. Here the authors provide a 3D view of the dynamics of a translating bacterial ribosome as it recruits a class-1 release factor (RF1 or RF2) upon encountering a stop codon, and propose a structure-based kinetic model for the early steps in bacterial translation termination.
Collapse
|
24
|
Ferretti MB, Karbstein K. Does functional specialization of ribosomes really exist? RNA (NEW YORK, N.Y.) 2019; 25:521-538. [PMID: 30733326 PMCID: PMC6467006 DOI: 10.1261/rna.069823.118] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
It has recently become clear that ribosomes are much more heterogeneous than previously thought, with diversity arising from rRNA sequence and modifications, ribosomal protein (RP) content and posttranslational modifications (PTMs), as well as bound nonribosomal proteins. In some cases, the existence of these diverse ribosome populations has been verified by biochemical or structural methods. Furthermore, knockout or knockdown of RPs can diversify ribosome populations, while also affecting the translation of some mRNAs (but not others) with biological consequences. However, the effects on translation arising from depletion of diverse proteins can be highly similar, suggesting that there may be a more general defect in ribosome function or stability, perhaps arising from reduced ribosome numbers. Consistently, overall reduced ribosome numbers can differentially affect subclasses of mRNAs, necessitating controls for specificity. Moreover, in order to study the functional consequences of ribosome diversity, perturbations including affinity tags and knockouts are introduced, which can also affect the outcome of the experiment. Here we review the available literature to carefully evaluate whether the published data support functional diversification, defined as diverse ribosome populations differentially affecting translation of distinct mRNA (classes). Based on these observations and the commonly observed cellular responses to perturbations in the system, we suggest a set of important controls to validate functional diversity, which should include gain-of-function assays and the demonstration of inducibility under physiological conditions.
Collapse
Affiliation(s)
- Max B Ferretti
- Department of Integrative Structural and Molecular Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Katrin Karbstein
- Department of Integrative Structural and Molecular Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida 33458, USA
| |
Collapse
|
25
|
Svidritskiy E, Korostelev AA. Mechanism of Inhibition of Translation Termination by Blasticidin S. J Mol Biol 2019; 430:591-593. [PMID: 29366636 DOI: 10.1016/j.jmb.2018.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/13/2017] [Accepted: 01/05/2018] [Indexed: 01/25/2023]
Abstract
Understanding the mechanisms of inhibitors of translation termination may inform development of new antibacterials and therapeutics for premature termination diseases. We report the crystal structure of the potent termination inhibitor blasticidin S bound to the ribosomal 70S•release factor 1 (RF1) termination complex. Blasticidin S shifts the catalytic domain 3 of RF1 and restructures the peptidyl transferase center. Universally conserved uridine 2585 in the peptidyl transferase center occludes the catalytic backbone of the GGQ motif of RF1, explaining the structural mechanism of inhibition. Rearrangement of domain 3 relative to the codon-recognition domain 2 provides insight into the dynamics of RF1 implicated in termination accuracy.
Collapse
Affiliation(s)
- Egor Svidritskiy
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation St., Worcester, MA 01605, USA
| | - Andrei A Korostelev
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation St., Worcester, MA 01605, USA.
| |
Collapse
|
26
|
|
27
|
Abstract
Francisella tularensis is a highly infectious intracellular pathogen that kills more than half of infected humans if left untreated. F. tularensis has also been classified as a potential bioterrorism agent with a great risk for deliberate misuse. Recently, compounds that inhibit ribosome rescue have been shown to have antibiotic activity against F. tularensis and other important pathogens. Like all bacteria that have been studied, F. tularensis uses trans-translation as the main pathway to rescue stalled ribosomes. However, unlike most bacteria, F. tularensis can survive without any of the known factors for ribosome rescue. Our work identified a F. tularensis protein, ArfT, that rescues stalled ribosomes in the absence of trans-translation using a new mechanism. These results indicate that ribosome rescue activity is essential in F. tularensis and suggest that ribosome rescue activity might be essential in all bacteria. Bacterial ribosomes frequently translate to the 3′ end of an mRNA without terminating at an in-frame stop codon. In all bacteria studied to date, these “nonstop” ribosomes are rescued using trans-translation. Genes required for trans-translation are essential in some species, but other species can survive without trans-translation because they express an alternative ribosome rescue factor, ArfA or ArfB. Francisella tularensis cells lacking trans-translation are viable, but F. tularensis does not encode ArfA or ArfB. Transposon mutagenesis followed by deep sequencing (Tn-seq) identified a new alternative ribosome rescue factor, now named ArfT. arfT can be deleted in wild-type (wt) cells but not in cells that lack trans-translation activity. Overexpression of ArfT suppresses the slow-growth phenotype in cells lacking trans-translation and counteracts growth arrest caused by trans-translation inhibitors, indicating that ArfT rescues nonstop ribosomes in vivo. Ribosome rescue assays in vitro show that ArfT promotes hydrolysis of peptidyl-tRNA on nonstop ribosomes in conjunction with F. tularensis release factors. Unlike ArfA, which requires RF2 for activity, ArfT can function with either RF1 or RF2. Overall, these results indicate that ArfT is a new alternative ribosome rescue factor with a distinct mechanism from ArfA and ArfB.
