1
|
Hamze H, Jaafar M, Khreiss A, Dominique C, Bourdeaux J, Santo P, Méndez-Godoy A, Kressler D, Humbert O, Plisson-Chastang C, Albert B, Henras A, Henry Y. The snoRNP chaperone snR190 and the Npa1 complex form a macromolecular assembly required for 60S ribosomal subunit maturation. Nucleic Acids Res 2025; 53:gkaf134. [PMID: 40037705 PMCID: PMC11879421 DOI: 10.1093/nar/gkaf134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/01/2025] [Accepted: 02/12/2025] [Indexed: 03/06/2025] Open
Abstract
The early steps of large-ribosomal-subunit assembly feature among the least understood steps of ribosome synthesis in eukaryotes. In Saccharomyces cerevisiae, the box C/D chaperone small nucleolar ribonucleoprotein (snoRNP) snR190 and the Npa1 complex, composed of the α-solenoid scaffold proteins Npa1 and Npa2, the DEAD-box helicase Dbp6, the RNA-binding protein Nop8, and Rsa3, are likely involved in early 25S ribosomal RNA (rRNA) folding events. Here, we report for the first time the existence outside pre-ribosomal particles of an independent macromolecular assembly constituted by the Npa1 complex and the chaperone snoRNP snR190. Nop8 mediates the formation of this assembly and can associate on its own with free snR190 snoRNP. Moreover, Nop8 RNA Recognition Motif (RRM) helps tether the snR190 snoRNP to pre-ribosomal particles. The snR190 snoRNA features a specific central stem-loop structure, which is required for high-affinity binding between free snR190 snoRNP and the Npa1 complex. Deleting this extension does not prevent snR190 snoRNA association with pre-ribosomal particles but impairs snR190 activity in early pre-rRNA processing events. This work establishes the importance of association with auxiliary protein complexes for optimum snoRNP chaperone activity during rRNA folding events.
Collapse
Affiliation(s)
- Hussein Hamze
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Mariam Jaafar
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Ali Khreiss
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Carine Dominique
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Jessie Bourdeaux
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Paulo Espirito Santo
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Alfonso Méndez-Godoy
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Dieter Kressler
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Odile Humbert
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Célia Plisson-Chastang
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Benjamin Albert
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Anthony K Henras
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Yves Henry
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| |
Collapse
|
2
|
Bhutada P, Favre S, Jaafar M, Hafner J, Liesinger L, Unterweger S, Bischof K, Darnhofer B, Siva Sankar D, Rechberger G, Abou Merhi R, Lebaron S, Birner-Gruenberger R, Kressler D, Henras AK, Pertschy B. Rbp95 binds to 25S rRNA helix H95 and cooperates with the Npa1 complex during early pre-60S particle maturation. Nucleic Acids Res 2022; 50:10053-10077. [PMID: 36018804 PMCID: PMC9508819 DOI: 10.1093/nar/gkac724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Eukaryotic ribosome synthesis involves more than 200 assembly factors, which promote ribosomal RNA (rRNA) processing, modification and folding, and assembly of ribosomal proteins. The formation and maturation of the earliest pre-60S particles requires structural remodeling by the Npa1 complex, but is otherwise still poorly understood. Here, we introduce Rbp95 (Ycr016w), a constituent of early pre-60S particles, as a novel ribosome assembly factor. We show that Rbp95 is both genetically and physically linked to most Npa1 complex members and to ribosomal protein Rpl3. We demonstrate that Rbp95 is an RNA-binding protein containing two independent RNA-interacting domains. In vivo, Rbp95 associates with helix H95 in the 3′ region of the 25S rRNA, in close proximity to the binding sites of Npa1 and Rpl3. Additionally, Rbp95 interacts with several snoRNAs. The absence of Rbp95 results in alterations in the protein composition of early pre-60S particles. Moreover, combined mutation of Rbp95 and Npa1 complex members leads to a delay in the maturation of early pre-60S particles. We propose that Rbp95 acts together with the Npa1 complex during early pre-60S maturation, potentially by promoting pre-rRNA folding events within pre-60S particles.
