1
|
Popova A, Jain N, Dong X, Abdollah-Nia F, Britton R, Williamson J. Complete list of canonical post-transcriptional modifications in the Bacillus subtilis ribosome and their link to RbgA driven large subunit assembly. Nucleic Acids Res 2024; 52:11203-11217. [PMID: 39036956 PMCID: PMC11472175 DOI: 10.1093/nar/gkae626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024] Open
Abstract
Ribosomal RNA modifications in prokaryotes have been sporadically studied, but there is a lack of a comprehensive picture of modification sites across bacterial phylogeny. Bacillus subtilis is a preeminent model organism for gram-positive bacteria, with a well-annotated and editable genome, convenient for fundamental studies and industrial use. Yet remarkably, there has been no complete characterization of its rRNA modification inventory. By expanding modern MS tools for the discovery of RNA modifications, we found a total of 25 modification sites in 16S and 23S rRNA of B. subtilis, including the chemical identity of the modified nucleosides and their precise sequence location. Furthermore, by perturbing large subunit biogenesis using depletion of an essential factor RbgA and measuring the completion of 23S modifications in the accumulated intermediate, we provide a first look at the order of modification steps during the late stages of assembly in B. subtilis. While our work expands the knowledge of bacterial rRNA modification patterns, adding B. subtilis to the list of fully annotated species after Escherichia coli and Thermus thermophilus, in a broader context, it provides the experimental framework for discovery and functional profiling of rRNA modifications to ultimately elucidate their role in ribosome biogenesis and translation.
Collapse
MESH Headings
- Bacillus subtilis/genetics
- Bacillus subtilis/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal, 23S/metabolism
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Ribosome Subunits, Large, Bacterial/metabolism
- Ribosome Subunits, Large, Bacterial/genetics
- Bacterial Proteins/metabolism
- Bacterial Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomal Proteins/genetics
- Ribosomes/metabolism
- Ribosomes/genetics
Collapse
Affiliation(s)
- Anna M Popova
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nikhil Jain
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
- INSITRO, 279 E Grand Ave., South San Francisco, CA 94080, USA
| | - Xiyu Dong
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Farshad Abdollah-Nia
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
2
|
Detection technologies for RNA modifications. Exp Mol Med 2022; 54:1601-1616. [PMID: 36266445 PMCID: PMC9636272 DOI: 10.1038/s12276-022-00821-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/21/2022] [Accepted: 05/18/2022] [Indexed: 12/29/2022] Open
Abstract
To date, more than 170 chemical modifications have been characterized in RNA, providing a new layer of gene expression regulation termed the 'epitranscriptome'. RNA modification detection methods and tools advance the functional studies of the epitranscriptome. According to the detection throughput and principles, existing RNA modification detection technologies can be categorized into four classes, including quantification methods, locus-specific detection methods, next-generation sequencing-based detection technologies and nanopore direct RNA sequencing-based technologies. In this review, we summarize the current knowledge about these RNA modification detection technologies and discuss the challenges for the existing detection tools, providing information for a comprehensive understanding of the epitranscriptome.
Collapse
|
3
|
Van Haute L, Hendrick AG, D'Souza AR, Powell CA, Rebelo-Guiomar P, Harbour ME, Ding S, Fearnley IM, Andrews B, Minczuk M. METTL15 introduces N4-methylcytidine into human mitochondrial 12S rRNA and is required for mitoribosome biogenesis. Nucleic Acids Res 2019; 47:10267-10281. [PMID: 31665743 PMCID: PMC6821322 DOI: 10.1093/nar/gkz735] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/03/2019] [Indexed: 01/08/2023] Open
Abstract
Post-transcriptional RNA modifications, the epitranscriptome, play important roles in modulating the functions of RNA species. Modifications of rRNA are key for ribosome production and function. Identification and characterization of enzymes involved in epitranscriptome shaping is instrumental for the elucidation of the functional roles of specific RNA modifications. Ten modified sites have been thus far identified in the mammalian mitochondrial rRNA. Enzymes responsible for two of these modifications have not been characterized. Here, we identify METTL15, show that it is the main N4-methylcytidine (m4C) methyltransferase in human cells and demonstrate that it is responsible for the methylation of position C839 in mitochondrial 12S rRNA. We show that the lack of METTL15 results in a reduction of the mitochondrial de novo protein synthesis and decreased steady-state levels of protein components of the oxidative phosphorylation system. Without functional METTL15, the assembly of the mitochondrial ribosome is decreased, with the late assembly components being unable to be incorporated efficiently into the small subunit. We speculate that m4C839 is involved in the stabilization of 12S rRNA folding, therefore facilitating the assembly of the mitochondrial small ribosomal subunits. Taken together our data show that METTL15 is a novel protein necessary for efficient translation in human mitochondria.