Collapse
|
28
|
Abstract
During protein synthesis, ribosomes encounter many roadblocks, the outcomes of which are largely determined by substrate availability, amino acid features and reaction kinetics. Prolonged ribosome stalling is likely to be resolved by ribosome rescue or quality control pathways, whereas shorter stalling is likely to be resolved by ongoing productive translation. How ribosome function is affected by such hindrances can therefore have a profound impact on the translational output (yield) of a particular mRNA. In this Review, we focus on these roadblocks and the resumption of normal translation elongation rather than on alternative fates wherein the stalled ribosome triggers degradation of the mRNA and the incomplete protein product. We discuss the fundamental stages of the translation process in eukaryotes, from elongation through ribosome recycling, with particular attention to recent discoveries of the complexity of the genetic code and regulatory elements that control gene expression, including ribosome stalling during elongation, the role of mRNA context in translation termination and mechanisms of ribosome rescue that resemble recycling.
Collapse
Affiliation(s)
- Anthony P Schuller
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
29
|
Svidritskiy E, Demo G, Korostelev AA. Mechanism of premature translation termination on a sense codon. J Biol Chem 2018; 293:12472-12479. [PMID: 29941456 DOI: 10.1074/jbc.aw118.003232] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accurate translation termination by release factors (RFs) is critical for the integrity of cellular proteomes. Premature termination on sense codons, for example, results in truncated proteins, whose accumulation could be detrimental to the cell. Nevertheless, some sense codons are prone to triggering premature termination, but the structural basis for this is unclear. To investigate premature termination, we determined a cryo-EM structure of the Escherichia coli 70S ribosome bound with RF1 in response to a UAU (Tyr) sense codon. The structure reveals that RF1 recognizes a UAU codon similarly to a UAG stop codon, suggesting that sense codons induce premature termination because they structurally mimic a stop codon. Hydrophobic interaction between the nucleobase of U3 (the third position of the UAU codon) and conserved Ile-196 in RF1 is important for misreading the UAU codon. Analyses of RNA binding in ribonucleoprotein complexes or by amino acids reveal that Ile-U packing is a frequent protein-RNA-binding motif with key functional implications. We discuss parallels with eukaryotic translation termination by the release factor eRF1.
Collapse
Affiliation(s)
- Egor Svidritskiy
- From the RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Gabriel Demo
- From the RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Andrei A Korostelev
- From the RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
30
|
Conformational Control of Translation Termination on the 70S Ribosome. Structure 2018; 26:821-828.e3. [PMID: 29731232 DOI: 10.1016/j.str.2018.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/07/2018] [Accepted: 04/05/2018] [Indexed: 11/20/2022]
Abstract
Translation termination ensures proper lengths of cellular proteins. During termination, release factor (RF) recognizes a stop codon and catalyzes peptide release. Conformational changes in RF are thought to underlie accurate translation termination. However, structural studies of ribosome termination complexes have only captured RFs in a conformation that is consistent with the catalytically active state. Here, we employ a hyper-accurate RF1 variant to obtain crystal structures of 70S termination complexes that suggest a structural pathway for RF1 activation. We trapped RF1 conformations with the catalytic domain outside of the peptidyl-transferase center, while the codon-recognition domain binds the stop codon. Stop-codon recognition induces 30S decoding-center rearrangements that precede accommodation of the catalytic domain. The separation of codon recognition from the opening of the catalytic domain suggests how rearrangements in RF1 and in the ribosomal decoding center coordinate stop-codon recognition with peptide release, ensuring accurate translation termination.
Collapse
|
31
|
Casy W, Prater AR, Cornish PV. Operative Binding of Class I Release Factors and YaeJ Stabilizes the Ribosome in the Nonrotated State. Biochemistry 2018; 57:1954-1966. [PMID: 29499110 DOI: 10.1021/acs.biochem.7b00824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During translation, the small subunit of the ribosome rotates with respect to the large subunit primarily between two states as mRNA is being translated into a protein. At the termination of bacterial translation, class I release factors (RFs) bind to a stop codon in the A-site and catalyze the release of the peptide chain from the ribosome. Periodically, mRNA is truncated prematurely, and the translating ribosome stalls at the end of the mRNA forming a nonstop complex requiring one of several ribosome rescue factors to intervene. One factor, YaeJ, is structurally homologous with the catalytic region of RFs but differs by binding to the ribosome directly through its C-terminal tail. Structures of the ribosome show that the ribosome adopts the nonrotated state conformation when these factors are bound. However, these studies do not elucidate the influence of binding to cognate or noncognate codons on the dynamics of intersubunit rotation. Here, we investigate the effects of wild-type and mutant forms of RF1, RF2, and YaeJ binding on ribosome intersubunit rotation using single-molecule Förster resonance energy transfer. We show that both RF1 binding and RF2 binding are sufficient to shift the population of posthydrolysis ribosome complexes from primarily the rotated to the nonrotated state only when a cognate stop codon is present in the A-site. Similarly, YaeJ binding stabilizes nonstop ribosomal complexes in the nonrotated state. Along with previous studies, these results are consistent with the idea that directed conformational changes and binding of subsequent factors to the ribosome are requisite for efficient termination and ribosome recycling.
