1
|
Arriola JT, Müller UF. A combinatorial method to isolate short ribozymes from complex ribozyme libraries. Nucleic Acids Res 2020; 48:e116. [PMID: 33035338 PMCID: PMC7672470 DOI: 10.1093/nar/gkaa834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/28/2020] [Accepted: 10/01/2020] [Indexed: 11/13/2022] Open
Abstract
In vitro selections are the only known methods to generate catalytic RNAs (ribozymes) that do not exist in nature. Such new ribozymes are used as biochemical tools, or to address questions on early stages of life. In both cases, it is helpful to identify the shortest possible ribozymes since they are easier to deploy as a tool, and because they are more likely to have emerged in a prebiotic environment. One of our previous selection experiments led to a library containing hundreds of different ribozyme clusters that catalyze the triphosphorylation of their 5'-terminus. This selection showed that RNA systems can use the prebiotically plausible molecule cyclic trimetaphosphate as an energy source. From this selected ribozyme library, the shortest ribozyme that was previously identified had a length of 67 nucleotides. Here we describe a combinatorial method to identify short ribozymes from libraries containing many ribozymes. Using this protocol on the library of triphosphorylation ribozymes, we identified a 17-nucleotide sequence motif embedded in a 44-nucleotide pseudoknot structure. The described combinatorial approach can be used to analyze libraries obtained by different in vitro selection experiments.
Collapse
Affiliation(s)
- Joshua T Arriola
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Ulrich F Müller
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
2
|
Tanaka T, Furuta H, Ikawa Y. Installation of orthogonality to the interface that assembles two modular domains in the Tetrahymena group I ribozyme. J Biosci Bioeng 2014; 117:407-12. [DOI: 10.1016/j.jbiosc.2013.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 01/08/2023]
|
3
|
Abstract
RNA molecules are highly modular components that can be used in a variety of contexts for building new metabolic, regulatory and genetic circuits in cells. The majority of synthetic RNA systems to date predominately rely on two-dimensional modularity. However, a better understanding and integration of three-dimensional RNA modularity at structural and functional levels is critical to the development of more complex, functional bio-systems and molecular machines for synthetic biology applications.
Collapse
Affiliation(s)
- Wade Grabow
- Department of Chemistry and Biochemistry, Seattle Pacific University3307 Third Avenue West, Seattle, WA 98119USA
| | - Luc Jaeger
- Department of Chemistry and Biochemistry, Bio-Molecular Science and Engineering Program, University of CaliforniaSanta Barbara, CA 93106-9510USA
| |
Collapse
|
4
|
Luo X, McKeague M, Pitre S, Dumontier M, Green J, Golshani A, Derosa MC, Dehne F. Computational approaches toward the design of pools for the in vitro selection of complex aptamers. RNA (NEW YORK, N.Y.) 2010; 16:2252-62. [PMID: 20870801 PMCID: PMC2957063 DOI: 10.1261/rna.2102210] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
It is well known that using random RNA/DNA sequences for SELEX experiments will generally yield low-complexity structures. Early experimental results suggest that having a structurally diverse library, which, for instance, includes high-order junctions, may prove useful in finding new functional motifs. Here, we develop two computational methods to generate sequences that exhibit higher structural complexity and can be used to increase the overall structural diversity of initial pools for in vitro selection experiments. Random Filtering selectively increases the number of five-way junctions in RNA/DNA pools, and Genetic Filtering designs RNA/DNA pools to a specified structure distribution, whether uniform or otherwise. We show that using our computationally designed DNA pool greatly improves access to highly complex sequence structures for SELEX experiments (without losing our ability to select for common one-way and two-way junction sequences).