Collapse
Affiliation(s)
- Lindsey Van Haute
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Alan G Hendrick
- STORM Therapeutics Limited, Moneta Building, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Aaron R D'Souza
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Christopher A Powell
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Pedro Rebelo-Guiomar
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK.,Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
| | - Michael E Harbour
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK.,STORM Therapeutics Limited, Moneta Building, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Shujing Ding
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Ian M Fearnley
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Byron Andrews
- STORM Therapeutics Limited, Moneta Building, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Michal Minczuk
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
4
|
Detection of ribonucleoside modifications by liquid chromatography coupled with mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:280-290. [PMID: 30414470 DOI: 10.1016/j.bbagrm.2018.10.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/20/2018] [Accepted: 10/27/2018] [Indexed: 12/21/2022]
Abstract
A small set of ribonucleoside modifications have been found in different regions of mRNA including the open reading frame. Accurate detection of these specific modifications is critical to understanding their modulatory roles in facilitating mRNA maturation, translation and degradation. While transcriptome-wide next-generation sequencing (NGS) techniques could provide exhaustive information about the sites of one specific or class of modifications at a time, recent investigations strongly indicate cautionary interpretation due to the appearance of false positives. Therefore, it is suggested that NGS-based modification data can only be treated as predicted sites and their existence need to be validated by orthogonal methods. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is an analytical technique that can yield accurate and reproducible information about the qualitative and quantitative characteristics of ribonucleoside modifications. Here, we review the recent advancements in LC-MS/MS technology that could help in securing accurate, gold-standard quality information about the resident post-transcriptional modifications of mRNA.
Collapse
|
5
|
Debnath TK, Okamoto A. Osmium Tag for Post-transcriptionally Modified RNA. Chembiochem 2018; 19:1653-1656. [PMID: 29799158 DOI: 10.1002/cbic.201800274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Indexed: 12/19/2022]
Abstract
5-Methylcytidine (m5 C) and 5-methyluridine (m5 U) are highly abundant post-transcriptionally modified nucleotides that are observed in various natural RNAs. Such nucleotides were labeled through a chemical approach, as both underwent oxidation at the C5=C6 double bond, leading to the formation of osmium-bipyridine complexes, which could be identified by mass spectrometry. This osmium tag made it possible to distinguished m5 C and m5 U from their isomers, 2'-O-methylcytidine and 2'-O-methyluridine, respectively. Queuosine and 2-methylthio-N6 -isopentenyladenosine in tRNA were also tagged through complex formation.
Collapse
Affiliation(s)
- Turja Kanti Debnath
- Department of Advanced Interdisciplinary Studies, Graduate School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Akimitsu Okamoto
- Department of Advanced Interdisciplinary Studies, Graduate School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| |
Collapse
|
6
|
Filippova JA, Semenov DV, Juravlev ES, Komissarov AB, Richter VA, Stepanov GA. Modern Approaches for Identification of Modified Nucleotides in RNA. BIOCHEMISTRY (MOSCOW) 2018; 82:1217-1233. [PMID: 29223150 DOI: 10.1134/s0006297917110013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review considers approaches for detection of modified monomers in the RNA structure of living organisms. Recently, some data on dynamic alterations in the pool of modifications of the key RNA species that depend on external factors affecting the cells and physiological conditions of the whole organism have been accumulated. The recent studies have presented experimental data on relationship between the mechanisms of formation of modified/minor nucleotides of RNA in mammalian cells and the development of various pathologies. The development of novel methods for detection of chemical modifications of RNA nucleotides in the cells of living organisms and accumulation of knowledge on the contribution of modified monomers to metabolism and functioning of individual RNA species establish the basis for creation of novel diagnostic and therapeutic approaches. This review includes a short description of routine methods for determination of modified nucleotides in RNA and considers in detail modern approaches that enable not only detection but also quantitative assessment of the modification level of various nucleotides in individual RNA species.
