1
|
Functional Analysis of BipA in E. coli Reveals the Natural Plasticity of 50S Subunit Assembly. J Mol Biol 2020; 432:5259-5272. [PMID: 32710983 DOI: 10.1016/j.jmb.2020.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
BipA is a conserved translational GTPase of bacteria recently implicated in ribosome biogenesis. Here we show that Escherichia coli ΔbipA cells grown at suboptimal temperature accumulate immature large subunit particles missing several proteins. These include L17 and L17-dependent binders, suggesting that structural block 3 of the subunit folds late in the assembly process. Parallel analysis of the control strain revealed accumulation of nearly identical intermediates, albeit at lower levels, suggesting qualitatively similar routes of assembly. This came as a surprise, because earlier analogous studies of wild-type E. coli showed early binding of L17. Further investigation showed that the main path of 50S assembly differs depending on conditions of growth. Either supplementation of the media with lysine and arginine or suboptimal temperature appears to delay block 3 folding, demonstrating the flexible nature of the assembly process. We also show that the variant BipA-H78A fails to rescue phenotypes of the ΔbipA strain, indicating a critical role for GTP hydrolysis in BipA function. In fact, BipA-H78A confers a dominant negative phenotype in wild-type cells. Controlled production of BipA-H78A causes accumulation of 70S monosomes at the expense of polysomes, suggesting that the growth defect stems from a shutdown of translation.
Collapse
|
2
|
Fernández-Pevida A, Martín-Villanueva S, Murat G, Lacombe T, Kressler D, de la Cruz J. The eukaryote-specific N-terminal extension of ribosomal protein S31 contributes to the assembly and function of 40S ribosomal subunits. Nucleic Acids Res 2016; 44:7777-91. [PMID: 27422873 PMCID: PMC5027506 DOI: 10.1093/nar/gkw641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/07/2016] [Indexed: 11/12/2022] Open
Abstract
The archaea-/eukaryote-specific 40S-ribosomal-subunit protein S31 is expressed as an ubiquitin fusion protein in eukaryotes and consists of a conserved body and a eukaryote-specific N-terminal extension. In yeast, S31 is a practically essential protein, which is required for cytoplasmic 20S pre-rRNA maturation. Here, we have studied the role of the N-terminal extension of the yeast S31 protein. We show that deletion of this extension partially impairs cell growth and 40S subunit biogenesis and confers hypersensitivity to aminoglycoside antibiotics. Moreover, the extension harbours a nuclear localization signal that promotes active nuclear import of S31, which associates with pre-ribosomal particles in the nucleus. In the absence of the extension, truncated S31 inefficiently assembles into pre-40S particles and two subpopulations of mature small subunits, one lacking and another one containing truncated S31, can be identified. Plasmid-driven overexpression of truncated S31 partially suppresses the growth and ribosome biogenesis defects but, conversely, slightly enhances the hypersensitivity to aminoglycosides. Altogether, these results indicate that the N-terminal extension facilitates the assembly of S31 into pre-40S particles and contributes to the optimal translational activity of mature 40S subunits but has only a minor role in cytoplasmic cleavage of 20S pre-rRNA at site D.
Collapse
Affiliation(s)
- Antonio Fernández-Pevida
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot, s/n; E-41013 Seville, Spain Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot, s/n; E-41013 Seville, Spain Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Guillaume Murat
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Thierry Lacombe
- Department of Microbiology and Molecular Medicine, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot, s/n; E-41013 Seville, Spain Departamento de Genética, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
3
|
Lawrence MG, Shamsuzzaman M, Kondopaka M, Pascual C, Zengel JM, Lindahl L. The extended loops of ribosomal proteins uL4 and uL22 of Escherichia coli contribute to ribosome assembly and protein translation. Nucleic Acids Res 2016; 44:5798-810. [PMID: 27257065 PMCID: PMC4937340 DOI: 10.1093/nar/gkw493] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 05/21/2016] [Indexed: 11/13/2022] Open
Abstract
Nearly half of ribosomal proteins are composed of a domain on the ribosome surface and a loop or extension that penetrates into the organelle's RNA core. Our previous work showed that ribosomes lacking the loops of ribosomal proteins uL4 or uL22 are still capable of entering polysomes. However, in those experiments we could not address the formation of mutant ribosomes, because we used strains that also expressed wild-type uL4 and uL22. Here, we have focused on ribosome assembly and function in strains in which loop deletion mutant genes are the only sources of uL4 or uL22 protein. The uL4 and uL22 loop deletions have different effects, but both mutations result in accumulation of immature particles that do not accumulate in detectable amounts in wild-type strains. Thus, our results suggest that deleting the loops creates kinetic barriers in the normal assembly pathway, possibly resulting in assembly via alternate pathway(s). Furthermore, deletion of the uL4 loop results in cold-sensitive ribosome assembly and function. Finally, ribosomes carrying either of the loop-deleted proteins responded normally to the secM translation pausing peptide, but the uL4 mutant responded very inefficiently to the cmlAcrb pause peptide.