Collapse
Affiliation(s)
- Widler Casy
- Department of Biochemistry , University of Missouri , Columbia , Missouri 65211 , United States
| | - Austin R Prater
- Department of Biochemistry , University of Missouri , Columbia , Missouri 65211 , United States
| | - Peter V Cornish
- Department of Biochemistry , University of Missouri , Columbia , Missouri 65211 , United States
| |
Collapse
|
32
|
Hoernes TP, Clementi N, Juen MA, Shi X, Faserl K, Willi J, Gasser C, Kreutz C, Joseph S, Lindner H, Hüttenhofer A, Erlacher MD. Atomic mutagenesis of stop codon nucleotides reveals the chemical prerequisites for release factor-mediated peptide release. Proc Natl Acad Sci U S A 2018; 115:E382-E389. [PMID: 29298914 PMCID: PMC5776981 DOI: 10.1073/pnas.1714554115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Termination of protein synthesis is triggered by the recognition of a stop codon at the ribosomal A site and is mediated by class I release factors (RFs). Whereas in bacteria, RF1 and RF2 promote termination at UAA/UAG and UAA/UGA stop codons, respectively, eukaryotes only depend on one RF (eRF1) to initiate peptide release at all three stop codons. Based on several structural as well as biochemical studies, interactions between mRNA, tRNA, and rRNA have been proposed to be required for stop codon recognition. In this study, the influence of these interactions was investigated by using chemically modified stop codons. Single functional groups within stop codon nucleotides were substituted to weaken or completely eliminate specific interactions between the respective mRNA and RFs. Our findings provide detailed insight into the recognition mode of bacterial and eukaryotic RFs, thereby revealing the chemical groups of nucleotides that define the identity of stop codons and provide the means to discriminate against noncognate stop codons or UGG sense codons.
Collapse
Affiliation(s)
- Thomas Philipp Hoernes
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Nina Clementi
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Michael Andreas Juen
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Xinying Shi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0314
| | - Klaus Faserl
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Jessica Willi
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Catherina Gasser
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0314
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Alexander Hüttenhofer
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Matthias David Erlacher
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
33
|
Identification of potential allosteric communication pathways between functional sites of the bacterial ribosome by graph and elastic network models. Biochim Biophys Acta Gen Subj 2017; 1861:3131-3141. [PMID: 28917952 DOI: 10.1016/j.bbagen.2017.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Accumulated evidence indicates that bacterial ribosome employs allostery throughout its structure for protein synthesis. The nature of the allosteric communication between remote functional sites remains unclear, but the contact topology and dynamics of residues may play role in transmission of a perturbation to distant sites. METHODS/RESULTS We employ two computationally efficient approaches - graph and elastic network modeling to gain insights about the allosteric communication in ribosome. Using graph representation of the structure, we perform k-shortest pathways analysis between peptidyl transferase center-ribosomal tunnel, decoding center-peptidyl transferase center - previously reported functional sites having allosteric communication. Detailed analysis on intact structures points to common and alternative shortest pathways preferred by different states of translation. All shortest pathways capture drug target sites and allosterically important regions. Elastic network model further reveals that residues along all pathways have the ability of quickly establishing pair-wise communication and to help the propagation of a perturbation in long-ranges during functional motions of the complex. CONCLUSIONS Contact topology and inherent dynamics of ribosome configure potential communication pathways between functional sites in different translation states. Inter-subunit bridges B2a, B3 and P-tRNA come forward for their high potential in assisting allostery during translation. Especially B3 emerges as a potential druggable site. GENERAL SIGNIFICANCE This study indicates that the ribosome topology forms a basis for allosteric communication, which can be disrupted by novel drugs to kill drug-resistant bacteria. Our computationally efficient approach not only overlaps with experimental evidence on allosteric regulation in ribosome but also proposes new druggable sites.
Collapse
|
34
|
Kumar A, Basu D, Satpati P. Structure-Based Energetics of Stop Codon Recognition by Eukaryotic Release Factor. J Chem Inf Model 2017; 57:2321-2328. [PMID: 28825483 DOI: 10.1021/acs.jcim.7b00340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In translation termination, the eukaryotic release factor (eRF1) recognizes mRNA stop codons (UAA, UAG, or UGA) in a ribosomal A site and triggers release of the nascent polypeptide chain from P-site tRNA. eRF1 is highly selective for U in the first position and a combination of purines (except two consecutive guanines, i.e., GG) in the second and third positions. Eukaryotes decode all three stop codons with a single release factor eRF1, instead of two (RF1 and RF2), in bacteria. Furthermore, unlike bacterial RF1/RF2, eRF1 stabilizes the compact U-turn mRNA configuration in the ribosomal A site by accommodating four nucleotides instead of three. Despite the available cryo-EM structures (resolution ∼3.5-3.8 Å), the energetic principle for eRF1 selectivity toward a stop codon remains a fundamentally unsolved problem. Using cryo-EM structures of eukaryotic translation termination complexes as templates, we carried out molecular dynamics free energy simulations of cognate and near-cognate complexes to quantitatively address the energetics of stop codon recognition by eRF1. Our results suggest that eRF1 has a higher discriminatory power against sense codons, compared to that reported earlier for RF1/RF2. The compact mRNA formed specific intra-mRNA interactions, which itself contributed to stop codon specificity. Furthermore, the specificity is enhanced by the loss of protein-mRNA interactions and, most importantly, by desolvation of the incorrect codons in the near-cognate complexes. Our work provides a clue to how eRF1 discriminates between cognate and near-cognate codons during protein synthesis.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati , Guwahati 781039, Assam, India
| | - Debadrita Basu
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati , Guwahati 781039, Assam, India
| | - Priyadarshi Satpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati , Guwahati 781039, Assam, India
| |
Collapse
|
35
|
Florin T, Maracci C, Graf M, Karki P, Klepacki D, Berninghausen O, Beckmann R, Vázquez-Laslop N, Wilson DN, Rodnina MV, Mankin AS. An antimicrobial peptide that inhibits translation by trapping release factors on the ribosome. Nat Struct Mol Biol 2017; 24:752-757. [PMID: 28741611 PMCID: PMC5589491 DOI: 10.1038/nsmb.3439] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022]
Abstract
Many antibiotics stop bacterial growth by inhibiting different steps of protein synthesis. However, no specific inhibitors of translation termination are known. Proline-rich antimicrobial peptides, a component of the antibacterial defense system of multicellular organisms, interfere with bacterial growth by inhibiting translation. Here we show that Api137, a derivative of the insect-produced antimicrobial peptide apidaecin, arrests terminating ribosomes using a unique mechanism of action. Api137 binds to the Escherichia coli ribosome and traps release factors 1 or 2 subsequent to release of the nascent polypeptide chain. A high-resolution cryo-EM structure of the ribosome complexed with release factor 1 and Api137 reveals the molecular interactions that lead to release factor trapping. Api137-mediated depletion of the cellular pool of free release factors causes the majority of ribosomes to stall at stop codons prior to polypeptide release, thereby resulting in a global shutdown of translation termination.
