1
|
Witzenberger M, Schwartz S. Directing RNA-modifying machineries towards endogenous RNAs: opportunities and challenges. Trends Genet 2024; 40:313-325. [PMID: 38350740 DOI: 10.1016/j.tig.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 02/15/2024]
Abstract
Over 170 chemical modifications can be naturally installed on RNA, all of which are catalyzed by dedicated machineries. These modifications can alter RNA sequence structure, stability, and translation as well as serving as quality control marks that record aspects of RNA processing. The diverse roles played by RNAs within cells has motivated endeavors to exogenously introduce RNA modifications at target sites for diverse purposes ranging from recording RNA:protein interactions to therapeutic applications. Here, we discuss these applications and the approaches that have been employed to engineer RNA-modifying machineries, and highlight persisting challenges and perspectives.
Collapse
Affiliation(s)
- Monika Witzenberger
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7630031, Israel.
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7630031, Israel.
| |
Collapse
|
2
|
Thalalla Gamage S, Bortolin-Cavaillé ML, Link C, Bryson K, Sas-Chen A, Schwartz S, Cavaillé J, Meier JL. Antisense pairing and SNORD13 structure guide RNA cytidine acetylation. RNA (NEW YORK, N.Y.) 2022; 28:1582-1596. [PMID: 36127124 PMCID: PMC9670809 DOI: 10.1261/rna.079254.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/02/2022] [Indexed: 05/21/2023]
Abstract
N4-acetylcytidine (ac4C) is an RNA nucleobase found in all domains of life. The establishment of ac4C in helix 45 (h45) of human 18S ribosomal RNA (rRNA) requires the combined activity of the acetyltransferase NAT10 and the box C/D snoRNA SNORD13. However, the molecular mechanisms governing RNA-guided nucleobase acetylation in humans remain unexplored. After applying comparative sequence analysis and site-directed mutagenesis to provide evidence that SNORD13 folds into three main RNA helices, we report two assays that enable the study of SNORD13-dependent RNA acetylation in human cells. First, we demonstrate that ectopic expression of SNORD13 rescues h45 in a SNORD13 knockout cell line. Next, we show that mutant snoRNAs can be used in combination with nucleotide resolution ac4C sequencing to define structure and sequence elements critical for SNORD13 function. Finally, we develop a second method that reports on the substrate specificity of endogenous NAT10-SNORD13 via mutational analysis of an ectopically expressed pre-rRNA substrate. By combining mutational analysis of these reconstituted systems with nucleotide resolution ac4C sequencing, our studies reveal plasticity in the molecular determinants underlying RNA-guided cytidine acetylation that is distinct from deposition of other well-studied rRNA modifications (e.g., pseudouridine). Overall, our studies provide a new approach to reconstitute RNA-guided cytidine acetylation in human cells as well as nucleotide resolution insights into the mechanisms governing this process.
Collapse
Affiliation(s)
| | - Marie-Line Bortolin-Cavaillé
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse III; UPS; CNRS; 31062 Cedex 9, Toulouse, France
| | - Courtney Link
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Keri Bryson
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Aldema Sas-Chen
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 6195001 Tel Aviv, Israel
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Jérôme Cavaillé
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse III; UPS; CNRS; 31062 Cedex 9, Toulouse, France
| | - Jordan L Meier
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, USA
| |
Collapse
|
3
|
Baudin-Baillieu A, Namy O. Saccharomyces cerevisiae, a Powerful Model for Studying rRNA Modifications and Their Effects on Translation Fidelity. Int J Mol Sci 2021; 22:ijms22147419. [PMID: 34299038 PMCID: PMC8307265 DOI: 10.3390/ijms22147419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 12/31/2022] Open
Abstract
Ribosomal RNA is a major component of the ribosome. This RNA plays a crucial role in ribosome functioning by ensuring the formation of the peptide bond between amino acids and the accurate decoding of the genetic code. The rRNA carries many chemical modifications that participate in its maturation, the formation of the ribosome and its functioning. In this review, we present the different modifications and how they are deposited on the rRNA. We also describe the most recent results showing that the modified positions are not 100% modified, which creates a heterogeneous population of ribosomes. This gave rise to the concept of specialized ribosomes that we discuss. The knowledge accumulated in the yeast Saccharomyces cerevisiae is very helpful to better understand the role of rRNA modifications in humans, especially in ribosomopathies.