Collapse
Affiliation(s)
- Marlon G Lawrence
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Md Shamsuzzaman
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Maithri Kondopaka
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Clarence Pascual
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Janice M Zengel
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Lasse Lindahl
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
4
|
New shuttle vector-based expression system to generate polyhistidine-tagged fusion proteins in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 2015; 81:3243-54. [PMID: 25747000 DOI: 10.1128/aem.03803-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/25/2015] [Indexed: 01/01/2023] Open
Abstract
Four Staphylococcus aureus-Escherichia coli shuttle vectors were constructed for gene expression and production of tagged fusion proteins. Vectors pBUS1-HC and pTSSCm have no promoter upstream of the multiple cloning site (MCS), and this allows study of genes under the control of their native promoters, and pBUS1-Pcap-HC and pTSSCm-Pcap contain the strong constitutive promoter of S. aureus type 1 capsule gene 1A (Pcap) upstream of a novel MCS harboring codons for the peptide tag Arg-Gly-Ser-hexa-His (rgs-his6). All plasmids contained the backbone derived from pBUS1, including the E. coli origin ColE1, five copies of terminator rrnB T1, and tetracycline resistance marker tet(L) for S. aureus and E. coli. The minimum pAMα1 replicon from pBUS1 was improved through either complementation with the single-strand origin oriL from pUB110 (pBUS1-HC and pBUS1-Pcap-HC) or substitution with a pT181-family replicon (pTSSCm and pTSSCm-Pcap). The new constructs displayed increased plasmid yield and segregational stability in S. aureus. Furthermore, pBUS1-Pcap-HC and pTSSCm-Pcap offer the potential to generate C-terminal RGS-His6 translational fusions of cloned genes using simple molecular manipulation. BcgI-induced DNA excision followed by religation converts the TGA stop codon of the MCS into a TGC codon and links the rgs-his6 codons to the 3' end of the target gene. The generation of the rgs-his6 codon-fusion, gene expression, and protein purification were demonstrated in both S. aureus and E. coli using the macrolide-lincosamide-streptogramin B resistance gene erm(44) inserted downstream of Pcap. The new His tag expression system represents a helpful tool for the direct analysis of target gene function in staphylococcal cells.
Collapse
|
5
|
Gamalinda M, Woolford JL. Deletion of L4 domains reveals insights into the importance of ribosomal protein extensions in eukaryotic ribosome assembly. RNA (NEW YORK, N.Y.) 2014; 20:1725-31. [PMID: 25246649 PMCID: PMC4201825 DOI: 10.1261/rna.046649.114] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Numerous ribosomal proteins have a striking bipartite architecture: a globular body positioned on the ribosomal exterior and an internal loop buried deep into the rRNA core. In eukaryotes, a significant number of conserved r-proteins have evolved extra amino- or carboxy-terminal tail sequences, which thread across the solvent-exposed surface. The biological importance of these extended domains remains to be established. In this study, we have investigated the universally conserved internal loop and the eukaryote-specific extensions of yeast L4. We show that in contrast to findings with bacterial L4, deleting the internal loop of yeast L4 causes severely impaired growth and reduced levels of large ribosomal subunits. We further report that while depleting the entire L4 protein blocks early assembly steps in yeast, deletion of only its extended internal loop affects later steps in assembly, revealing a second role for L4 during ribosome biogenesis. Surprisingly, deletion of the entire eukaryote-specific carboxy-terminal tail of L4 has no effect on viability, production of 60S subunits, or translation. These unexpected observations provide impetus to further investigate the functions of ribosomal protein extensions, especially eukaryote-specific examples, in ribosome assembly and function.