Collapse
Affiliation(s)
- Tanja Florin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Michael Graf
- Gene Center, Department for Biochemistry and Center for Protein Science Munich (CiPSM), University of Munich, Munich, Germany
| | - Prajwal Karki
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dorota Klepacki
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Otto Berninghausen
- Gene Center, Department for Biochemistry and Center for Protein Science Munich (CiPSM), University of Munich, Munich, Germany
| | - Roland Beckmann
- Gene Center, Department for Biochemistry and Center for Protein Science Munich (CiPSM), University of Munich, Munich, Germany
| | - Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Daniel N Wilson
- Gene Center, Department for Biochemistry and Center for Protein Science Munich (CiPSM), University of Munich, Munich, Germany.,Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
36
|
Mechanistic Insights Into Catalytic RNA-Protein Complexes Involved in Translation of the Genetic Code. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017. [PMID: 28683922 DOI: 10.1016/bs.apcsb.2017.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The contemporary world is an "RNA-protein world" rather than a "protein world" and tracing its evolutionary origins is of great interest and importance. The different RNAs that function in close collaboration with proteins are involved in several key physiological processes, including catalysis. Ribosome-the complex megadalton cellular machinery that translates genetic information encoded in nucleotide sequence to amino acid sequence-epitomizes such an association between RNA and protein. RNAs that can catalyze biochemical reactions are known as ribozymes. They usually employ general acid-base catalytic mechanism, often involving the 2'-OH of RNA that activates and/or stabilizes a nucleophile during the reaction pathway. The protein component of such RNA-protein complexes (RNPCs) mostly serves as a scaffold which provides an environment conducive for the RNA to function, or as a mediator for other interacting partners. In this review, we describe those RNPCs that are involved at different stages of protein biosynthesis and in which RNA performs the catalytic function; the focus of the account is on highlighting mechanistic aspects of these complexes. We also provide a perspective on such associations in the context of proofreading during translation of the genetic code. The latter aspect is not much appreciated and recent works suggest that this is an avenue worth exploring, since an understanding of the subject can provide useful insights into how RNAs collaborate with proteins to ensure fidelity during these essential cellular processes. It may also aid in comprehending evolutionary aspects of such associations.
Collapse
|
37
|
Baggett NE, Zhang Y, Gross CA. Global analysis of translation termination in E. coli. PLoS Genet 2017; 13:e1006676. [PMID: 28301469 PMCID: PMC5373646 DOI: 10.1371/journal.pgen.1006676] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/30/2017] [Accepted: 03/08/2017] [Indexed: 01/01/2023] Open
Abstract
Terminating protein translation accurately and efficiently is critical for both protein fidelity and ribosome recycling for continued translation. The three bacterial release factors (RFs) play key roles: RF1 and 2 recognize stop codons and terminate translation; and RF3 promotes disassociation of bound release factors. Probing release factors mutations with reporter constructs containing programmed frameshifting sequences or premature stop codons had revealed a propensity for readthrough or frameshifting at these specific sites, but their effects on translation genome-wide have not been examined. We performed ribosome profiling on a set of isogenic strains with well-characterized release factor mutations to determine how they alter translation globally. Consistent with their known defects, strains with increasingly severe release factor defects exhibit increasingly severe accumulation of ribosomes over stop codons, indicative of an increased duration of the termination/release phase of translation. Release factor mutant strains also exhibit increased occupancy in the region following the stop codon at a significant number of genes. Our global analysis revealed that, as expected, translation termination is generally efficient and accurate, but that at a significant number of genes (≥ 50) the ribosome signature after the stop codon is suggestive of translation past the stop codon. Even native E. coli K-12 exhibits the ribosome signature suggestive of protein extension, especially at UGA codons, which rely exclusively on the reduced function RF2 variant of the K-12 strain for termination. Deletion of RF3 increases the severity of the defect. We unambiguously demonstrate readthrough and frameshifting protein extensions and their further accumulation in mutant strains for a few select cases. In addition to enhancing recoding, ribosome accumulation over stop codons disrupts attenuation control of biosynthetic operons, and may alter expression of some overlapping genes. Together, these functional alterations may either augment the protein repertoire or produce deleterious proteins. Proteins are the cellular workhorses, performing essentially all of the functions required for cell and organismal survival. But, it takes a great deal of energy to make proteins, making it critical that proteins are made accurately and in the proper time frame. After a ribosome synthesizes a protein, release factors catalyze the accurate and timely release of the finished protein from the ribosome, a process called termination. Ribosomes are then recycled and start the next protein. We utilized ribosome profiling, a method that allows us to follow the position of every ribosome that is making a protein, to globally investigate and strengthen insights on termination fidelity for cells with and without mutant release factors. We find that as we decrease release factor function, the time to terminate/release a protein increases across the genome. We observe that the accuracy of terminating a protein at the correct place decreases on a global scale. Using this metric we identify genes with inherently low termination efficiency and confirm two novel events resulting in extended protein products. In addition we find that beyond disrupting accurate protein synthesis, release factor mutations can alter expression of genes involved in the production of key amino acids.