Collapse
Affiliation(s)
- J A Filippova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Alenko A, Fleming AM, Burrows CJ. Reverse Transcription Past Products of Guanine Oxidation in RNA Leads to Insertion of A and C opposite 8-Oxo-7,8-dihydroguanine and A and G opposite 5-Guanidinohydantoin and Spiroiminodihydantoin Diastereomers. Biochemistry 2017; 56:5053-5064. [PMID: 28845978 DOI: 10.1021/acs.biochem.7b00730] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species, both endogenous and exogenous, can damage nucleobases of RNA and DNA. Among the nucleobases, guanine has the lowest redox potential, making it a major target of oxidation. Although RNA is more prone to oxidation than DNA is, oxidation of guanine in RNA has been studied to a significantly lesser extent. One of the reasons for this is that many tools that were previously developed to study oxidation of DNA cannot be used on RNA. In the study presented here, the lack of a method for seeking sites of modification in RNA where oxidation occurs is addressed. For this purpose, reverse transcription of RNA containing major products of guanine oxidation was used. Extension of a DNA primer annealed to an RNA template containing 8-oxo-7,8-dihydroguanine (OG), 5-guanidinohydantoin (Gh), or the R and S diastereomers of spiroiminodihydantoin (Sp) was studied under standing start conditions. SuperScript III reverse transcriptase is capable of bypassing these lesions in RNA inserting predominantly A opposite OG, predominantly G opposite Gh, and almost an equal mixture of A and G opposite the Sp diastereomers. These data should allow RNA sequencing of guanine oxidation products by following characteristic mutation signatures formed by the reverse transcriptase during primer elongation past G oxidation sites in the template RNA strand.
Collapse
Affiliation(s)
- Anton Alenko
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Aaron M Fleming
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
9
|
Addepalli B, Limbach PA. Pseudouridine in the Anticodon of Escherichia coli tRNATyr(QΨA) Is Catalyzed by the Dual Specificity Enzyme RluF. J Biol Chem 2016; 291:22327-22337. [PMID: 27551044 DOI: 10.1074/jbc.m116.747865] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Indexed: 02/02/2023] Open
Abstract
Pseudouridine is found in almost all cellular ribonucleic acids (RNAs). Of the multiple characteristics attributed to pseudouridine, making messenger RNAs (mRNAs) highly translatable and non-immunogenic is one such feature that directly implicates this modification in protein synthesis. We report the existence of pseudouridine in the anticodon of Escherichia coli tyrosine transfer RNAs (tRNAs) at position 35. Pseudouridine was verified by multiple detection methods, which include pseudouridine-specific chemical derivatization and gas phase dissociation of RNA during liquid chromatography tandem mass spectrometry (LC-MS/MS). Analysis of total tRNA isolated from E. coli pseudouridine synthase knock-out mutants identified RluF as the enzyme responsible for this modification. Furthermore, the absence of this modification compromises the translational ability of a luciferase reporter gene coding sequence when it is preceded by multiple tyrosine codons. This effect has implications for the translation of mRNAs that are rich in tyrosine codons in bacterial expression systems.
Collapse
Affiliation(s)
- Balasubrahmanyam Addepalli
- From the Department of Chemistry, Rieveschl Laboratories for Mass Spectrometry, University of Cincinnati, Cincinnati, Ohio 45221
| | - Patrick A Limbach
- From the Department of Chemistry, Rieveschl Laboratories for Mass Spectrometry, University of Cincinnati, Cincinnati, Ohio 45221
| |
Collapse
|
10
|
Gaston KW, Limbach PA. The identification and characterization of non-coding and coding RNAs and their modified nucleosides by mass spectrometry. RNA Biol 2015; 11:1568-85. [PMID: 25616408 PMCID: PMC4615682 DOI: 10.4161/15476286.2014.992280] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The analysis of ribonucleic acids (RNA) by mass spectrometry has been a valuable analytical approach for more than 25 years. In fact, mass spectrometry has become a method of choice for the analysis of modified nucleosides from RNA isolated out of biological samples. This review summarizes recent progress that has been made in both nucleoside and oligonucleotide mass spectral analysis. Applications of mass spectrometry in the identification, characterization and quantification of modified nucleosides are discussed. At the oligonucleotide level, advances in modern mass spectrometry approaches combined with the standard RNA modification mapping protocol enable the characterization of RNAs of varying lengths ranging from low molecular weight short interfering RNAs (siRNAs) to the extremely large 23 S rRNAs. New variations and improvements to this protocol are reviewed, including top-down strategies, as these developments now enable qualitative and quantitative measurements of RNA modification patterns in a variety of biological systems.