Collapse
Affiliation(s)
- Michael Gamalinda
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - John L Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
6
|
Calidas D, Lyon H, Culver GM. The N-terminal extension of S12 influences small ribosomal subunit assembly in Escherichia coli. RNA (NEW YORK, N.Y.) 2014; 20:321-30. [PMID: 24442609 PMCID: PMC3923127 DOI: 10.1261/rna.042432.113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The small subunit (SSU) of the ribosome of E. coli consists of a core of ribosomal RNA (rRNA) surrounded peripherally by ribosomal proteins (r-proteins). Ten of the 15 universally conserved SSU r-proteins possess nonglobular regions called extensions. The N-terminal noncanonically structured extension of S12 traverses from the solvent to intersubunit surface of the SSU and is followed by a more C-terminal globular region that is adjacent to the decoding center of the SSU. The role of the globular region in maintaining translational fidelity is well characterized, but a role for the S12 extension in SSU structure and function is unknown. We examined the effect of stepwise truncation of the extension of S12 in SSU assembly and function in vitro and in vivo. Examination of in vitro assembly in the presence of sequential N-terminal truncated variants of S12 reveals that N-terminal deletions of greater than nine amino acids exhibit decreased tRNA-binding activity and altered 16S rRNA architecture particularly in the platform of the SSU. While wild-type S12 expressed from a plasmid can rescue a genomic deletion of the essential gene for S12, rpsl; N-terminal deletions of S12 exhibit deleterious phenotypic consequences. Partial N-terminal deletions of S12 are slow growing and cold sensitive. Strains bearing these truncations as the sole copy of S12 have increased levels of free SSUs and immature 16S rRNA as compared with the wild-type S12. These differences are hallmarks of SSU biogenesis defects, indicating that the extension of S12 plays an important role in SSU assembly.
Collapse
Affiliation(s)
- Deepika Calidas
- Department of Biology, Center for RNA Biology: From Genome to Therapeutics, University of Rochester Medical Center, Rochester, New York 14627, USA
| | - Hiram Lyon
- Department of Biology, Center for RNA Biology: From Genome to Therapeutics, University of Rochester Medical Center, Rochester, New York 14627, USA
| | - Gloria M. Culver
- Department of Biology, Center for RNA Biology: From Genome to Therapeutics, University of Rochester Medical Center, Rochester, New York 14627, USA
- Corresponding authorE-mail
| |
Collapse
|
7
|
|
8
|
Timsit Y, Acosta Z, Allemand F, Chiaruttini C, Springer M. The role of disordered ribosomal protein extensions in the early steps of eubacterial 50 S ribosomal subunit assembly. Int J Mol Sci 2009; 10:817-834. [PMID: 19399222 PMCID: PMC2672003 DOI: 10.3390/ijms10030817] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 02/23/2009] [Accepted: 02/24/2009] [Indexed: 12/23/2022] Open
Abstract
Although during the past decade research has shown the functional importance of disorder in proteins, many of the structural and dynamics properties of intrinsically unstructured proteins (IUPs) remain to be elucidated. This review is focused on the role of the extensions of the ribosomal proteins in the early steps of the assembly of the eubacterial 50 S subunit. The recent crystallographic structures of the ribosomal particles have revealed the picture of a complex assembly pathway that condenses the rRNA and the ribosomal proteins into active ribosomes. However, little is know about the molecular mechanisms of this process. It is thought that the long basic r-protein extensions that penetrate deeply into the subunit cores play a key role through disorder-order transitions and/or co-folding mechanisms. A current view is that such structural transitions may facilitate the proper rRNA folding. In this paper, the structures of the proteins L3, L4, L13, L20, L22 and L24 that have been experimentally found to be essential for the first steps of ribosome assembly have been compared. On the basis of their structural and dynamics properties, three categories of extensions have been identified. Each of them seems to play a distinct function. Among them, only the coil-helix transition that occurs in a phylogenetically conserved cluster of basic residues of the L20 extension appears to be strictly required for the large subunit assembly in eubacteria. The role of alpha helix-coil transitions in 23 S RNA folding is discussed in the light of the calcium binding protein calmodulin that shares many structural and dynamics properties with L20.