Collapse
Affiliation(s)
- Xuemei Luo
- School of Computer Science, Carleton University, Ottawa, Ontario K1S5B6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Fujita Y, Ishikawa J, Furuta H, Ikawa Y. Generation and development of RNA ligase ribozymes with modular architecture through "design and selection". Molecules 2010; 15:5850-65. [PMID: 22273983 PMCID: PMC6257700 DOI: 10.3390/molecules15095850] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 08/12/2010] [Accepted: 08/18/2010] [Indexed: 12/27/2022] Open
Abstract
In vitro selection with long random RNA libraries has been used as a powerful method to generate novel functional RNAs, although it often requires laborious structural analysis of isolated RNA molecules. Rational RNA design is an attractive alternative to avoid this laborious step, but rational design of catalytic modules is still a challenging task. A hybrid strategy of in vitro selection and rational design has been proposed. With this strategy termed “design and selection,” new ribozymes can be generated through installation of catalytic modules onto RNA scaffolds with defined 3D structures. This approach, the concept of which was inspired by the modular architecture of naturally occurring ribozymes, allows prediction of the overall architectures of the resulting ribozymes, and the structural modularity of the resulting ribozymes allows modification of their structures and functions. In this review, we summarize the design, generation, properties, and engineering of four classes of ligase ribozyme generated by design and selection.
Collapse
Affiliation(s)
- Yuki Fujita
- Graduate School of Engineering, Kyushu University, 819-0395, Fukuoka, Japan
| | - Junya Ishikawa
- Graduate School of Engineering, Kyushu University, 819-0395, Fukuoka, Japan
| | - Hiroyuki Furuta
- Graduate School of Engineering, Kyushu University, 819-0395, Fukuoka, Japan
- International Research Center for Molecular Systems, Kyushu University, 819-0395, Fukuoka, Japan
| | - Yoshiya Ikawa
- Graduate School of Engineering, Kyushu University, 819-0395, Fukuoka, Japan
- International Research Center for Molecular Systems, Kyushu University, 819-0395, Fukuoka, Japan
- PRESTO, Japan Science and Technology Agency, Tokyo 102-0075, Japan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-92-802-2866; Fax: +81-92-802-2865
| |
Collapse
|
6
|
Kim N, Izzo JA, Elmetwaly S, Gan HH, Schlick T. Computational generation and screening of RNA motifs in large nucleotide sequence pools. Nucleic Acids Res 2010; 38:e139. [PMID: 20448026 PMCID: PMC2910066 DOI: 10.1093/nar/gkq282] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although identification of active motifs in large random sequence pools is central to RNA in vitro selection, no systematic computational equivalent of this process has yet been developed. We develop a computational approach that combines target pool generation, motif scanning and motif screening using secondary structure analysis for applications to 10(12)-10(14)-sequence pools; large pool sizes are made possible using program redesign and supercomputing resources. We use the new protocol to search for aptamer and ribozyme motifs in pools up to experimental pool size (10(14) sequences). We show that motif scanning, structure matching and flanking sequence analysis, respectively, reduce the initial sequence pool by 6-8, 1-2 and 1 orders of magnitude, consistent with the rare occurrence of active motifs in random pools. The final yields match the theoretical yields from probability theory for simple motifs and overestimate experimental yields, which constitute lower bounds, for aptamers because screening analyses beyond secondary structure information are not considered systematically. We also show that designed pools using our nucleotide transition probability matrices can produce higher yields for RNA ligase motifs than random pools. Our methods for generating, analyzing and designing large pools can help improve RNA design via simulation of aspects of in vitro selection.
Collapse
Affiliation(s)
- Namhee Kim
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | | | | | | | | |
Collapse
|
7
|
Fujita Y, Furuta H, Ikawa Y. Evolutionary optimization of a modular ligase ribozyme: a small catalytic unit and a hairpin motif masking an element that could form an inactive structure. Nucleic Acids Res 2010; 38:3328-39. [PMID: 20110262 PMCID: PMC2879505 DOI: 10.1093/nar/gkq018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The YFL ribozyme is an artificial ligase ribozyme isolated by a ‘design and selection’ strategy, in which a modular catalytic unit was generated on a rationally designed modular scaffold RNA. This ligase ribozyme has a versatile catalytic unit that accepts not only β-nicotinamide mononucleotide (β-NMN) but also inorganic pyrophosphate as leaving groups for template-dependent RNA ligation. Although this property is interesting from an evolutionary viewpoint regarding primitive RNA ligation/polymerization systems in the RNA world, structural analysis of the YFL ribozyme has not been continued due to apparent structural nonuniformity of its folded state. To elucidate the active structure of the YFL ribozyme, we performed in vitro evolution experiments to improve its folding ability. Biochemical and phylogenetic analyses of evolved variants indicated that the catalytic unit of the YFL ribozyme is compact and the 3′ single-stranded region of the parent YFL-1 ribozyme contributes to mask an element that could form an inactive structure.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | | | | |
Collapse
|
8
|
Group I introns and inteins: disparate origins but convergent parasitic strategies. J Bacteriol 2009; 191:6193-202. [PMID: 19666710 DOI: 10.1128/jb.00675-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
9
|
Shiohara T, Saito H, Inoue T. A designed RNA selection: establishment of a stable complex between a target and selectant RNA via two coordinated interactions. Nucleic Acids Res 2009; 37:e23. [PMID: 19136470 PMCID: PMC2647284 DOI: 10.1093/nar/gkn1012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In this paper, we describe a new method for selecting RNA aptamers that cooperatively bind to two specific sites within a target RNA. We designed a selection system in which two RNAs, a target RNA and a RNA pool, were assembled by employing a pre-organized GAAA tetraloop-11-nt receptor interaction. This allows us to select the binding sequence against a targeted internal loop as well as a linker region optimized for binding of the two binding sites. After the selection, the aptamers bound with dissociation constants in the nanomolar range, thereby forming a stable complex with the target RNA. Thus this method enables identification of aptamers for a specific binding site together with a linker for cooperative binding of the two RNAs. It appears that our new method can be applied generally to select RNAs that adhere tightly to a target RNA via two specific sites. The method can also be applicable for further engineering of both natural and artificial RNAs.
Collapse
Affiliation(s)
- Tomoaki Shiohara
- Laboratory of Gene Biodynamics, Graduate School of Biostudies, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
10
|
Vicens Q, Cech TR. A natural ribozyme with 3',5' RNA ligase activity. Nat Chem Biol 2009; 5:97-9. [PMID: 19125157 PMCID: PMC2897744 DOI: 10.1038/nchembio.136] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 12/08/2008] [Indexed: 01/10/2023]
Abstract
Using electrophoresis, sequencing and enzymatic digestion, we show that the group I intron from the cyanobacterium Anabaena sp. PCC 7120 catalyzes phosphodiester bond formation using a triphosphate on the 5'-terminal nucleotide, much like protein polymerases and engineered ribozymes. In the process, this ribozyme forms a unique circular RNA that incorporates the exogenous guanosine cofactor added during self-splicing. This finding may have relevance to a prebiotic RNA world and to modern biology.
Collapse
Affiliation(s)
- Quentin Vicens
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, UCB 215, Boulder, Colorado 80309-0215, USA.
| | | |
Collapse
|
11
|
Geary C, Baudrey S, Jaeger L. Comprehensive features of natural and in vitro selected GNRA tetraloop-binding receptors. Nucleic Acids Res 2007; 36:1138-52. [PMID: 18158305 PMCID: PMC2275092 DOI: 10.1093/nar/gkm1048] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Specific recognitions of GNRA tetraloops by small helical receptors are among the most widespread long-range packing interactions in large ribozymes. However, in contrast to GYRA and GAAA tetraloops, very few GNRA/receptor interactions have yet been identified to involve GGAA tetraloops in nature. A novel in vitro selection scheme based on a rigid self-assembling tectoRNA scaffold designed for isolation of intermolecular interactions with A-minor motifs has yielded new GGAA tetraloop-binding receptors with affinity in the nanomolar range. One of the selected receptors is a novel 12 nt RNA motif, (CCUGUG … AUCUGG), that recognizes GGAA tetraloop hairpin with a remarkable specificity and affinity. Its physical and chemical characteristics are comparable to those of the well-studied ‘11nt’ GAAA tetraloop receptor motif. A second less specific motif (CCCAGCCC … GAUAGGG) binds GGRA tetraloops and appears to be related to group IC3 tetraloop receptors. Mutational, thermodynamic and comparative structural analysis suggests that natural and in vitro selected GNRA receptors can essentially be grouped in two major classes of GNRA binders. New insights about the evolution, recognition and structural modularity of GNRA and A-minor RNA–RNA interactions are proposed.
Collapse
Affiliation(s)
- Cody Geary
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106-9510, USA
| | | | | |
Collapse
|
12
|
Abstract
It has been 40 years since Spiegelman and co-workers demonstrated how RNA molecules can be evolved in the test tube. This result established Darwinian evolution as a chemical process and paved the way for the many directed evolution experiments that followed. Chemists can benefit from reflecting on Spiegelman's studies and the subsequent advances, which have taken the field to the brink of the generation of life itself in the laboratory. This Review summarizes the concepts and methods for the directed evolution of RNA molecules in vitro.