Collapse
Affiliation(s)
- Natalie E. Baggett
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Yan Zhang
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Carol A. Gross
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
- California Institute of Quantitative Biology, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
38
|
Demo G, Svidritskiy E, Madireddy R, Diaz-Avalos R, Grant T, Grigorieff N, Sousa D, Korostelev AA. Mechanism of ribosome rescue by ArfA and RF2. eLife 2017; 6. [PMID: 28300532 PMCID: PMC5378476 DOI: 10.7554/elife.23687] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 03/14/2017] [Indexed: 11/13/2022] Open
Abstract
ArfA rescues ribosomes stalled on truncated mRNAs by recruiting release factor RF2, which normally binds stop codons to catalyze peptide release. We report two 3.2 Å resolution cryo-EM structures – determined from a single sample – of the 70S ribosome with ArfA•RF2 in the A site. In both states, the ArfA C-terminus occupies the mRNA tunnel downstream of the A site. One state contains a compact inactive RF2 conformation. Ordering of the ArfA N-terminus in the second state rearranges RF2 into an extended conformation that docks the catalytic GGQ motif into the peptidyl-transferase center. Our work thus reveals the structural dynamics of ribosome rescue. The structures demonstrate how ArfA ‘senses’ the vacant mRNA tunnel and activates RF2 to mediate peptide release without a stop codon, allowing stalled ribosomes to be recycled. DOI:http://dx.doi.org/10.7554/eLife.23687.001
Collapse
Affiliation(s)
- Gabriel Demo
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
| | - Egor Svidritskiy
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
| | - Rohini Madireddy
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Ruben Diaz-Avalos
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Timothy Grant
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Nikolaus Grigorieff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Duncan Sousa
- Department of Biological Science, Florida State University, Tallahassee, United States
| | - Andrei A Korostelev
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
39
|
Pánek T, Žihala D, Sokol M, Derelle R, Klimeš V, Hradilová M, Zadrobílková E, Susko E, Roger AJ, Čepička I, Eliáš M. Nuclear genetic codes with a different meaning of the UAG and the UAA codon. BMC Biol 2017; 15:8. [PMID: 28193262 PMCID: PMC5304391 DOI: 10.1186/s12915-017-0353-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/23/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Departures from the standard genetic code in eukaryotic nuclear genomes are known for only a handful of lineages and only a few genetic code variants seem to exist outside the ciliates, the most creative group in this regard. Most frequent code modifications entail reassignment of the UAG and UAA codons, with evidence for at least 13 independent cases of a coordinated change in the meaning of both codons. However, no change affecting each of the two codons separately has been documented, suggesting the existence of underlying evolutionary or mechanistic constraints. RESULTS Here, we present the discovery of two new variants of the nuclear genetic code, in which UAG is translated as an amino acid while UAA is kept as a termination codon (along with UGA). The first variant occurs in an organism noticed in a (meta)transcriptome from the heteropteran Lygus hesperus and demonstrated to be a novel insect-dwelling member of Rhizaria (specifically Sainouroidea). This first documented case of a rhizarian with a non-canonical genetic code employs UAG to encode leucine and represents an unprecedented change among nuclear codon reassignments. The second code variant was found in the recently described anaerobic flagellate Iotanema spirale (Metamonada: Fornicata). Analyses of transcriptomic data revealed that I. spirale uses UAG to encode glutamine, similarly to the most common variant of a non-canonical code known from several unrelated eukaryotic groups, including hexamitin diplomonads (also a lineage of fornicates). However, in these organisms, UAA also encodes glutamine, whereas it is the primary termination codon in I. spirale. Along with phylogenetic evidence for distant relationship of I. spirale and hexamitins, this indicates two independent genetic code changes in fornicates. CONCLUSIONS Our study documents, for the first time, that evolutionary changes of the meaning of UAG and UAA codons in nuclear genomes can be decoupled and that the interpretation of the two codons by the cytoplasmic translation apparatus is mechanistically separable. The latter conclusion has interesting implications for possibilities of genetic code engineering in eukaryotes. We also present a newly developed generally applicable phylogeny-informed method for inferring the meaning of reassigned codons.
Collapse
Affiliation(s)
- Tomáš Pánek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - David Žihala
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - Martin Sokol
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - Romain Derelle
- Unité d'Ecologie, Systématique et Evolution, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud/Paris-Saclay, AgroParisTech, Orsay, France
| | - Vladimír Klimeš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - Miluše Hradilová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Eliška Zadrobílková
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague, Czech Republic
| | - Edward Susko
- Department of Mathematics and Statistics, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Toronto, ON, Canada
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic.