Collapse
Affiliation(s)
- Youri Timsit
- Laboratoire de Cristallographie, Institut de Biologie Physico-Chimique CNRS, 13, rue Pierre et Marie Curie, 75005 Paris, France; E-Mail:
- Author to whom correspondence should be addressed; E-mail:
; Tel. +01-58-41-51-66
| | - Zahir Acosta
- Laboratoire de Cristallographie, Institut de Biologie Physico-Chimique CNRS, 13, rue Pierre et Marie Curie, 75005 Paris, France; E-Mail:
| | - Frédéric Allemand
- Laboratoire de Biochimie, Institut de Biologie Physico-Chimique CNRS, 13, rue Pierre et Marie Curie, 75005 Paris, France; E-Mail:
(F.A.);
(C.C.);
(M.S.)
| | - Claude Chiaruttini
- Laboratoire de Biochimie, Institut de Biologie Physico-Chimique CNRS, 13, rue Pierre et Marie Curie, 75005 Paris, France; E-Mail:
(F.A.);
(C.C.);
(M.S.)
| | - Mathias Springer
- Laboratoire de Biochimie, Institut de Biologie Physico-Chimique CNRS, 13, rue Pierre et Marie Curie, 75005 Paris, France; E-Mail:
(F.A.);
(C.C.);
(M.S.)
| |
Collapse
|
9
|
Parente JA, Borges CL, Bailão AM, Felipe MSS, Pereira M, de Almeida Soares CM. Comparison of transcription of multiple genes during mycelia transition to yeast cells of Paracoccidioides brasiliensis reveals insights to fungal differentiation and pathogenesis. Mycopathologia 2008; 165:259-73. [PMID: 18777633 DOI: 10.1007/s11046-007-9078-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The ascomycete Paracoccidioides brasiliensis is a human pathogen with a broad distribution in Latin America. The infection process of P. brasiliensis is initiated by aerially dispersed mycelia propagules, which differentiate into the yeast parasitic phase in human lungs. Therefore, the transition to yeast is an initial and fundamental step in the infective process. In order to identify and characterize genes involved in P. brasiliensis transition to yeast, which could be potentially associated to early fungal adaptation to the host, expressed sequence tags (ESTs) were examined from a cDNA library, prepared from mycelia ongoing differentiation to yeast cells. In this study, it is presented a screen for a set of genes related to protein synthesis and to protein folding/modification/destination expressed during morphogenesis from mycelium to yeast. Our analysis revealed 43 genes that are induced during the early transition process, when compared to mycelia. In addition, eight novel genes related to those processes were described in the P. brasiliensis transition cDNA library. The types of induced and novel genes in the transition cDNA library highlight some metabolic aspects, such as putative increase in protein synthesis, in protein glycosylation, and in the control of protein folding that seem to be relevant to the fungal transition to the parasitic phase.
Collapse
Affiliation(s)
- Juliana Alves Parente
- Laboratório de Biologia Molecular, ICB II, Campus II, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil
| | | | | | | | | | | |
Collapse
|
10
|
A Competition Mechanism Regulates the Translation of the Escherichia coli Operon Encoding Ribosomal Proteins L35 and L20. J Mol Biol 2008; 375:612-25. [DOI: 10.1016/j.jmb.2007.10.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 10/19/2007] [Accepted: 10/23/2007] [Indexed: 11/18/2022]
|
11
|
Caillet J, Graffe M, Eyermann F, Romby P, Springer M. Mutations in residues involved in zinc binding in the catalytic site of Escherichia coli threonyl-tRNA synthetase confer a dominant lethal phenotype. J Bacteriol 2007; 189:6839-48. [PMID: 17644600 PMCID: PMC2045194 DOI: 10.1128/jb.00439-07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2007] [Accepted: 07/16/2007] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli threonyl-tRNA synthetase is a homodimeric protein that acts as both an enzyme and a regulator of gene expression: the protein aminoacylates tRNA(Thr) isoacceptors and binds to its own mRNA, inhibiting its translation. The enzyme contains a zinc atom in its active site, which is essential for the recognition of threonine. Mutations in any of the three amino acids forming the zinc-binding site inactivate the enzyme and have a dominant negative effect on growth if the corresponding genes are placed on a multicopy plasmid. We show here that this particular property is not due to the formation of inactive heterodimers, the titration of tRNA(Thr) by an inactive enzyme, or its misaminoacylation but is, rather, due to the regulatory function of threonyl-tRNA synthetase. Overproduction of the inactive enzyme represses the expression of the wild-type chromosomal copy of the gene to an extent incompatible with bacterial growth.