Collapse
|
4
|
Aquino GRR, Krogh N, Hackert P, Martin R, Gallesio JD, van Nues RW, Schneider C, Watkins NJ, Nielsen H, Bohnsack KE, Bohnsack MT. RNA helicase-mediated regulation of snoRNP dynamics on pre-ribosomes and rRNA 2'-O-methylation. Nucleic Acids Res 2021; 49:4066-4084. [PMID: 33721027 PMCID: PMC8053091 DOI: 10.1093/nar/gkab159] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022] Open
Abstract
RNA helicases play important roles in diverse aspects of RNA metabolism through their functions in remodelling ribonucleoprotein complexes (RNPs), such as pre-ribosomes. Here, we show that the DEAD box helicase Dbp3 is required for efficient processing of the U18 and U24 intron-encoded snoRNAs and 2′-O-methylation of various sites within the 25S ribosomal RNA (rRNA) sequence. Furthermore, numerous box C/D snoRNPs accumulate on pre-ribosomes in the absence of Dbp3. Many snoRNAs guiding Dbp3-dependent rRNA modifications have overlapping pre-rRNA basepairing sites and therefore form mutually exclusive interactions with pre-ribosomes. Analysis of the distribution of these snoRNAs between pre-ribosome-associated and ‘free’ pools demonstrated that many are almost exclusively associated with pre-ribosomal complexes. Our data suggest that retention of such snoRNPs on pre-ribosomes when Dbp3 is lacking may impede rRNA 2′-O-methylation by reducing the recycling efficiency of snoRNPs and by inhibiting snoRNP access to proximal target sites. The observation of substoichiometric rRNA modification at adjacent sites suggests that the snoRNPs guiding such modifications likely interact stochastically rather than hierarchically with their pre-rRNA target sites. Together, our data provide new insights into the dynamics of snoRNPs on pre-ribosomal complexes and the remodelling events occurring during the early stages of ribosome assembly.
Collapse
Affiliation(s)
- Gerald Ryan R Aquino
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, University of Copenhagen, 3B Blegdamsvej, 2200N Copenhagen, Denmark
| | - Philipp Hackert
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Roman Martin
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Jimena Davila Gallesio
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Robert W van Nues
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Claudia Schneider
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Nicholas J Watkins
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, 3B Blegdamsvej, 2200N Copenhagen, Denmark.,Genomics group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.,Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
5
|
Thapar R, Bacolla A, Oyeniran C, Brickner JR, Chinnam NB, Mosammaparast N, Tainer JA. RNA Modifications: Reversal Mechanisms and Cancer. Biochemistry 2018; 58:312-329. [PMID: 30346748 DOI: 10.1021/acs.biochem.8b00949] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An emerging molecular understanding of RNA alkylation and its removal is transforming our knowledge of RNA biology and its interplay with cancer chemotherapy responses. DNA modifications are known to perform critical functions depending on the genome template, including gene expression, DNA replication timing, and DNA damage protection, yet current results suggest that the chemical diversity of DNA modifications pales in comparison to those on RNA. More than 150 RNA modifications have been identified to date, and their complete functional implications are still being unveiled. These include intrinsic roles such as proper processing and RNA maturation; emerging evidence has furthermore uncovered RNA modification "readers", seemingly analogous to those identified for histone modifications. These modification recognition factors may regulate mRNA stability, localization, and interaction with translation machinery, affecting gene expression. Not surprisingly, tumors differentially modulate factors involved in expressing these marks, contributing to both tumorigenesis and responses to alkylating chemotherapy. Here we describe the current understanding of RNA modifications and their removal, with a focus primarily on methylation and alkylation as functionally relevant changes to the transcriptome. Intriguingly, some of the same RNA modifications elicited by physiological processes are also produced by alkylating agents, thus blurring the lines between what is a physiological mark and a damage-induced modification. Furthermore, we find that a high level of gene expression of enzymes with RNA dealkylation activity is a sensitive readout for poor survival in four different cancer types, underscoring the likely importance of examining RNA dealkylation mechanisms to cancer biology and for cancer treatment and prognosis.
Collapse
Affiliation(s)
- Roopa Thapar
- Department of Molecular and Cellular Oncology , University of Texas M. D. Anderson Cancer Center , Houston , Texas 77030 , United States
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology , University of Texas M. D. Anderson Cancer Center , Houston , Texas 77030 , United States
| | - Clement Oyeniran
- Department of Pathology and Immunology, Siteman Cancer Center , Washington University in St. Louis School of Medicine , St. Louis , Missouri 63110 , United States
| | - Joshua R Brickner
- Department of Pathology and Immunology, Siteman Cancer Center , Washington University in St. Louis School of Medicine , St. Louis , Missouri 63110 , United States
| | - Naga Babu Chinnam
- Department of Molecular and Cellular Oncology , University of Texas M. D. Anderson Cancer Center , Houston , Texas 77030 , United States
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Siteman Cancer Center , Washington University in St. Louis School of Medicine , St. Louis , Missouri 63110 , United States
| | - John A Tainer
- Department of Molecular and Cellular Oncology , University of Texas M. D. Anderson Cancer Center , Houston , Texas 77030 , United States
| |
Collapse
|
6
|
van Nues RW, Watkins NJ. Unusual C΄/D΄ motifs enable box C/D snoRNPs to modify multiple sites in the same rRNA target region. Nucleic Acids Res 2018; 45:2016-2028. [PMID: 28204564 PMCID: PMC5389607 DOI: 10.1093/nar/gkw842] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic box C/D small nucleolar (sno)RNPs catalyse the site-specific 2΄-O-methylation of ribosomal RNA. The RNA component (snoRNA) contains guide regions that base-pair with the target site to select the single nucleotide to be modified. The terminal C/D and internal C΄/D΄ motifs in the snoRNA, adjacent to the guide region, function as binding sites for the snoRNP proteins including the enzymatic subunit fibrillarin/Nop1. Four yeast snoRNAs are unusual in that they are predicted to methylate two nucleotides in a single target region. In each case, the internal C΄/D΄ motifs from these snoRNAs differ from the consensus. Our data indicate that the C΄/D΄ motifs in snR13, snR48 and U18 form two alternative structures that lead to differences in the position of the proteins bound to this motif. We propose that each snoRNA forms two different snoRNPs, subtly different in how the proteins are bound to the C΄/D΄ motif, leading to 2΄-O-methylation of different nucleotides in the target region. For snR48 and U18, the unusual C΄/D΄ alone is enough for the modification of two nucleotides. However, for the snR13 snoRNA the unusual C΄/D΄ motif and extra base-pairing, which stimulates rRNA 2΄-O-methylation, are both critical for multiple modifications in the target region.