| |
Collapse
|
40
|
Habib S, Vaishya S, Gupta K. Translation in Organelles of Apicomplexan Parasites. Trends Parasitol 2016; 32:939-952. [DOI: 10.1016/j.pt.2016.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 01/27/2023]
|
41
|
Svidritskiy E, Madireddy R, Korostelev AA. Structural Basis for Translation Termination on a Pseudouridylated Stop Codon. J Mol Biol 2016; 428:2228-36. [PMID: 27107638 DOI: 10.1016/j.jmb.2016.04.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 12/27/2022]
Abstract
Pseudouridylation of messenger RNA emerges as an abundant modification involved in gene expression regulation. Pseudouridylation of stop codons in eukaryotic and bacterial cells results in stop-codon read through. The structural mechanism of this phenomenon is not known. Here we present a 3.1-Å crystal structure of Escherichia coli release factor 1 (RF1) bound to the 70S ribosome in response to the ΨAA codon. The structure reveals that recognition of a modified stop codon does not differ from that of a canonical stop codon. Our in vitro biochemical results support this finding by yielding nearly identical rates for peptide release from E. coli ribosomes programmed with pseudouridylated and canonical stop codons. The crystal structure also brings insight into E. coli RF1-specific interactions and suggests involvement of L27 in bacterial translation termination. Our results are consistent with a mechanism in which read through of a pseudouridylated stop codon in bacteria results from increased decoding by near-cognate tRNAs (miscoding) rather than from decreased efficiency of termination.
Collapse
Affiliation(s)
- Egor Svidritskiy
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation St., Worcester, MA 01605, USA
| | - Rohini Madireddy
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation St., Worcester, MA 01605, USA
| | - Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation St., Worcester, MA 01605, USA.
| |
Collapse
|
42
|
Vaishya S, Kumar V, Gupta A, Siddiqi MI, Habib S. Polypeptide release factors and stop codon recognition in the apicoplast and mitochondrion of Plasmodium falciparum. Mol Microbiol 2016; 100:1080-95. [PMID: 26946524 DOI: 10.1111/mmi.13369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2016] [Indexed: 11/30/2022]
Abstract
Correct termination of protein synthesis would be a critical step in translation of organellar open reading frames (ORFs) of the apicoplast and mitochondrion of the malaria parasite. We identify release factors (RFs) responsible for recognition of the UAA and UGA stop-codons of apicoplast ORFs and the sole UAA stop-codon that terminates translation from the three mitochondrial ORFs. A single nuclear-encoded canonical RF2, PfRF2Api , localizes to the apicoplast. It has a conserved tripeptide motif (SPF) for stop-codon recognition and is sufficient for peptidyl-tRNA hydrolysis (PTH) from both UAA and UGA. Two RF family proteins are targeted to the parasite mitochondrion; a canonical RF1, PfRF1Mit , with a variant codon-recognition motif (PxN instead of the conserved RF1 PxT) is the major peptidyl-hydrolase with specific recognition of the UAA codon relevant to mitochondrial ORFs. Mutation of the N residue of the PfRF1Mit PxN motif and two other conserved residues of the codon recognition domain lowers PTH activity from pre-termination ribosomes indicating their role in codon-recognition. The second RF imported by the mitochondrion is the non-canonical PfICT1 that functions as a dimer and mediates codon nonspecific peptide release. Our results help delineate a critical step in organellar translation in Plasmodium, which is an important target for anti-malarials.
Collapse
Affiliation(s)
- Suniti Vaishya
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Vikash Kumar
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ankit Gupta
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mohammad Imran Siddiqi
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Saman Habib
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
43
|
Bulygin KN, Bartuli YS, Malygin AA, Graifer DM, Frolova LY, Karpova GG. Chemical footprinting reveals conformational changes of 18S and 28S rRNAs at different steps of translation termination on the human ribosome. RNA (NEW YORK, N.Y.) 2016; 22:278-289. [PMID: 26655225 PMCID: PMC4712677 DOI: 10.1261/rna.053801.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/17/2015] [Indexed: 06/05/2023]
Abstract
Translation termination in eukaryotes is mediated by release factors: eRF1, which is responsible for stop codon recognition and peptidyl-tRNA hydrolysis, and GTPase eRF3, which stimulates peptide release. Here, we have utilized ribose-specific probes to investigate accessibility of rRNA backbone in complexes formed by association of mRNA- and tRNA-bound human ribosomes with eRF1•eRF3•GMPPNP, eRF1•eRF3•GTP, or eRF1 alone as compared with complexes where the A site is vacant or occupied by tRNA. Our data show which rRNA ribose moieties are protected from attack by the probes in the complexes with release factors and reveal the rRNA regions increasing their accessibility to the probes after the factors bind. These regions in 28S rRNA are helices 43 and 44 in the GTPase associated center, the apical loop of helix 71, and helices 89, 92, and 94 as well as 18S rRNA helices 18 and 34. Additionally, the obtained data suggest that eRF3 neither interacts with the rRNA ribose-phosphate backbone nor dissociates from the complex after GTP hydrolysis. Taken together, our findings provide new information on architecture of the eRF1 binding site on mammalian ribosome at various translation termination steps and on conformational rearrangements induced by binding of the release factors.