Collapse
Affiliation(s)
- Priya Bhutada
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Sébastien Favre
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Mariam Jaafar
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France.,Genomic Stability and Biotherapy (GSBT) Laboratory, Faculty of Sciences, Rafik Hariri Campus, Lebanese University, Beirut, Lebanon
| | - Jutta Hafner
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Laura Liesinger
- BioTechMed-Graz, Graz, Austria.,Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Stefan Unterweger
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Karin Bischof
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Barbara Darnhofer
- BioTechMed-Graz, Graz, Austria.,Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Devanarayanan Siva Sankar
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Gerald Rechberger
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Raghida Abou Merhi
- Genomic Stability and Biotherapy (GSBT) Laboratory, Faculty of Sciences, Rafik Hariri Campus, Lebanese University, Beirut, Lebanon
| | - Simon Lebaron
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Ruth Birner-Gruenberger
- BioTechMed-Graz, Graz, Austria.,Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria.,Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9/E164, 1060 Vienna, Austria
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Anthony K Henras
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Brigitte Pertschy
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria.,BioTechMed-Graz, Graz, Austria
| |
Collapse
|
3
|
Ismail S, Flemming D, Thoms M, Gomes-Filho JV, Randau L, Beckmann R, Hurt E. Emergence of the primordial pre-60S from the 90S pre-ribosome. Cell Rep 2022; 39:110640. [PMID: 35385737 PMCID: PMC8994135 DOI: 10.1016/j.celrep.2022.110640] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/01/2022] [Accepted: 03/16/2022] [Indexed: 01/03/2023] Open
Abstract
Synthesis of ribosomes begins in the nucleolus with formation of the 90S pre-ribosome, during which the pre-40S and pre-60S pathways diverge by pre-rRNA cleavage. However, it remains unclear how, after this uncoupling, the earliest pre-60S subunit continues to develop. Here, we reveal a large-subunit intermediate at the beginning of its construction when still linked to the 90S, the precursor to the 40S subunit. This primordial pre-60S is characterized by the SPOUT domain methyltransferase Upa1-Upa2, large α-solenoid scaffolds, Mak5, one of several RNA helicases, and two small nucleolar RNA (snoRNAs), C/D box snR190 and H/ACA box snR37. The emerging pre-60S does not efficiently disconnect from the 90S pre-ribosome in a dominant mak5 helicase mutant, allowing a 70-nm 90S-pre-60S bipartite particle to be visualized by electron microscopy. Our study provides insight into the assembly pathway when the still-connected nascent 40S and 60S subunits are beginning to separate.
Collapse
Affiliation(s)
- Sherif Ismail
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Dirk Flemming
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Matthias Thoms
- Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | | | - Lennart Randau
- Philipps-Universität Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Roland Beckmann
- Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany.