Collapse
Affiliation(s)
- Robert Willem van Nues
- Institute for Cell and Molecular Biology, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Nicholas James Watkins
- Institute for Cell and Molecular Biology, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
7
|
Blondel M, Soubigou F, Evrard J, Nguyen PH, Hasin N, Chédin S, Gillet R, Contesse MA, Friocourt G, Stahl G, Jones GW, Voisset C. Protein Folding Activity of the Ribosome is involved in Yeast Prion Propagation. Sci Rep 2016; 6:32117. [PMID: 27633137 PMCID: PMC5025663 DOI: 10.1038/srep32117] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/02/2016] [Indexed: 11/09/2022] Open
Abstract
6AP and GA are potent inhibitors of yeast and mammalian prions and also specific inhibitors of PFAR, the protein-folding activity borne by domain V of the large rRNA of the large subunit of the ribosome. We therefore explored the link between PFAR and yeast prion [PSI(+)] using both PFAR-enriched mutants and site-directed methylation. We demonstrate that PFAR is involved in propagation and de novo formation of [PSI(+)]. PFAR and the yeast heat-shock protein Hsp104 partially compensate each other for [PSI(+)] propagation. Our data also provide insight into new functions for the ribosome in basal thermotolerance and heat-shocked protein refolding. PFAR is thus an evolutionarily conserved cell component implicated in the prion life cycle, and we propose that it could be a potential therapeutic target for human protein misfolding diseases.
Collapse
Affiliation(s)
- Marc Blondel
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Flavie Soubigou
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Justine Evrard
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Phu hai Nguyen
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Naushaba Hasin
- Yeast Genetics Laboratory, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Stéphane Chédin
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198, CEA, CNRS, Université Paris-Sud, CEA/Saclay, SBIGeM, Gif-sur-Yvette, France
| | - Reynald Gillet
- Université de Rennes 1, CNRS UMR 6290 IGDR, Translation and Folding Team, Rennes, France
| | - Marie-Astrid Contesse
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Gaëlle Friocourt
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Guillaume Stahl
- Laboratoire de Biologie Moléculaire Eucaryotes, CNRS, Université de Toulouse, Toulouse, France
| | - Gary W. Jones
- Yeast Genetics Laboratory, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Cécile Voisset
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| |
Collapse
|
8
|
Simms CL, Zaher HS. Quality control of chemically damaged RNA. Cell Mol Life Sci 2016; 73:3639-53. [PMID: 27155660 DOI: 10.1007/s00018-016-2261-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 04/15/2016] [Accepted: 04/29/2016] [Indexed: 01/10/2023]
Abstract
The "central dogma" of molecular biology describes how information contained in DNA is transformed into RNA and finally into proteins. In order for proteins to maintain their functionality in both the parent cell and subsequent generations, it is essential that the information encoded in DNA and RNA remains unaltered. DNA and RNA are constantly exposed to damaging agents, which can modify nucleic acids and change the information they encode. While much is known about how cells respond to damaged DNA, the importance of protecting RNA has only become appreciated over the past decade. Modification of the nucleobase through oxidation and alkylation has long been known to affect its base-pairing properties during DNA replication. Similarly, recent studies have begun to highlight some of the unwanted consequences of chemical damage on mRNA decoding during translation. Oxidation and alkylation of mRNA appear to have drastic effects on the speed and fidelity of protein synthesis. As some mRNAs can persist for days in certain tissues, it is not surprising that it has recently emerged that mRNA-surveillance and RNA-repair pathways have evolved to clear or correct damaged mRNA.