Collapse
Affiliation(s)
- Kirk W Gaston
- a Rieveschl Laboratories for Mass Spectrometry; Department of Chemistry ; University of Cincinnati ; Cincinnati , OH USA
| | | |
Collapse
|
11
|
Popova AM, Williamson JR. Quantitative analysis of rRNA modifications using stable isotope labeling and mass spectrometry. J Am Chem Soc 2014; 136:2058-69. [PMID: 24422502 PMCID: PMC3985470 DOI: 10.1021/ja412084b] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Post-transcriptional RNA modifications
that are introduced during
the multistep ribosome biogenesis process are essential for protein
synthesis. The current lack of a comprehensive method for a fast quantitative
analysis of rRNA modifications significantly limits our understanding
of how individual modification steps are coordinated during biogenesis
inside the cell. Here, an LC-MS approach has been developed and successfully
applied for quantitative monitoring of 29 out of 36 modified residues
in the 16S and 23S rRNA from Escherichia coli. An isotope labeling strategy is described for efficient identification
of ribose and base methylations, and a novel metabolic labeling approach
is presented to allow identification of MS-silent pseudouridine modifications.
The method was used to measure relative abundances of modified residues
in incomplete ribosomal subunits compared to a mature 15N-labeled rRNA standard, and a number of modifications in both 16S
and 23S rRNA were present in substoichiometric amounts in the preribosomal
particles. The RNA modification levels correlate well with previously
obtained profiles for the ribosomal proteins, suggesting that RNA
is modified in a schedule comparable to the association of the ribosomal
proteins. Importantly, this study establishes an efficient workflow
for a global monitoring of ribosomal modifications that will contribute
to a better understanding of mechanisms of RNA modifications and their
impact on intracellular processes in the future.
Collapse
Affiliation(s)
- Anna M Popova
- Department of Integrative Structural and Computational Biology and ‡Department of Chemistry, The Scripps Research Institute , La Jolla, California 92037, United States
| | | |
Collapse
|
12
|
Yamauchi Y, Taoka M, Nobe Y, Izumikawa K, Takahashi N, Nakayama H, Isobe T. Denaturing reversed phase liquid chromatographic separation of non-coding ribonucleic acids on macro-porous polystyrene-divinylbenzene resins. J Chromatogr A 2013; 1312:87-92. [PMID: 24044980 DOI: 10.1016/j.chroma.2013.09.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 12/26/2022]
Abstract
The ability of denaturing ion-paired reversed phase LC to separate RNA was assessed using macro-porous polystyrene-divinylbenzene resins as the stationary phase. Using the three stationary phases with different pore size and a mobile phase containing phosphate, we separated RNAs of 20-8000 nucleotides with extremely high sensitivity, e.g., 50pg for an RNA 20 nucleotides in length, S/N=5. The method was used to separate non-coding RNAs obtained from biological sources and is suited for use with direct MS-based chemical characterization.
Collapse
Affiliation(s)
- Yoshio Yamauchi
- Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji-shi, Tokyo 192-0397, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Holler TP, Evdokimov AG, Narasimhan L. Structural biology approaches to antibacterial drug discovery. Expert Opin Drug Discov 2013; 2:1085-101. [PMID: 23484874 DOI: 10.1517/17460441.2.8.1085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Antibacterial drug discovery has undertaken a major experiment in the 12 years since the first bacterial genomes were sequenced. Genome mining has identified hundreds of potential targets that have been distilled to a relatively small number of broad-spectrum targets ('low-hanging fruit') using the genetics tools of modern microbiology. Prosecuting these targets with high-throughput screens has led to a disappointingly small number of lead series that have mostly evaporated under closer scrutiny. In the meantime, multi-drug resistant pathogens are becoming a serious challenge in the clinic and the community and the number of pharmaceutical firms pursuing antibacterial discovery has declined. Filling the antibacterial development pipeline with novel chemical series is a significant challenge that will require the collaboration of scientists from many disciplines. Fortunately, advancements in the tools of structural biology and of in silico modeling are opening up new avenues of research that may help deal with the problems associated with discovering novel antibiotics.
Collapse
Affiliation(s)
- Tod P Holler
- Pfizer Global Research and Development, 2800 Plymouth Road, Ann Arbor, MI 48105, USA +1 734 622 5954 ; +1 734 622 2963 ; Tod.Holler@pfizer. com
| | | | | |
Collapse
|
14
|
Mahto SK, Chow CS. Probing the stabilizing effects of modified nucleotides in the bacterial decoding region of 16S ribosomal RNA. Bioorg Med Chem 2013; 21:2720-6. [PMID: 23566761 DOI: 10.1016/j.bmc.2013.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/03/2013] [Accepted: 03/07/2013] [Indexed: 10/27/2022]
Abstract
The bacterial decoding region of 16S ribosomal RNA has multiple modified nucleotides. In order to study the role of N(4),2'-O-dimethylcytidine (m(4)Cm), the corresponding phosphoramidite was synthesized utilizing 5'-silyl-2'-ACE chemistry. Using solid-phase synthesis, m(4)Cm, 5-methylcytidine (m(5)C), 3-methyluridine (m(3)U), and 2'-O-methylcytidine (Cm) were site-specifically incorporated into small RNAs representing the decoding regions of different bacterial species. Biophysical studies were then used to provide insight into the stabilizing roles of the modified nucleotides. These studies reveal that methylation of cytidine and uridine has different effects. The same modifications at different positions or sequence contexts within similar RNA constructs also have contrasting roles, such as stabilizing or destabilizing the RNA helix.