Collapse
Affiliation(s)
- Gerald F Joyce
- Department of Chemistry and Molecular Biology, La Jolla, CA 92037, USA.
| |
Collapse
|
13
|
Voytek SB, Joyce GF. Emergence of a fast-reacting ribozyme that is capable of undergoing continuous evolution. Proc Natl Acad Sci U S A 2007; 104:15288-93. [PMID: 17878292 PMCID: PMC2000504 DOI: 10.1073/pnas.0707490104] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is possible to evolve RNA enzymes in a continuous manner by employing a simple serial-transfer procedure. This method was previously applied only to descendants of one unusually fast-reacting RNA enzyme with RNA ligase activity. The present study establishes a second continuously evolving RNA enzyme, also with RNA ligase activity, but with a completely independent evolutionary origin. Critical to achieving the fast catalytic rate necessary for continuous evolution, development of this enzyme entailed the addition and evolutionary maturation of a 35-nucleotide accessory domain and the application of highly stringent selection pressure, with reaction times as short as 15 ms. Once established, continuous evolution was carried out for 80 successive transfers, maintaining the population against an overall dilution of 10(207)-fold. The resulting RNA enzymes exhibited approximately 10(5)-fold improvement in catalytic efficiency, compared with the starting molecules, and became dependent on a structural feature of the substrate that previously conferred no selective advantage. This adaptation was eliminated by deleting the substrate feature and then carrying out 20 additional transfers of continuous evolution, which resulted in molecules with even greater catalytic activity. Now that two distinct species of continuously evolving enzymes have been established, it is possible to conduct molecular ecology experiments in which the two are made to compete for limited resources within a common environment.
Collapse
Affiliation(s)
- Sarah B. Voytek
- Departments of Chemistry and Molecular Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Gerald F. Joyce
- Departments of Chemistry and Molecular Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
14
|
|
15
|
|
16
|
Affiliation(s)
- Dana A Baum
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | | |
Collapse
|
17
|
Kim N, Gan HH, Schlick T. A computational proposal for designing structured RNA pools for in vitro selection of RNAs. RNA (NEW YORK, N.Y.) 2007; 13:478-92. [PMID: 17322501 PMCID: PMC1831855 DOI: 10.1261/rna.374907] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Although in vitro selection technology is a versatile experimental tool for discovering novel synthetic RNA molecules, finding complex RNA molecules is difficult because most RNAs identified from random sequence pools are simple motifs, consistent with recent computational analysis of such sequence pools. Thus, enriching in vitro selection pools with complex structures could increase the probability of discovering novel RNAs. Here we develop an approach for engineering sequence pools that links RNA sequence space regions with corresponding structural distributions via a "mixing matrix" approach combined with a graph theory analysis. We define five classes of mixing matrices motivated by covariance mutations in RNA; these constructs define nucleotide transition rates and are applied to chosen starting sequences to yield specific nonrandom pools. We examine the coverage of sequence space as a function of the mixing matrix and starting sequence via clustering analysis. We show that, in contrast to random sequences, which are associated only with a local region of sequence space, our designed pools, including a structured pool for GTP aptamers, can target specific motifs. It follows that experimental synthesis of designed pools can benefit from using optimized starting sequences, mixing matrices, and pool fractions associated with each of our constructed pools as a guide. Automation of our approach could provide practical tools for pool design applications for in vitro selection of RNAs and related problems.
Collapse
Affiliation(s)
- Namhee Kim
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | | |
Collapse
|
18
|
Chiuman W, Li Y. Evolution of High-Branching Deoxyribozymes from a Catalytic DNA with a Three-Way Junction. ACTA ACUST UNITED AC 2006; 13:1061-9. [PMID: 17052610 DOI: 10.1016/j.chembiol.2006.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 08/11/2006] [Accepted: 08/25/2006] [Indexed: 11/25/2022]
Abstract
Here, we report the evolution of two star-shaped (five-way junction) deoxyribozymes from a catalytic DNA containing a three-way junction scaffold. The transition was shown to be a switch rather than a gradual progression. The star-shaped motifs, surprisingly, only took five selection cycles to be detected, and another four to dominate the evolving population. Chemical probing experiments indicated that the two deoxyribozymes belong to the same family despite noticeable variations in both the primary sequence and the secondary structure. Our findings not only describe the evolution of high-branching nucleic acid structures from a low-branching catalytic module, but they also illustrate the idea of deriving a rare structural motif by sampling the sequence variants of a given functional nucleic acid.