Collapse
Affiliation(s)
- Carrie L Simms
- Department of Biology, Washington University in St. Louis, One Brookings Drive, Campus Box 1137, St. Louis, MO, 63130, USA
| | - Hani S Zaher
- Department of Biology, Washington University in St. Louis, One Brookings Drive, Campus Box 1137, St. Louis, MO, 63130, USA.
| |
Collapse
|
9
|
Filippova JA, Stepanov GA, Semenov DV, Koval OA, Kuligina EV, Rabinov IV, Richter VA. Modified Method of rRNA Structure Analysis Reveals Novel Characteristics of Box C/D RNA Analogues. Acta Naturae 2015; 7:64-73. [PMID: 26085946 PMCID: PMC4463414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Ribosomal RNA (rRNA) maturation is a complex process that involves chemical modifications of the bases or sugar residues of specific nucleotides. One of the most abundant types of rRNA modifications, ribose 2'-O-methylation, is guided by ribonucleoprotein complexes containing small nucleolar box C/D RNAs. Since the majority of 2'-O-methylated nucleotides are located in the most conserved regions of rRNA that comprise functionally important centers of the ribosome, an alteration in a 2'-O-methylation profile can affect ribosome assembly and function. One of the key approaches for localization of 2'-O-methylated nucleotides in long RNAs is a method based on the termination of reverse transcription. The current study presents an adaptation of this method for the use of fluorescently labeled primers and analysis of termination products by capillary gel electrophoresis on an automated genetic analyzer. The developed approach allowed us to analyze the influence of the synthetic analogues of box C/D RNAs on post-transcriptional modifications of human 28S rRNA in MCF-7 cells. It has been established that the transfection of MCF-7 cells with a box C/D RNA analogue leads to an enhanced modification level of certain native sites of 2'-O-methylation in the target rRNA. The observed effect of synthetic RNAs on the 2'-O-methylation of rRNA in human cells demonstrates a path towards targeted regulation of rRNA post-transcriptional maturation. The described approach can be applied in the development of novel diagnostic methods for detecting diseases in humans.
Collapse
Affiliation(s)
- J. A. Filippova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova Str., 2, Novosibirsk, 630090, Russia
| | - G. A. Stepanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, Novosibirsk, 630090, Russia
| | - D. V. Semenov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, Novosibirsk, 630090, Russia
| | - O. A. Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova Str., 2, Novosibirsk, 630090, Russia
| | - E. V. Kuligina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, Novosibirsk, 630090, Russia
| | - I. V. Rabinov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, Novosibirsk, 630090, Russia
| | - V. A. Richter
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, Novosibirsk, 630090, Russia
| |
Collapse
|
10
|
Birkedal U, Christensen-Dalsgaard M, Krogh N, Sabarinathan R, Gorodkin J, Nielsen H. Profiling of ribose methylations in RNA by high-throughput sequencing. Angew Chem Int Ed Engl 2014; 54:451-5. [PMID: 25417815 DOI: 10.1002/anie.201408362] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Indexed: 11/07/2022]
Abstract
Ribose methylations are the most abundant chemical modifications of ribosomal RNA and are critical for ribosome assembly and fidelity of translation. Many aspects of ribose methylations have been difficult to study due to lack of efficient mapping methods. Here, we present a sequencing-based method (RiboMeth-seq) and its application to yeast ribosomes, presently the best-studied eukaryotic model system. We demonstrate detection of the known as well as new modifications, reveal partial modifications and unexpected communication between modification events, and determine the order of modification at several sites during ribosome biogenesis. Surprisingly, the method also provides information on a subset of other modifications. Hence, RiboMeth-seq enables a detailed evaluation of the importance of RNA modifications in the cells most sophisticated molecular machine. RiboMeth-seq can be adapted to other RNA classes, for example, mRNA, to reveal new biology involving RNA modifications.
Collapse
Affiliation(s)
- Ulf Birkedal
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N (Denmark)
| | | | | | | | | | | |
Collapse
|
11
|
Birkedal U, Christensen-Dalsgaard M, Krogh N, Sabarinathan R, Gorodkin J, Nielsen H. Profiling of Ribose Methylations in RNA by High-Throughput Sequencing. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408362] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Stepanov G, Semenov D, Kuligina E, Koval O, Rabinov I, Kit Y, Richter V. Analogues of Artificial Human Box C/D Small Nucleolar RNA As Regulators of Alternative Splicing
of a pre-mRNA Target. Acta Naturae 2012; 4:32-41. [PMID: 22708061 PMCID: PMC3372990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) play a key role in ribosomal RNA (rRNA) biogenesis. Box C/D snoRNAs guide the site-specific 2'-O-ribose methylation of nucleotides in rRNAs and small nuclear RNAs (snRNAs). A number of box C/D snoRNAs and their fragments have recently been reported to regulate post-transcriptional modifications and the alternative splicing of pre-mRNA. Artificial analogues of U24 snoRNAs directed to nucleotides in 28S and 18S rRNAs, as well as pre-mRNAs and mature mRNAs of human heat shock cognate protein (hsc70), were designed and synthesized in this study. It was found that after the transfection of MCF-7 human cells with artificial box C/D RNAs in complex with lipofectamine, snoRNA analogues penetrated into cells and accumulated in the cytoplasm and nucleus. It was demonstrated that the transfection of cultured human cells with artificial box C/D snoRNA targeted to pre-mRNAs induce partial splicing impairments. It was found that transfection with artificial snoRNAs directed to 18S and 28S rRNA nucleotides, significant for ribosome functioning, induce a decrease in MCF-7 cell viability.