Collapse
Affiliation(s)
- Santosh K Mahto
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
15
|
In silico method for modelling metabolism and gene product expression at genome scale. Nat Commun 2012; 3:929. [PMID: 22760628 DOI: 10.1038/ncomms1928] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/28/2012] [Indexed: 11/09/2022] Open
Abstract
Transcription and translation use raw materials and energy generated metabolically to create the macromolecular machinery responsible for all cellular functions, including metabolism. A biochemically accurate model of molecular biology and metabolism will facilitate comprehensive and quantitative computations of an organism's molecular constitution as a function of genetic and environmental parameters. Here we formulate a model of metabolism and macromolecular expression. Prototyping it using the simple microorganism Thermotoga maritima, we show our model accurately simulates variations in cellular composition and gene expression. Moreover, through in silico comparative transcriptomics, the model allows the discovery of new regulons and improving the genome and transcription unit annotations. Our method presents a framework for investigating molecular biology and cellular physiology in silico and may allow quantitative interpretation of multi-omics data sets in the context of an integrated biochemical description of an organism.
Collapse
|
16
|
Giessing AMB, Kirpekar F. Mass spectrometry in the biology of RNA and its modifications. J Proteomics 2012; 75:3434-49. [PMID: 22348820 DOI: 10.1016/j.jprot.2012.01.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 01/20/2012] [Accepted: 01/26/2012] [Indexed: 01/31/2023]
Abstract
Many powerful analytical techniques for investigation of nucleic acids exist in the average modern molecular biology lab. The current review will focus on questions in RNA biology that have been answered by the use of mass spectrometry, which means that new biological information is the purpose and outcome of most of the studies we refer to. The review begins with a brief account of the subject "MS in the biology of RNA" and an overview of the prevalent RNA modifications identified to date. Fundamental considerations about mass spectrometric analysis of RNA are presented with the aim of detailing the analytical possibilities and challenges relating to the unique chemical nature of nucleic acids. The main biological topics covered are RNA modifications and the enzymes that perform the modifications. Modifications of RNA are essential in biology, and it is a field where mass spectrometry clearly adds knowledge of biological importance compared to traditional methods used in nucleic acid research. The biological applications are divided into analyses exclusively performed at the building block (mainly nucleoside) level and investigations involving mass spectrometry at the oligonucleotide level. We conclude the review discussing aspects of RNA identification and quantifications, which are upcoming fields for MS in RNA research. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.
Collapse
Affiliation(s)
- Anders M B Giessing
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | | |
Collapse
|
17
|
Oberacher H. Frontiers of mass spectrometry in nucleic acids analysis. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2010; 16:351-365. [PMID: 20530841 DOI: 10.1255/ejms.1045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Nucleic acids research is a highly competitive field of research. A number of well established methods are available. The current output of high throughput ("next generation") sequencing technologies is impressive, and still technologies are continuing to make progress regarding read lengths, bp per second, accuracy and costs. Although in the 1990s MS was considered as an analytical platform for sequencing, it was soon realized that MS will never be competitive. Thus, the focus shifted from de novo sequencing towards other areas of application where MS has proven to be a powerful analytical tool. Potential niches for the application of MS in nucleic acids research include genotyping of genetic markers (single nucleotide polymorphisms, short tandem repeats, and combinations thereof), quality control of synthetic oligonucleotides, metabolic profiling of therapeutics, characterization of modified nucleobases in DNA and RNA molecules, and the study of non covalent interactions among nucleic acids as well as interactions of nucleic acids with drugs and proteins. The diversity of possible applications for MS highlights its significance for nucleic acid research.