| | - Ed Hurt
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| |
Collapse
|
4
|
Jaafar M, Contreras J, Dominique C, Martín-Villanueva S, Capeyrou R, Vitali P, Rodríguez-Galán O, Velasco C, Humbert O, Watkins NJ, Villalobo E, Bohnsack KE, Bohnsack MT, Henry Y, Merhi RA, de la Cruz J, Henras AK. Association of snR190 snoRNA chaperone with early pre-60S particles is regulated by the RNA helicase Dbp7 in yeast. Nat Commun 2021; 12:6153. [PMID: 34686656 PMCID: PMC8536666 DOI: 10.1038/s41467-021-26207-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Synthesis of eukaryotic ribosomes involves the assembly and maturation of precursor particles (pre-ribosomal particles) containing ribosomal RNA (rRNA) precursors, ribosomal proteins (RPs) and a plethora of assembly factors (AFs). Formation of the earliest precursors of the 60S ribosomal subunit (pre-60S r-particle) is among the least understood stages of ribosome biogenesis. It involves the Npa1 complex, a protein module suggested to play a key role in the early structuring of the pre-rRNA. Npa1 displays genetic interactions with the DExD-box protein Dbp7 and interacts physically with the snR190 box C/D snoRNA. We show here that snR190 functions as a snoRNA chaperone, which likely cooperates with the Npa1 complex to initiate compaction of the pre-rRNA in early pre-60S r-particles. We further show that Dbp7 regulates the dynamic base-pairing between snR190 and the pre-rRNA within the earliest pre-60S r-particles, thereby participating in structuring the peptidyl transferase center (PTC) of the large ribosomal subunit. The molecular events underlying the assembly and maturation of the early pre-60S particles during eukaryotic ribosome synthesis are not well understood. Here, the authors combine yeast genetics and biochemical experiments to characterise the functions of two important players of eukaryotic ribosome biogenesis, the box C/D snoRNP snR190 and the helicase Dbp7, which both interact. They show that the snR190 snoRNA acts as a RNA chaperone that assists the structuring of the 25S rRNA during the maturation of early pre-60S particles and that Dbp7 is important for facilitating remodeling events in the peptidyl transferase center region of the 25S rRNAs during the maturation of early pre-60S particles.
Collapse
Affiliation(s)
- Mariam Jaafar
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France.,Genomic Stability and Biotherapy (GSBT) Laboratory, Faculty of Sciences, Rafik Hariri Campus, Lebanese University, Beirut, Lebanon.,Cancer Research Center of Lyon (CRCL), 69 008, Lyon, France
| | - Julia Contreras
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Carine Dominique
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
| | - Régine Capeyrou
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Patrice Vitali
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Carmen Velasco
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.,Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Odile Humbert
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Nicholas J Watkins
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Eduardo Villalobo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.,Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, 37073, Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, 37073, Göttingen, Germany.,Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, 37077, Göttingen, Germany
| | - Yves Henry
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Raghida Abou Merhi
- Genomic Stability and Biotherapy (GSBT) Laboratory, Faculty of Sciences, Rafik Hariri Campus, Lebanese University, Beirut, Lebanon
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Anthony K Henras
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France.
| |
Collapse
|
5
|
Aquino GRR, Hackert P, Krogh N, Pan KT, Jaafar M, Henras AK, Nielsen H, Urlaub H, Bohnsack KE, Bohnsack MT. The RNA helicase Dbp7 promotes domain V/VI compaction and stabilization of inter-domain interactions during early 60S assembly. Nat Commun 2021; 12:6152. [PMID: 34686661 PMCID: PMC8536713 DOI: 10.1038/s41467-021-26208-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
Early pre-60S ribosomal particles are poorly characterized, highly dynamic complexes that undergo extensive rRNA folding and compaction concomitant with assembly of ribosomal proteins and exchange of assembly factors. Pre-60S particles contain numerous RNA helicases, which are likely regulators of accurate and efficient formation of appropriate rRNA structures. Here we reveal binding of the RNA helicase Dbp7 to domain V/VI of early pre-60S particles in yeast and show that in the absence of this protein, dissociation of the Npa1 scaffolding complex, release of the snR190 folding chaperone, recruitment of the A3 cluster factors and binding of the ribosomal protein uL3 are impaired. uL3 is critical for formation of the peptidyltransferase center (PTC) and is responsible for stabilizing interactions between the 5′ and 3′ ends of the 25S, an essential pre-requisite for subsequent pre-60S maturation events. Highlighting the importance of pre-ribosome remodeling by Dbp7, our data suggest that in the absence of Dbp7 or its catalytic activity, early pre-ribosomal particles are targeted for degradation. Early steps of large 60S ribosomal subunit biogenesis are not well understood. Here, the authors combine biochemical experiments with protein-RNA crosslinking and mass spectrometry to show that the RNA helicase Dbp7 is key player during early 60S ribosomal assembly. Dbp7 regulates a series of events driving compaction of domain V/VI in early pre60S ribosomal particles.