Collapse
MESH Headings
- Binding Sites
- Codon, Terminator
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Female
- Guanosine Triphosphate/metabolism
- Humans
- Hydrolysis
- Nucleic Acid Conformation
- Peptide Chain Termination, Translational
- Peptide Termination Factors/genetics
- Peptide Termination Factors/metabolism
- Placenta/chemistry
- Pregnancy
- Protein Binding
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 28S/chemistry
- RNA, Ribosomal, 28S/genetics
- RNA, Ribosomal, 28S/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
Collapse
Affiliation(s)
- Konstantin N Bulygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Yulia S Bartuli
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexey A Malygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitri M Graifer
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia Novosibirsk State University, Novosibirsk 630090, Russia
| | - Ludmila Yu Frolova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Galina G Karpova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
44
|
Trappl K, Joseph S. Ribosome Induces a Closed to Open Conformational Change in Release Factor 1. J Mol Biol 2016; 428:1333-1344. [PMID: 26827724 DOI: 10.1016/j.jmb.2016.01.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 01/15/2016] [Accepted: 01/22/2016] [Indexed: 11/19/2022]
Abstract
Bacterial translation termination is triggered when a stop codon arrives at the ribosomal A site. Stop codons are recognized by class I release factors (RF1 and RF2 in Escherichia coli), which bind to the ribosome and catalyze the release of the newly synthesized protein. Crystal structures showed that RF1 and RF2 are in an open conformation when bound to the ribosome but are in a closed conformation when not bound to the ribosome. It is not clear whether only the open form of RF1 and RF2 binds to the ribosome. Alternatively, the closed form of RF1 and RF2 may bind to the ribosome and undergo a conformational change to the open state upon binding. We used transition metal ion fluorescence resonance energy transfer experiments to monitor precisely the conformation of RF1 in the absence and presence of the ribosome. Our results indicate that RF1 undergoes a large conformational change from a closed to an open form upon binding to the ribosome. Our results are consistent with the mechanism, in which high termination fidelity is achieved by linking stop codon recognition by RF1 to the change in conformation from closed to open state.
Collapse
Affiliation(s)
- Krista Trappl
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0314, USA
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0314, USA.
| |
Collapse
|
45
|
Matheisl S, Berninghausen O, Becker T, Beckmann R. Structure of a human translation termination complex. Nucleic Acids Res 2015; 43:8615-26. [PMID: 26384426 PMCID: PMC4605324 DOI: 10.1093/nar/gkv909] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/12/2015] [Indexed: 12/02/2022] Open
Abstract
In contrast to bacteria that have two release factors, RF1 and RF2, eukaryotes only possess one unrelated release factor eRF1, which recognizes all three stop codons of the mRNA and hydrolyses the peptidyl-tRNA bond. While the molecular basis for bacterial termination has been elucidated, high-resolution structures of eukaryotic termination complexes have been lacking. Here we present a 3.8 Å structure of a human translation termination complex with eRF1 decoding a UAA(A) stop codon. The complex was formed using the human cytomegalovirus (hCMV) stalling peptide, which perturbs the peptidyltransferase center (PTC) to silence the hydrolysis activity of eRF1. Moreover, unlike sense codons or bacterial stop codons, the UAA stop codon adopts a U-turn-like conformation within a pocket formed by eRF1 and the ribosome. Inducing the U-turn conformation for stop codon recognition rationalizes how decoding by eRF1 includes monitoring geometry in order to discriminate against sense codons.
Collapse
Affiliation(s)
- Sarah Matheisl
- Gene Center and Center for integrated Protein Science Munich, Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany
| | - Otto Berninghausen
- Gene Center and Center for integrated Protein Science Munich, Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany
| | - Thomas Becker
- Gene Center and Center for integrated Protein Science Munich, Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany
| | - Roland Beckmann
- Gene Center and Center for integrated Protein Science Munich, Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany
| |
Collapse
|
46
|
Multiple conversion between the genes encoding bacterial class-I release factors. Sci Rep 2015; 5:12406. [PMID: 26257102 PMCID: PMC4530459 DOI: 10.1038/srep12406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/29/2015] [Indexed: 01/21/2023] Open
Abstract
Bacteria require two class-I release factors, RF1 and RF2, that recognize stop codons and promote peptide release from the ribosome. RF1 and RF2 were most likely established through gene duplication followed by altering their stop codon specificities in the common ancestor of extant bacteria. This scenario expects that the two RF gene families have taken independent evolutionary trajectories after the ancestral gene duplication event. However, we here report two independent cases of conversion between RF1 and RF2 genes (RF1-RF2 gene conversion), which were severely examined by procedures incorporating the maximum-likelihood phylogenetic method. In both cases, RF1-RF2 gene conversion was predicted to occur in the region encoding nearly entire domain 3, of which functions are common between RF paralogues. Nevertheless, the ‘direction’ of gene conversion appeared to be opposite from one another—from RF2 gene to RF1 gene in one case, while from RF1 gene to RF2 gene in the other. The two cases of RF1-RF2 gene conversion prompt us to propose two novel aspects in the evolution of bacterial class-I release factors: (i) domain 3 is interchangeable between RF paralogues, and (ii) RF1-RF2 gene conversion have occurred frequently in bacterial genome evolution.
Collapse
|
47
|
Sohmen D, Chiba S, Shimokawa-Chiba N, Innis CA, Berninghausen O, Beckmann R, Ito K, Wilson DN. Structure of the Bacillus subtilis 70S ribosome reveals the basis for species-specific stalling. Nat Commun 2015; 6:6941. [PMID: 25903689 PMCID: PMC4423224 DOI: 10.1038/ncomms7941] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/16/2015] [Indexed: 12/23/2022] Open
Abstract
Ribosomal stalling is used to regulate gene expression and can occur in a species-specific manner. Stalling during translation of the MifM leader peptide regulates expression of the downstream membrane protein biogenesis factor YidC2 (YqjG) in Bacillus subtilis, but not in Escherichia coli. In the absence of structures of Gram-positive bacterial ribosomes, a molecular basis for species-specific stalling has remained unclear. Here we present the structure of a Gram-positive B. subtilis MifM-stalled 70S ribosome at 3.5–3.9 Å, revealing a network of interactions between MifM and the ribosomal tunnel, which stabilize a non-productive conformation of the PTC that prevents aminoacyl-tRNA accommodation and thereby induces translational arrest. Complementary genetic analyses identify a single amino acid within ribosomal protein L22 that dictates the species specificity of the stalling event. Such insights expand our understanding of how the synergism between the ribosome and the nascent chain is utilized to modulate the translatome in a species-specific manner. Ribosome stalling regulates gene expression by exposing otherwise inaccessible downstream ribosome-binding sites. Here the authors present a high-resolution Cryo-EM structure of the Bacillus subtilis MifM-stalled 70S ribosome to provide mechanistic insight into species-specific nascent peptide induced translational arrest.