Collapse
Affiliation(s)
- Herbert Oberacher
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria.
| |
Collapse
|
18
|
Binet R, Maurelli AT. The chlamydial functional homolog of KsgA confers kasugamycin sensitivity to Chlamydia trachomatis and impacts bacterial fitness. BMC Microbiol 2009; 9:279. [PMID: 20043826 PMCID: PMC2807437 DOI: 10.1186/1471-2180-9-279] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 12/31/2009] [Indexed: 12/22/2022] Open
Abstract
Background rRNA adenine dimethyltransferases, represented by the Escherichia coli KsgA protein, are highly conserved phylogenetically and are generally not essential for growth. They are responsible for the post-transcriptional transfer of two methyl groups to two universally conserved adenosines located near the 3'end of the small subunit rRNA and participate in ribosome maturation. All sequenced genomes of Chlamydia reveal a ksgA homolog in each species, including C. trachomatis. Yet absence of a S-adenosyl-methionine synthetase in Chlamydia, the conserved enzyme involved in the synthesis of the methyl donor S-adenosyl-L-methionine, raises a doubt concerning the activity of the KsgA homolog in these organisms. Results Lack of the dimethylated adenosines following ksgA inactivation confers resistance to kasugamycin (KSM) in E. coli. Expression of the C. trachomatis L2 KsgA ortholog restored KSM sensitivity to the E. coli ksgA mutant, suggesting that the chlamydial KsgA homolog has specific rRNA dimethylase activity. C. trachomatis growth was sensitive to KSM and we were able to isolate a KSM resistant mutant of C. trachomatis containing a frameshift mutation in ksgA, which led to the formation of a shorter protein with no activity. Growth of the C. trachomatis ksgA mutant was negatively affected in cell culture highlighting the importance of the methylase in the development of these obligate intracellular and as yet genetically intractable pathogens. Conclusion The presence of a functional rRNA dimethylase enzyme belonging to the KsgA family in Chlamydia presents an excellent chemotherapeutic target with real potential. It also confirms the existence of S-adenosyl-methionine - dependent methylation reactions in Chlamydia raising the question of how these organisms acquire this cofactor.
Collapse
Affiliation(s)
- Rachel Binet
- Department of Microbiology and Immunology, F, Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA.
| | | |
Collapse
|
19
|
Fournier GP, Huang J, Gogarten JP. Horizontal gene transfer from extinct and extant lineages: biological innovation and the coral of life. Philos Trans R Soc Lond B Biol Sci 2009; 364:2229-39. [PMID: 19571243 PMCID: PMC2873001 DOI: 10.1098/rstb.2009.0033] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Horizontal gene transfer (HGT) is often considered to be a source of error in phylogenetic reconstruction, causing individual gene trees within an organismal lineage to be incongruent, obfuscating the 'true' evolutionary history. However, when identified as such, HGTs between divergent organismal lineages are useful, phylogenetically informative characters that can provide insight into evolutionary history. Here, we discuss several distinct HGT events involving all three domains of life, illustrating the selective advantages that can be conveyed via HGT, and the utility of HGT in aiding phylogenetic reconstruction and in dating the relative sequence of speciation events. We also discuss the role of HGT from extinct lineages, and its impact on our understanding of the evolution of life on Earth. Organismal phylogeny needs to incorporate reticulations; a simple tree does not provide an accurate depiction of the processes that have shaped life's history.
Collapse
Affiliation(s)
- Gregory P. Fournier
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-31258, USA
| | - Jinling Huang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - J. Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-31258, USA
| |
Collapse
|
20
|
Emmerechts G, Maes L, Herdewijn P, Anné J, Rozenski J. Characterization of the posttranscriptional modifications in Legionella pneumophila small-subunit ribosomal RNA. Chem Biodivers 2009; 5:2640-53. [PMID: 19089822 DOI: 10.1002/cbdv.200890218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
It is generally accepted that posttranscriptional modifications in RNA play a role in the fine-tuning of RNA function and the maintenance of RNA structure. This article describes the characterization of the posttranscriptional modifications in Legionella pneumophila 16S rRNA by mass spectrometry and reverse transcriptase assays. Eight modified nucleotides were identified and mapped in the 16S rRNA sequence. Situation of these data in relation to general 16S rRNA modification patterns shows that L. pneumophila is relatively less modified, and that the majority of the L. pneumophila 16S rRNA modifications are conserved among the bacteria characterized so far (Escherichia coli, Clostridium acetobutylicum, Thermus thermophilus, and Thermotoga maritima).