Collapse
Affiliation(s)
- G.A. Stepanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch,
Russian Academy of Sciences
| | - D.V. Semenov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch,
Russian Academy of Sciences
| | - E.V. Kuligina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch,
Russian Academy of Sciences
| | - O.A. Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch,
Russian Academy of Sciences
| | - I.V. Rabinov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch,
Russian Academy of Sciences
| | - Y.Y. Kit
- Institute of Cell Biology, National Academy of Sciences of Ukraine
| | - V.A. Richter
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch,
Russian Academy of Sciences
| |
Collapse
|
13
|
van Nues RW, Granneman S, Kudla G, Sloan KE, Chicken M, Tollervey D, Watkins NJ. Box C/D snoRNP catalysed methylation is aided by additional pre-rRNA base-pairing. EMBO J 2011; 30:2420-30. [PMID: 21556049 PMCID: PMC3116282 DOI: 10.1038/emboj.2011.148] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 04/07/2011] [Indexed: 11/09/2022] Open
Abstract
2'-O-methylation of eukaryotic ribosomal RNA (r)RNA, essential for ribosome function, is catalysed by box C/D small nucleolar (sno)RNPs. The RNA components of these complexes (snoRNAs) contain one or two guide sequences, which, through base-pairing, select the rRNA modification site. Adjacent to the guide sequences are protein-binding sites (the C/D or C'/D' motifs). Analysis of >2000 yeast box C/D snoRNAs identified additional conserved sequences in many snoRNAs that are complementary to regions adjacent to the rRNA methylation site. This 'extra base-pairing' was also found in many human box C/D snoRNAs and can stimulate methylation by up to five-fold. Sequence analysis, combined with RNA-protein crosslinking in Saccharomyces cerevisiae, identified highly divergent box C'/D' motifs that are bound by snoRNP proteins. In vivo rRNA methylation assays showed these to be active. Our data suggest roles for non-catalytic subunits (Nop56 and Nop58) in rRNA binding and support an asymmetric model for box C/D snoRNP organization. The study provides novel insights into the extent of the snoRNA-rRNA interactions required for efficient methylation and the structural organization of the snoRNPs.
Collapse
Affiliation(s)
- Robert Willem van Nues
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | |
Collapse
|
14
|
Qu G, van Nues RW, Watkins NJ, Maxwell ES. The spatial-functional coupling of box C/D and C'/D' RNPs is an evolutionarily conserved feature of the eukaryotic box C/D snoRNP nucleotide modification complex. Mol Cell Biol 2011; 31:365-74. [PMID: 21041475 PMCID: PMC3019978 DOI: 10.1128/mcb.00918-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 09/10/2010] [Accepted: 10/26/2010] [Indexed: 11/20/2022] Open
Abstract
Box C/D ribonucleoprotein particles guide the 2'-O-ribose methylation of target nucleotides in both archaeal and eukaryotic RNAs. These complexes contain two functional centers, assembled around the C/D and C'/D' motifs in the box C/D RNA. The C/D and C'/D' RNPs of the archaeal snoRNA-like RNP (sRNP) are spatially and functionally coupled. Here, we show that similar coupling also occurs in eukaryotic box C/D snoRNPs. The C/D RNP guided 2'-O-methylation when the C'/D' motif was either mutated or ablated. In contrast, the C'/D' RNP was inactive as an independent complex. Additional experiments demonstrated that the internal C'/D' RNP is spatially coupled to the terminal box C/D complex. Pulldown experiments also indicated that all four core proteins are independently recruited to the box C/D and C'/D' motifs. Therefore, the spatial-functional coupling of box C/D and C'/D' RNPs is an evolutionarily conserved feature of both archaeal and eukaryotic box C/D RNP complexes.
Collapse
Affiliation(s)
- Guosheng Qu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA.
| | | | | | | |
Collapse
|
15
|
Ge J, Liu H, Yu YT. Regulation of pre-mRNA splicing in Xenopus oocytes by targeted 2'-O-methylation. RNA (NEW YORK, N.Y.) 2010; 16:1078-1085. [PMID: 20348447 PMCID: PMC2856880 DOI: 10.1261/rna.2060210] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 02/10/2010] [Indexed: 05/29/2023]
Abstract
The 2'-OH group of the branch point adenosine is a key moiety to initiate pre-mRNA splicing. We use RNA-guided RNA modification to target the pre-mRNA branch point adenosine for 2'-O-methylation, with the aim of blocking pre-mRNA splicing in vertebrate cells. We show that, under certain conditions, injection of a branch point-specific artificial box C/D RNA into Xenopus oocytes effectively 2'-O-methylates adenovirus pre-mRNA at the target nucleotide. However, 2'-O-methylation at the authentic branch point activates a host of cryptic branch points, thus allowing splicing to continue. These cryptic sites are mapped, and mutated. Upon injection, pre-mRNA free of cryptic branch points fails to splice when the branch point-specific box C/D RNA is present. However, 2'-O-methylation at the branch point does not prevent pre-mRNA from being assembled into pre-catalytic spliceosome-like complexes prior to the first chemical step of splicing. Our results demonstrate that RNA-guided pre-mRNA modification can occur in the nucleoplasm of vertebrate cells, thus offering a powerful tool for molecular biology research.