Collapse
Affiliation(s)
- William Chiuman
- Department of Biochemistry and Biomedical Sciences and Department of Chemistry, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | | |
Collapse
|
19
|
Jaeger L, Chworos A. The architectonics of programmable RNA and DNA nanostructures. Curr Opin Struct Biol 2006; 16:531-43. [PMID: 16843653 DOI: 10.1016/j.sbi.2006.07.001] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 06/14/2006] [Accepted: 07/04/2006] [Indexed: 11/30/2022]
Abstract
The past several years have witnessed the emergence of a new world of nucleic-acid-based architectures with highly predictable and programmable self-assembly properties. For almost two decades, DNA has been the primary material for nucleic acid nanoconstruction. More recently, the dramatic increase in RNA structural information led to the development of RNA architectonics, the scientific study of the principles of RNA architecture with the aim of constructing RNA nanostructures of any arbitrary size and shape. The remarkable modularity and the distinct but complementary nature of RNA and DNA nanomaterials are revealed by the various self-assembly strategies that aim to achieve control of the arrangement of matter at a nanoscale level.
Collapse
Affiliation(s)
- Luc Jaeger
- Department of Chemistry and Biochemistry, Material Research Laboratory, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA.
| | | |
Collapse
|
20
|
Curtis EA, Bartel DP. New catalytic structures from an existing ribozyme. Nat Struct Mol Biol 2006; 12:994-1000. [PMID: 16228005 DOI: 10.1038/nsmb1003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 09/02/2005] [Indexed: 11/10/2022]
Abstract
Although protein enzymes with new catalytic activities can arise from existing scaffolds, less is known about the origin of ribozymes with new activities. Furthermore, mechanisms by which new macromolecular folds arise are not well characterized for either protein or RNA. Here we investigate how readily ribozymes with new catalytic activities and folds can arise from an existing ribozyme scaffold. Using in vitro selection, we isolated 23 distinct kinase ribozymes from a pool of sequence variants of an aminoacylase parent ribozyme. Analysis of these new kinases showed that ribozymes with new folds and biochemical activities can be found within a short mutational distance of a given ribozyme. However, the probability of finding such ribozymes increases considerably as the mutational distance from the parental ribozyme increases, indicating a need to escape the fold of the parent.
Collapse
Affiliation(s)
- Edward A Curtis
- Whitehead Institute for Biomedical Research and Department of Biology, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
21
|
Gevertz J, Gan HH, Schlick T. In vitro RNA random pools are not structurally diverse: a computational analysis. RNA (NEW YORK, N.Y.) 2005; 11:853-63. [PMID: 15923372 PMCID: PMC1370770 DOI: 10.1261/rna.7271405] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In vitro selection of functional RNAs from large random sequence pools has led to the identification of many ligand-binding and catalytic RNAs. However, the structural diversity in random pools is not well understood. Such an understanding is a prerequisite for designing sequence pools to increase the probability of finding complex functional RNA by in vitro selection techniques. Toward this goal, we have generated by computer five random pools of RNA sequences of length up to 100 nt to mimic experiments and characterized the distribution of associated secondary structural motifs using sets of possible RNA tree structures derived from graph theory techniques. Our results show that such random pools heavily favor simple topological structures: For example, linear stem-loop and low-branching motifs are favored rather than complex structures with high-order junctions, as confirmed by known aptamers. Moreover, we quantify the rise of structural complexity with sequence length and report the dominant class of tree motifs (characterized by vertex number) for each pool. These analyses show not only that random pools do not lead to a uniform distribution of possible RNA secondary topologies; they point to avenues for designing pools with specific simple and complex structures in equal abundance in the goal of broadening the range of functional RNAs discovered by in vitro selection. Specifically, the optimal RNA sequence pool length to identify a structure with x stems is 20x.
Collapse
Affiliation(s)
- Jana Gevertz
- Summer Undergraduate Research Program, New York University School of Medicine, New York, 10003, USA
| | | | | |
Collapse
|