Collapse
Affiliation(s)
- Joël Caillet
- CNRS UPR9073, Université de Paris VII, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | | | | |
Collapse
|
12
|
Abstract
The ribosome is responsible for protein synthesis, the translation of the genetic code, in all living organisms. Ribosomes are composed of RNA (ribosomal RNA) and protein (ribosomal protein). Soluble protein factors bind to the ribosome and facilitate different phases of translation. Genetic approaches have proved useful for the identification and characterization of the structural and functional roles of specific nucleotides in ribosomal RNA and of specific amino acids in ribosomal proteins and in ribosomal factors. This chapter summarizes examples of mutations identified in ribosomal RNA, ribosomal proteins, and ribosomal factors.
Collapse
MESH Headings
- Animals
- Base Sequence
- DNA Mutational Analysis
- Humans
- Mutation
- Nucleic Acid Conformation
- Peptide Elongation Factors/genetics
- Peptide Initiation Factors/genetics
- Peptide Termination Factors/genetics
- Protein Subunits/genetics
- RNA, Ribosomal, 16S/analysis
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/physiology
- RNA, Ribosomal, 23S/analysis
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/physiology
- Ribosomal Proteins/genetics
- Ribosomes/genetics
- Sequence Analysis, RNA
Collapse
Affiliation(s)
- Kathleen L Triman
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17604, USA
| |
Collapse
|
13
|
Allemand F, Haentjens J, Chiaruttini C, Royer C, Springer M. Escherichia coli ribosomal protein L20 binds as a single monomer to its own mRNA bearing two potential binding sites. Nucleic Acids Res 2007; 35:3016-31. [PMID: 17439971 PMCID: PMC1888825 DOI: 10.1093/nar/gkm197] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ribosomal protein L20 is crucial for the assembly of the large ribosomal subunit and represses the translation of its own mRNA. L20 mRNA carries two L20-binding sites, the first folding into a pseudoknot and the second into an imperfect stem and loop. These two sites and the L20-binding site on 23S ribosomal RNA are recognized similarly using a single RNA-binding site located on one face of L20. In this work, using gel filtration and fluorescence cross-correlation spectroscopy (FCCS) experiments, we first exclude the possibility that L20 forms a dimer, which would allow each monomer to bind one site of the mRNA. Secondly we show, using affinity purification and FCCS experiments, that only one molecule of L20 binds to the L20 mRNA despite the presence of two potential binding sites. Thirdly, using RNA chemical probing, we show that the two L20-binding sites are in interaction. This interaction provides an explanation for the single occupancy of the mRNA. The two interacting sites could form a single hybrid site or the binding of L20 to a first site may inhibit binding to the second. Models of regulation compatible with our data are discussed.
Collapse
Affiliation(s)
- F. Allemand
- UPR9073 du CNRS associée à l'Université de Paris VII, Institut de Biologie Physico-chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France and INSERM, Unité 554, Montpellier, France and Université de Montpellier, CNRS, UMR 5048, Centre de Biochimie Structurale, Montpellier, France
| | - J. Haentjens
- UPR9073 du CNRS associée à l'Université de Paris VII, Institut de Biologie Physico-chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France and INSERM, Unité 554, Montpellier, France and Université de Montpellier, CNRS, UMR 5048, Centre de Biochimie Structurale, Montpellier, France
| | - C. Chiaruttini
- UPR9073 du CNRS associée à l'Université de Paris VII, Institut de Biologie Physico-chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France and INSERM, Unité 554, Montpellier, France and Université de Montpellier, CNRS, UMR 5048, Centre de Biochimie Structurale, Montpellier, France
| | - C. Royer
- UPR9073 du CNRS associée à l'Université de Paris VII, Institut de Biologie Physico-chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France and INSERM, Unité 554, Montpellier, France and Université de Montpellier, CNRS, UMR 5048, Centre de Biochimie Structurale, Montpellier, France
| | - M. Springer
- UPR9073 du CNRS associée à l'Université de Paris VII, Institut de Biologie Physico-chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France and INSERM, Unité 554, Montpellier, France and Université de Montpellier, CNRS, UMR 5048, Centre de Biochimie Structurale, Montpellier, France
- *To whom correspondence should be addressed. +33 1 58 41 51 31+33 1 58 41 50 20
| |
Collapse
|
14
|
Choonee N, Even S, Zig L, Putzer H. Ribosomal protein L20 controls expression of the Bacillus subtilis infC operon via a transcription attenuation mechanism. Nucleic Acids Res 2007; 35:1578-88. [PMID: 17289755 PMCID: PMC1865079 DOI: 10.1093/nar/gkm011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In contrast to Escherichia coli no molecular mechanism controlling the biosynthesis of ribosomal proteins has been elucidated in Gram-positive organisms. Here we show that the expression of the Bacillus subtilis infC-rpmI-rplT operon encoding translation factor IF3 and the ribosomal proteins L35 and L20 is autoregulated by a complex transcription attenuation mechanism. It implicates a 200-bp leader region upstream of infC which contains two conserved regulatory elements, one of which can act as a transcription terminator. Using in vitro and in vivo approaches we show that expression of the operon is regulated at the level of transcription elongation by a change in the structure of the leader mRNA which depends upon the presence of ribosomal protein L20. L20 binds to a phylogenetically conserved domain and provokes premature transcription termination at the leader terminator. Footprint and toeprint experiments support a regulatory model involving molecular mimicry between the L20-binding sites on 23S rRNA and the mRNA. Our data suggest that Nomura's model of ribosomal protein biosynthesis based on autogenous control and molecular mimicry is also valid in Gram-positive organisms.