Collapse
Affiliation(s)
- Gert Emmerechts
- Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, Leuven, Belgium
| | | | | | | | | |
Collapse
|
21
|
Hossain M, Limbach PA. Multiple endonucleases improve MALDI-MS signature digestion product detection of bacterial transfer RNAs. Anal Bioanal Chem 2008; 394:1125-35. [PMID: 19104781 DOI: 10.1007/s00216-008-2562-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 12/01/2008] [Accepted: 12/02/2008] [Indexed: 11/28/2022]
Abstract
Individual transfer ribonucleic acids (tRNAs) in a complex mixture can be identified by the matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) detection of their signature digestion products. Signature digestion products are endonuclease digestion products whose mass-to-charge value is unique thus corresponding to only a single tRNA. To improve the effectiveness of this approach, we have expanded the applicable endonucleases and examined the use of multiple endonucleases for tRNA identification. The purine specific endonucleases RNase T1 and RNase TA generate the largest number of predicted signature digestion products. Experimentally, MALDI-MS analysis of endonuclease digests from Escherichia coli and Bacillus subtilis finds that any two endonucleases used in combination increases tRNA identification by about 25% over the number identified with a single endonuclease. Using three endonucleases, RNase T1, RNase A, and RNase TA, further improves the number of tRNAs identified by 10-15% over those found with two endonucleases. Limitations in the MALDI-MS approach for complex mixtures were revealed in this study, suggesting that the direct MALDI-MS analysis of signature digestion products is more effective for organisms having 30 or less unique tRNAs.
Collapse
Affiliation(s)
- Mahmud Hossain
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH 45221-0172, USA
| | | |
Collapse
|
22
|
Czerwoniec A, Dunin-Horkawicz S, Purta E, Kaminska KH, Kasprzak JM, Bujnicki JM, Grosjean H, Rother K. MODOMICS: a database of RNA modification pathways. 2008 update. Nucleic Acids Res 2008; 37:D118-21. [PMID: 18854352 PMCID: PMC2686465 DOI: 10.1093/nar/gkn710] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
MODOMICS, a database devoted to the systems biology of RNA modification, has been subjected to substantial improvements. It provides comprehensive information on the chemical structure of modified nucleosides, pathways of their biosynthesis, sequences of RNAs containing these modifications and RNA-modifying enzymes. MODOMICS also provides cross-references to other databases and to literature. In addition to the previously available manually curated tRNA sequences from a few model organisms, we have now included additional tRNAs and rRNAs, and all RNAs with 3D structures in the Nucleic Acid Database, in which modified nucleosides are present. In total, 3460 modified bases in RNA sequences of different organisms have been annotated. New RNA-modifying enzymes have been also added. The current collection of enzymes includes mainly proteins for the model organisms Escherichia coli and Saccharomyces cerevisiae, and is currently being expanded to include proteins from other organisms, in particular Archaea and Homo sapiens. For enzymes with known structures, links are provided to the corresponding Protein Data Bank entries, while for many others homology models have been created. Many new options for database searching and querying have been included. MODOMICS can be accessed at http://genesilico.pl/modomics.
Collapse
Affiliation(s)
- Anna Czerwoniec
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland, Max Planck Institute for Developmental Biology, Department 1, Protein Evolution Spemannstr. 35, 72076 Tuebingen, Germany, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, PL-02-190 Warsaw, Poland, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw and IGM, Univ Paris-Sud, UMR 8621, Orsay, F 91405, France
| | - Stanislaw Dunin-Horkawicz
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland, Max Planck Institute for Developmental Biology, Department 1, Protein Evolution Spemannstr. 35, 72076 Tuebingen, Germany, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, PL-02-190 Warsaw, Poland, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw and IGM, Univ Paris-Sud, UMR 8621, Orsay, F 91405, France
| | - Elzbieta Purta
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland, Max Planck Institute for Developmental Biology, Department 1, Protein Evolution Spemannstr. 35, 72076 Tuebingen, Germany, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, PL-02-190 Warsaw, Poland, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw and IGM, Univ Paris-Sud, UMR 8621, Orsay, F 91405, France
| | - Katarzyna H. Kaminska
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland, Max Planck Institute for Developmental Biology, Department 1, Protein Evolution Spemannstr. 35, 72076 Tuebingen, Germany, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, PL-02-190 Warsaw, Poland, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw and IGM, Univ Paris-Sud, UMR 8621, Orsay, F 91405, France
| | - Joanna M. Kasprzak
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland, Max Planck Institute for Developmental Biology, Department 1, Protein Evolution Spemannstr. 35, 72076 Tuebingen, Germany, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, PL-02-190 Warsaw, Poland, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw and IGM, Univ Paris-Sud, UMR 8621, Orsay, F 91405, France