Collapse
Affiliation(s)
- Daniel Sohmen
- Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynen-Street 25, Munich 81377, Germany
| | - Shinobu Chiba
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan
| | - Naomi Shimokawa-Chiba
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan
| | - C Axel Innis
- 1] Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac, France [2] Institut National de la Santé et de la Recherche Médicale (U869), Bordeaux, France
| | - Otto Berninghausen
- Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynen-Street 25, Munich 81377, Germany
| | - Roland Beckmann
- 1] Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynen-Street 25, Munich 81377, Germany [2] Center for integrated Protein Science Munich (CiPSM), University of Munich, Feodor-Lynen-Street 25, Munich 81377, Germany
| | - Koreaki Ito
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan
| | - Daniel N Wilson
- 1] Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynen-Street 25, Munich 81377, Germany [2] Center for integrated Protein Science Munich (CiPSM), University of Munich, Feodor-Lynen-Street 25, Munich 81377, Germany
| |
Collapse
|
48
|
Sauert M, Temmel H, Moll I. Heterogeneity of the translational machinery: Variations on a common theme. Biochimie 2014; 114:39-47. [PMID: 25542647 DOI: 10.1016/j.biochi.2014.12.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/16/2014] [Indexed: 12/22/2022]
Abstract
In all organisms the universal process of protein synthesis is performed by the ribosome, a complex multi-component assembly composed of RNA and protein elements. Although ribosome heterogeneity was observed already more than 40 years ago, the ribosome is still traditionally viewed as an unchangeable entity that has to be equipped with all ribosomal components and translation factors in order to precisely accomplish all steps in protein synthesis. In the recent years this concept was challenged by several studies highlighting a broad variation in the composition of the translational machinery in response to environmental signals, which leads to its adaptation and functional specialization. Here, we summarize recent reports on the variability of the protein synthesis apparatus in diverse organisms and discuss the multiple mechanisms and possibilities that can lead to functional ribosome heterogeneity. Collectively, these results indicate that all cells are equipped with a remarkable toolbox to fine tune gene expression at the level of translation and emphasize the physiological importance of ribosome heterogeneity for the immediate implementation of environmental information.
Collapse
Affiliation(s)
- Martina Sauert
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Centre for Molecular Biology, University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Hannes Temmel
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Centre for Molecular Biology, University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Isabella Moll
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Centre for Molecular Biology, University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| |
Collapse
|
49
|
Taura syndrome virus IRES initiates translation by binding its tRNA-mRNA-like structural element in the ribosomal decoding center. Proc Natl Acad Sci U S A 2014; 111:9139-44. [PMID: 24927574 DOI: 10.1073/pnas.1406335111] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In cap-dependent translation initiation, the open reading frame (ORF) of mRNA is established by the placement of the AUG start codon and initiator tRNA in the ribosomal peptidyl (P) site. Internal ribosome entry sites (IRESs) promote translation of mRNAs in a cap-independent manner. We report two structures of the ribosome-bound Taura syndrome virus (TSV) IRES belonging to the family of Dicistroviridae intergenic IRESs. Intersubunit rotational states differ in these structures, suggesting that ribosome dynamics play a role in IRES translocation. Pseudoknot I of the IRES occupies the ribosomal decoding center at the aminoacyl (A) site in a manner resembling that of the tRNA anticodon-mRNA codon. The structures reveal that the TSV IRES initiates translation by a previously unseen mechanism, which is conceptually distinct from initiator tRNA-dependent mechanisms. Specifically, the ORF of the IRES-driven mRNA is established by the placement of the preceding tRNA-mRNA-like structure in the A site, whereas the 40S P site remains unoccupied during this initial step.
Collapse
|
50
|
Shimizu Y. Biochemical aspects of bacterial strategies for handling the incomplete translation processes. Front Microbiol 2014; 5:170. [PMID: 24782856 PMCID: PMC3989591 DOI: 10.3389/fmicb.2014.00170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/28/2014] [Indexed: 11/13/2022] Open
Abstract
During protein synthesis in cells, translating ribosomes may encounter abnormal situations that lead to retention of immature peptidyl-tRNA on the ribosome due to failure of suitable termination processes. Bacterial cells handle such situations by employing three systems that rescue the stalled translation machinery. The transfer messenger RNA/small protein B (tmRNA/SmpB) system, also called the trans-translation system, rescues stalled ribosomes by initiating template switching from the incomplete mRNA to the short open reading frame of tmRNA, leading to the production of a protein containing a C-terminal tag that renders it susceptible to proteolysis. The ArfA/RF2 and ArfB systems rescue stalled ribosomes directly by hydrolyzing the immature peptidyl-tRNA remaining on the ribosome. Here, the biochemical aspects of these systems, as clarified by recent studies, are reviewed.
Collapse
Affiliation(s)
- Yoshihiro Shimizu
- Laboratory for Cell-Free Protein Synthesis, Quantitative Biology Center - RIKEN Kobe, Hyogo, Japan
| |
Collapse
|