Collapse
Affiliation(s)
- Gerald Ryan R Aquino
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Philipp Hackert
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200N, Copenhagen, Denmark
| | - Kuan-Ting Pan
- Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry, 37077, Göttingen, Germany.,Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, 60590, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, 60596, Frankfurt am Main, Germany
| | - Mariam Jaafar
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Anthony K Henras
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200N, Copenhagen, Denmark.,Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Henning Urlaub
- Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry, 37077, Göttingen, Germany.,Institute for Clinical Chemistry, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany. .,Göttingen Centre for Molecular Biosciences, Georg-August-University, Justus-von-Liebig Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
6
|
Wang T, Li LY, Chen YF, Fu SW, Wu ZW, Du BB, Yang XF, Zhang WS, Hao XY, Guo TK. Ribosome assembly factor URB1 contributes to colorectal cancer proliferation through transcriptional activation of ATF4. Cancer Sci 2020; 112:101-116. [PMID: 32888357 PMCID: PMC7780016 DOI: 10.1111/cas.14643] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Ribosome assembly factor URB1 is essential for ribosome biogenesis. However, its latent role in cancer remains unclear. Analysis of The Cancer Genome Atlas database and clinical tissue microarray staining showed that URB1 expression was upregulated in colorectal cancer (CRC) and prominently related to clinicopathological characteristics. Silencing of URB1 hampered human CRC cell proliferation and growth in vitro and in vivo. Microarray screening, ingenuity pathway analysis, and JASPAR assessment indicated that activating transcription factor 4 (ATF4) and X‐box binding protein 1 (XBP1) are potential downstream targets of URB1 and could transcriptionally interact through direct binding. Silencing of URB1 significantly decreased ATF4 and cyclin A2 (CCNA2) expression in vivo and in vitro. Restoration of ATF4 effectively reversed the malignant proliferation phenotype of URB1‐silenced CRC cells. Dual‐luciferase reporter and ChIP assays indicated that XBP1 transcriptionally activated ATF4 by binding with its promoter region. X‐box binding protein 1 colocalized with ATF4 in the nuclei of RKO cells, and ATF4 mRNA expression was positively regulated by XBP1. This study shows that URB1 contributes to oncogenesis and CRC growth through XBP1‐mediated transcriptional activation of ATF4. Therefore, URB1 could be a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Tao Wang
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Lai-Yuan Li
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Yi-Feng Chen
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Si-Wu Fu
- The School of Medical College, Northwest Minzu University, Lanzhou, China
| | - Zhi-Wei Wu
- The School of Preclinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Bin-Bin Du
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Xiong-Fei Yang
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Wei-Sheng Zhang
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Xiang-Yong Hao
- Department of General Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Tian-Kang Guo
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of General Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| |
Collapse
|
7
|
Joret C, Capeyrou R, Belhabich-Baumas K, Plisson-Chastang C, Ghandour R, Humbert O, Fribourg S, Leulliot N, Lebaron S, Henras AK, Henry Y. The Npa1p complex chaperones the assembly of the earliest eukaryotic large ribosomal subunit precursor. PLoS Genet 2018; 14:e1007597. [PMID: 30169518 PMCID: PMC6136799 DOI: 10.1371/journal.pgen.1007597] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 09/13/2018] [Accepted: 07/30/2018] [Indexed: 11/18/2022] Open
Abstract