| | - Janusz M. Bujnicki
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland, Max Planck Institute for Developmental Biology, Department 1, Protein Evolution Spemannstr. 35, 72076 Tuebingen, Germany, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, PL-02-190 Warsaw, Poland, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw and IGM, Univ Paris-Sud, UMR 8621, Orsay, F 91405, France
| | - Henri Grosjean
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland, Max Planck Institute for Developmental Biology, Department 1, Protein Evolution Spemannstr. 35, 72076 Tuebingen, Germany, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, PL-02-190 Warsaw, Poland, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw and IGM, Univ Paris-Sud, UMR 8621, Orsay, F 91405, France
| | - Kristian Rother
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland, Max Planck Institute for Developmental Biology, Department 1, Protein Evolution Spemannstr. 35, 72076 Tuebingen, Germany, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, PL-02-190 Warsaw, Poland, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw and IGM, Univ Paris-Sud, UMR 8621, Orsay, F 91405, France
- *To whom correspondence should be addressed. Tel: +48-22 597 0752; Fax: +48 22 597 0715;
| |
Collapse
|
23
|
Grosjean H, Gaspin C, Marck C, Decatur WA, de Crécy-Lagard V. RNomics and Modomics in the halophilic archaea Haloferax volcanii: identification of RNA modification genes. BMC Genomics 2008; 9:470. [PMID: 18844986 PMCID: PMC2584109 DOI: 10.1186/1471-2164-9-470] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 10/09/2008] [Indexed: 12/14/2022] Open
Abstract
Background Naturally occurring RNAs contain numerous enzymatically altered nucleosides. Differences in RNA populations (RNomics) and pattern of RNA modifications (Modomics) depends on the organism analyzed and are two of the criteria that distinguish the three kingdoms of life. If the genomic sequences of the RNA molecules can be derived from whole genome sequence information, the modification profile cannot and requires or direct sequencing of the RNAs or predictive methods base on the presence or absence of the modifications genes. Results By employing a comparative genomics approach, we predicted almost all of the genes coding for the t+rRNA modification enzymes in the mesophilic moderate halophile Haloferax volcanii. These encode both guide RNAs and enzymes. Some are orthologous to previously identified genes in Archaea, Bacteria or in Saccharomyces cerevisiae, but several are original predictions. Conclusion The number of modifications in t+rRNAs in the halophilic archaeon is surprisingly low when compared with other Archaea or Bacteria, particularly the hyperthermophilic organisms. This may result from the specific lifestyle of halophiles that require high intracellular salt concentration for survival. This salt content could allow RNA to maintain its functional structural integrity with fewer modifications. We predict that the few modifications present must be particularly important for decoding, accuracy of translation or are modifications that cannot be functionally replaced by the electrostatic interactions provided by the surrounding salt-ions. This analysis also guides future experimental validation work aiming to complete the understanding of the function of RNA modifications in Archaeal translation.
Collapse
Affiliation(s)
- Henri Grosjean
- Department of Microbiology, University of Florida, Gainsville, FL 32611, Florida, USA.
| | | | | | | | | |
Collapse
|
24
|
Hengesbach M, Meusburger M, Lyko F, Helm M. Use of DNAzymes for site-specific analysis of ribonucleotide modifications. RNA (NEW YORK, N.Y.) 2008; 14:180-187. [PMID: 17998290 PMCID: PMC2151034 DOI: 10.1261/rna.742708] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 09/15/2007] [Indexed: 05/25/2023]
Abstract
Post-transcriptional ribonucleotide modifications are widespread and abundant processes that have not been analyzed adequately due to the lack of appropriate detection methods. Here, two methods for the analysis of modified nucleotides in RNA are presented that are based on the quantitative and site-specific DNAzyme-mediated cleavage of the target RNA at or near the site of modification. Quantitative RNA cleavage is achieved by cycling the DNAzyme and its RNA substrate through repeated periods of heating and cooling. In a first approach, DNAzyme-directed cleavage directly 5' of the residue in question allows radioactive labeling of the newly freed 5'-OH. After complete enzymatic hydrolysis, the modification status can be assessed by two-dimensional thin layer chromatography. In a second approach, oligoribonucleotide fragments comprising the modification site are excised from the full-length RNA in an endonucleolytic fashion, using a tandem DNAzyme. The excised fragment is isolated by electrophoresis and submitted to further conventional analysis. These results establish DNAzymes as valuable tools for the site-specific and highly sensitive detection of ribonucleotide modifications.
Collapse
Affiliation(s)
- Martin Hengesbach
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|