Collapse
Affiliation(s)
- Junhui Ge
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | |
Collapse
|
16
|
Kim SH, Spensley M, Choi SK, Calixto CPG, Pendle AF, Koroleva O, Shaw PJ, Brown JWS. Plant U13 orthologues and orphan snoRNAs identified by RNomics of RNA from Arabidopsis nucleoli. Nucleic Acids Res 2010; 38:3054-67. [PMID: 20081206 PMCID: PMC2875012 DOI: 10.1093/nar/gkp1241] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Revised: 12/23/2009] [Accepted: 12/23/2009] [Indexed: 11/13/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) and small Cajal body-specific RNAs (scaRNAs) are non-coding RNAs whose main function in eukaryotes is to guide the modification of nucleotides in ribosomal and spliceosomal small nuclear RNAs, respectively. Full-length sequences of Arabidopsis snoRNAs and scaRNAs have been obtained from cDNA libraries of capped and uncapped small RNAs using RNA from isolated nucleoli from Arabidopsis cell cultures. We have identified 31 novel snoRNA genes (9 box C/D and 22 box H/ACA) and 15 new variants of previously described snoRNAs. Three related capped snoRNAs with a distinct gene organization and structure were identified as orthologues of animal U13snoRNAs. In addition, eight of the novel genes had no complementarity to rRNAs or snRNAs and are therefore putative orphan snoRNAs potentially reflecting wider functions for these RNAs. The nucleolar localization of a number of the snoRNAs and the localization to nuclear bodies of two putative scaRNAs was confirmed by in situ hybridization. The majority of the novel snoRNA genes were found in new gene clusters or as part of previously described clusters. These results expand the repertoire of Arabidopsis snoRNAs to 188 snoRNA genes with 294 gene variants.
Collapse
Affiliation(s)
- Sang Hyon Kim
- Genetics Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK, Division of Biosciences and Bioinformatics, College of Natural Science, Myongji University, Yongin, Kyeongki-do 449-728, Korea, Division of Plant Sciences, University of Dundee at SCRI, Invergowrie, Dundee DD2 5DA, Scotland, Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH and School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK
| | - Mark Spensley
- Genetics Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK, Division of Biosciences and Bioinformatics, College of Natural Science, Myongji University, Yongin, Kyeongki-do 449-728, Korea, Division of Plant Sciences, University of Dundee at SCRI, Invergowrie, Dundee DD2 5DA, Scotland, Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH and School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK
| | - Seung Kook Choi
- Genetics Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK, Division of Biosciences and Bioinformatics, College of Natural Science, Myongji University, Yongin, Kyeongki-do 449-728, Korea, Division of Plant Sciences, University of Dundee at SCRI, Invergowrie, Dundee DD2 5DA, Scotland, Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH and School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK
| | - Cristiane P. G. Calixto
- Genetics Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK, Division of Biosciences and Bioinformatics, College of Natural Science, Myongji University, Yongin, Kyeongki-do 449-728, Korea, Division of Plant Sciences, University of Dundee at SCRI, Invergowrie, Dundee DD2 5DA, Scotland, Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH and School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK
| | - Ali F. Pendle
- Genetics Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK, Division of Biosciences and Bioinformatics, College of Natural Science, Myongji University, Yongin, Kyeongki-do 449-728, Korea, Division of Plant Sciences, University of Dundee at SCRI, Invergowrie, Dundee DD2 5DA, Scotland, Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH and School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK
| | - Olga Koroleva
- Genetics Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK, Division of Biosciences and Bioinformatics, College of Natural Science, Myongji University, Yongin, Kyeongki-do 449-728, Korea, Division of Plant Sciences, University of Dundee at SCRI, Invergowrie, Dundee DD2 5DA, Scotland, Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH and School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK
| | - Peter J. Shaw
- Genetics Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK, Division of Biosciences and Bioinformatics, College of Natural Science, Myongji University, Yongin, Kyeongki-do 449-728, Korea, Division of Plant Sciences, University of Dundee at SCRI, Invergowrie, Dundee DD2 5DA, Scotland, Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH and School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK
| | - John W. S. Brown
- Genetics Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK, Division of Biosciences and Bioinformatics, College of Natural Science, Myongji University, Yongin, Kyeongki-do 449-728, Korea, Division of Plant Sciences, University of Dundee at SCRI, Invergowrie, Dundee DD2 5DA, Scotland, Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH and School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK
| |
Collapse
|
17
|
Abstract
Damage to RNA from ultraviolet light, oxidation, chlorination, nitration, and akylation can include chemical modifications to nucleobases as well as RNA-RNA and RNA-protein crosslinking. In vitro studies have described a range of possible damage products, some of which are supported as physiologically relevant by in vivo observations in normal growth, stress conditions, or disease states. Damage to both messenger RNA and noncoding RNA may have functional consequences, and work has begun to elucidate the role of RNA turnover pathways and specific damage recognition pathways in clearing cells of these damaged RNAs.