Collapse
Affiliation(s)
| | | | | | - Harald Putzer
- *To whom correspondence should be addressed. + 33 1 58 41 51 27+ 33 1 58 41 50 20
| |
Collapse
|
15
|
Timsit Y, Allemand F, Chiaruttini C, Springer M. Coexistence of two protein folding states in the crystal structure of ribosomal protein L20. EMBO Rep 2006; 7:1013-8. [PMID: 16977336 PMCID: PMC1618378 DOI: 10.1038/sj.embor.7400803] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 08/03/2006] [Accepted: 08/03/2006] [Indexed: 11/08/2022] Open
Abstract
The recent finding of intrinsically unstructured proteins defies the classical structure-function paradigm. However, owing to their flexibility, intrinsically unstructured proteins generally escape detailed structural investigations. Consequently little is known about the extent of conformational disorder and its role in biological functions. Here, we present the X-ray structure of the unbound ribosomal protein L20, the long basic amino-terminal extension of which has been previously interpreted as fully disordered in the absence of RNA. This study provides the first detailed picture of two protein folding states trapped together in a crystal and indicates that unfolding occurs in discrete regions of the whole protein, corresponding mainly to RNA-binding residues. The electrostatic destabilization of the long alpha-helix and a structural communication between the two L20 domains are reminiscent of those observed in calmodulin. The detailed comparison of the two conformations observed in the crystal provides new insights into the role of unfolded extensions in ribosomal assembly.
Collapse
Affiliation(s)
- Youri Timsit
- Laboratoire de Cristallographie UPR9080, Institut de Biologie Physico-Chimique CNRS, 13, rue Pierre et Marie Curie, Paris 75005, France.
| | | | | | | |
Collapse
|
16
|
Maeder C, Draper DE. A Small Protein Unique to Bacteria Organizes rRNA Tertiary Structure Over an Extensive Region of the 50S Ribosomal Subunit. J Mol Biol 2005; 354:436-46. [PMID: 16246363 DOI: 10.1016/j.jmb.2005.09.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 09/22/2005] [Accepted: 09/22/2005] [Indexed: 11/17/2022]
Abstract
A number of small, basic proteins penetrate into the structure of the large subunit of the ribosome. While these proteins presumably aid in the folding of the rRNA, the extent of their contribution to the stability or function of the ribosome is unknown. One of these small, basic proteins is L36, which is highly conserved in Bacteria, but is not present in Archaea or Eucarya. Comparison of ribosome crystal structures shows that the space occupied by L36 in a bacterial ribosome is empty in an archaeal ribosome. To ask what L36 contributes to ribosome stability and function, we have constructed an Escherichia coli strain lacking ribosomal protein L36; cell growth is slowed by 40-50% between 30 degrees C and 42 degrees C. Ribosomes from this deletion strain sediment normally and have a full complement of proteins, other than L36. Chemical protection experiments comparing rRNA from wild-type and L36-deficient ribosomes show the expected increase in reagent accessibility in the immediate vicinity of the L36 binding site, but suggest that a cooperative network of rRNA tertiary interactions has been disrupted along a path extending 60 A deep into the ribosome. These data argue that L36 plays a significant role in organizing 23 S rRNA structure. Perhaps the Archaea and Eucarya have compensated for their lack of L36 by maintaining more stable rRNA tertiary contacts or by adopting alternative protein-RNA interactions elsewhere in the ribosome.
Collapse
Affiliation(s)
- Corina Maeder
- Program in Molecular and Computational Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|