Collapse
|
18
|
Decatur WA, Liang XH, Piekna-Przybylska D, Fournier MJ. Identifying effects of snoRNA-guided modifications on the synthesis and function of the yeast ribosome. Methods Enzymol 2007; 425:283-316. [PMID: 17673089 DOI: 10.1016/s0076-6879(07)25013-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The small nucleolar RNAs (snoRNAs) are associated with proteins in ribonucleoprotein complexes called snoRNPs ("snorps"). These complexes create modified nucleotides in preribosomal RNA and other RNAs and participate in nucleolytic cleavages of pre-rRNA. The various reactions occur in site-specific fashion, and the mature rRNAs are ultimately incorporated into cytoplasmic ribosomes. Most snoRNAs exist in two structural classes, and most members in each class are involved in nucleotide modification reactions. Guide snoRNAs in the "box C/D" class target methylation of the 2'-hydroxyl moiety, to form 2'-O-methylated nucleotides (Nm), whereas guide snoRNAs in the "box H/ACA" class target specific uridines for conversion to pseudouridine (Psi). The rRNA nucleotides modified in this manner are numerous, totaling approximately 100 in yeast and twice that number in humans. Although the chemistry of the modifications and the factors involved in their formation are largely explained, very little is known about the influence of the copious snoRNA-guided nucleotide modifications on rRNA activity and ribosome function. Among eukaryotic organisms the sites of rRNA modification and the corresponding guide snoRNAs have been best characterized in S. cerevisiae, making this a model organism for analyzing the consequences of modification. This chapter presents approaches to characterizing rRNA modification effects in yeast and includes strategies for evaluating a variety of specific rRNA functions. To aid in planning, a package of bioinformatics tools is described that enables investigators to correlate guide function with targeted ribosomal sites in several contexts. Genetic procedures are presented for depleting modifications at one or more rRNA sites, including ablation of all Nm or Psi modifications made by snoRNPs, and for introducing modifications at novel sites. Methods are also included for characterizing modification effects on cell growth, antibiotic sensitivity, rRNA processing, formation of various rRNP complexes, translation activity, and rRNA structure within the ribosome.
Collapse
Affiliation(s)
- Wayne A Decatur
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | | | | | | |
Collapse
|
19
|
Piekna-Przybylska D, Liu B, Fournier MJ. The U1 snRNA hairpin II as a RNA affinity tag for selecting snoRNP complexes. Methods Enzymol 2007; 425:317-53. [PMID: 17673090 DOI: 10.1016/s0076-6879(07)25014-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
When isolating ribonucleoprotein (RNP) complexes by an affinity selection approach, tagging the RNA component can prove to be strategically important. This is especially true for purifying single types of snoRNPs, because in most cases the snoRNA is thought to be the only unique component. Here, we present a general strategy for selecting specific snoRNPs that features a high-affinity tag in the snoRNA and another in a snoRNP core protein. The RNA tag (called U1hpII) is a small (26 nt) stem-loop domain from human U1 snRNA. This structure binds with high affinity (K(D)=10(-11)M) to the RRM domain of the snRNP protein U1A. In our approach, the U1A protein contains a unique affinity tag and is coexpressed in vivo with the tagged snoRNA to yield snoRNP-U1A complexes with two unique protein tags-one in the bound U1A protein and the other in the snoRNP core protein. This scheme has been used effectively to select C/D and H/ACA snoRNPs, including both processing and modifying snoRNPs, and the snoRNA and core proteins are highly enriched. Depending on selection stringency other proteins are isolated as well, including an RNA helicase involved in snoRNP release from pre-rRNA and additional proteins that function in ribosome biogenesis. Tagging the snoRNA component alone is also effective when U1A is expressed with a myc-Tev-protein A fusion sequence. Combined with reduced stringency, enrichment of the U14 snoRNP with this latter system revealed potential interactions with two other snoRNPs, including one processing snoRNP involved in the same cleavages of pre-rRNA.
Collapse
|
20
|
Hüttenhofer A, Schattner P. The principles of guiding by RNA: chimeric RNA-protein enzymes. Nat Rev Genet 2006; 7:475-82. [PMID: 16622413 DOI: 10.1038/nrg1855] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The non-protein-coding transcriptional output of the cell is far greater than previously thought. Although the functions, if any, of the vast majority of these RNA transcripts remain elusive, out of those for which functions have already been established, most act as RNA guides for protein enzymes. Common features of these RNAs provide clues about the evolutionary constraints that led to the development of RNA-guided proteins and the specific biological environments in which target specificity and diversity are most crucial to the cell.
Collapse
Affiliation(s)
- Alexander Hüttenhofer
- Innsbruck Biocenter, Medical University Innsbruck, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria.
| | | |
Collapse
|
21
|
Vitali P, Basyuk E, Le Meur E, Bertrand E, Muscatelli F, Cavaillé J, Huttenhofer A. ADAR2-mediated editing of RNA substrates in the nucleolus is inhibited by C/D small nucleolar RNAs. ACTA ACUST UNITED AC 2005; 169:745-53. [PMID: 15939761 PMCID: PMC2171610 DOI: 10.1083/jcb.200411129] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Posttranscriptional, site-specific adenosine to inosine (A-to-I) base conversions, designated as RNA editing, play significant roles in generating diversity of gene expression. However, little is known about how and in which cellular compartments RNA editing is controlled. Interestingly, the two enzymes that catalyze RNA editing, adenosine deaminases that act on RNA (ADAR) 1 and 2, have recently been demonstrated to dynamically associate with the nucleolus. Moreover, we have identified a brain-specific small RNA, termed MBII-52, which was predicted to function as a nucleolar C/D RNA, thereby targeting an A-to-I editing site (C-site) within the 5-HT2C serotonin receptor pre-mRNA for 2′-O-methylation. Through the subcellular targeting of minigenes that contain natural editing sites, we show that ADAR2- but not ADAR1-mediated RNA editing occurs in the nucleolus. We also demonstrate that MBII-52 forms a bona fide small nucleolar ribonucleoprotein particle that specifically decreases the efficiency of RNA editing by ADAR2 at the targeted C-site. Our data are consistent with a model in which C/D small nucleolar RNA might play a role in the regulation of RNA editing.
Collapse
MESH Headings
- Adenosine Deaminase/genetics
- Adenosine Deaminase/metabolism
- Animals
- Cell Compartmentation/genetics
- Cell Nucleolus/genetics
- Cell Nucleolus/metabolism
- Mice
- NIH 3T3 Cells
- RNA Editing/genetics
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA-Binding Proteins
- Rats
- Receptor, Serotonin, 5-HT2C/genetics
- Receptor, Serotonin, 5-HT2C/metabolism
- Receptors, AMPA/genetics
- Receptors, AMPA/metabolism
- Ribonucleoproteins, Small Nucleolar/metabolism
Collapse
Affiliation(s)
- Patrice Vitali
- Laboratoire de Biologie Moléculaire des Eucaryotes, Centre National de la Recherche Scientifique, UMR 5095, Institut Fédératif de Recherche 109, 31062 Cedex Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Erlacher MD, Lang K, Shankaran N, Wotzel B, Hüttenhofer A, Micura R, Mankin AS, Polacek N. Chemical engineering of the peptidyl transferase center reveals an important role of the 2'-hydroxyl group of A2451. Nucleic Acids Res 2005; 33:1618-27. [PMID: 15767286 PMCID: PMC1065261 DOI: 10.1093/nar/gki308] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The main enzymatic reaction of the large ribosomal subunit is peptide bond formation. Ribosome crystallography showed that A2451 of 23S rRNA makes the closest approach to the attacking amino group of aminoacyl-tRNA. Mutations of A2451 had relatively small effects on transpeptidation and failed to unequivocally identify the crucial functional group(s). Here, we employed an in vitro reconstitution system for chemical engineering the peptidyl transferase center by introducing non-natural nucleosides at position A2451. This allowed us to investigate the peptidyl transfer reaction performed by a ribosome that contained a modified nucleoside at the active site. The main finding is that ribosomes carrying a 2'-deoxyribose at A2451 showed a compromised peptidyl transferase activity. In variance, adenine base modifications and even the removal of the entire nucleobase at A2451 had only little impact on peptide bond formation, as long as the 2'-hydroxyl was present. This implicates a functional or structural role of the 2'-hydroxyl group at A2451 for transpeptidation.
Collapse
Affiliation(s)
| | - Kathrin Lang
- Center for Molecular Biosciences Innsbruck (CMBI), Institute of Organic Chemistry, Leopold Franzens UniversityInnrain 52a, 6020 Innsbruck, Austria
| | - Nisha Shankaran
- Center for Pharmaceutical Biotechnology—M/C 870, University of Illinois at Chicago900 S. Ashland Avenue, Chicago, IL 60607, USA
| | | | | | - Ronald Micura
- Center for Molecular Biosciences Innsbruck (CMBI), Institute of Organic Chemistry, Leopold Franzens UniversityInnrain 52a, 6020 Innsbruck, Austria
| | - Alexander S. Mankin
- Center for Pharmaceutical Biotechnology—M/C 870, University of Illinois at Chicago900 S. Ashland Avenue, Chicago, IL 60607, USA
| | - Norbert Polacek
- To whom correspondence should be addressed. Tel: +43 512 507 3384; Fax: +43 512 507 9880;
| |
Collapse
|