The early steps of the production of the large ribosomal subunit are probably the least understood stages of eukaryotic ribosome biogenesis. The first specific precursor to the yeast large ribosomal subunit, the first pre-60S particle, contains 30 assembly factors (AFs), including 8 RNA helicases. These helicases, presumed to drive conformational rearrangements, usually lack substrate specificity in vitro. The mechanisms by which they are targeted to their correct substrate within pre-ribosomal particles and their precise molecular roles remain largely unknown. We demonstrate that the Dbp6p helicase, essential for the normal accumulation of the first pre-60S pre-ribosomal particle in S. cerevisiae, associates with a complex of four AFs, namely Npa1p, Npa2p, Nop8p and Rsa3p, prior to their incorporation into the 90S pre-ribosomal particles. By tandem affinity purifications using yeast extracts depleted of one component of the complex, we show that Npa1p forms the backbone of the complex. We provide evidence that Npa1p and Npa2p directly bind Dbp6p and we demonstrate that Npa1p is essential for the insertion of the Dbp6p helicase within 90S pre-ribosomal particles. In addition, by an in vivo cross-linking analysis (CRAC), we map Npa1p rRNA binding sites on 25S rRNA adjacent to the root helices of the first and last secondary structure domains of 25S rRNA. This finding supports the notion that Npa1p and Dbp6p function in the formation and/or clustering of root helices of large subunit rRNAs which creates the core of the large ribosomal subunit RNA structure. Npa1p also crosslinks to snoRNAs involved in decoding center and peptidyl transferase center modifications and in the immediate vicinity of the binding sites of these snoRNAs on 25S rRNA. Our data suggest that the Dbp6p helicase and the Npa1p complex play key roles in the compaction of the central core of 25S rRNA and the control of snoRNA-pre-rRNA interactions. Ribosomes, the molecular machines synthesizing proteins, are composed of a small and large subunit, formed by the binding of numerous ribosomal proteins (RPs) to properly folded ribosomal RNAs (rRNAs). RP incorporation as well as processing and folding of rRNAs occur within a succession of pre-ribosomal particles. Formation of the initial pre-60S particle, the first precursor to the large ribosomal subunit, is the least understood step of ribosome biogenesis in eukaryotes. This pre-ribosomal particle contains several assembly factors (AFs), including RNA helicases believed to catalyse key conformational rearrangements. These helicases usually lack substrate specificity on their own. Here, we show that the Dbp6p helicase, a component of the first pre-60S particle and essential for its normal accumulation, associates with a complex of four AFs, including Npa1p. We demonstrate that Npa1p directly binds Dbp6p, forms the backbone of the complex and is required for the integration of Dbp6p within pre-ribosomal particles. We show that Npa1p binds to sequences forming the core of large subunit rRNAs as well as small nucleolar RNAs required for chemical modification of large subunit rRNAs. Altogether our results suggest that the Npa1p complex plays a crucial role in the chemical modification and folding of large subunit rRNAs.
Collapse
Affiliation(s)
- Clément Joret
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Régine Capeyrou
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Kamila Belhabich-Baumas
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Célia Plisson-Chastang
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Rabea Ghandour
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Odile Humbert
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Nicolas Leulliot
- Laboratoire de Cristallographie et RMN Biologiques, UMR CNRS 8015, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, Paris, France
| | - Simon Lebaron
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- * E-mail: (SL); (AKH); (YH)
| | - Anthony K. Henras
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- * E-mail: (SL); (AKH); (YH)
| | - Yves Henry
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- * E-mail: (SL); (AKH); (YH)
| |
Collapse
|
8
|
Varland S, Aksnes H, Kryuchkov F, Impens F, Van Haver D, Jonckheere V, Ziegler M, Gevaert K, Van Damme P, Arnesen T. N-terminal Acetylation Levels Are Maintained During Acetyl-CoA Deficiency in Saccharomyces cerevisiae. Mol Cell Proteomics 2018; 17:2309-2323. [PMID: 30150368 PMCID: PMC6283290 DOI: 10.1074/mcp.ra118.000982] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/22/2018] [Indexed: 12/17/2022] Open
Abstract
Nt-acetylation is a prevalent protein modification catalyzed by N-terminal acetyltransferases using acetyl-CoA as acetyl donor. Here, we performed a global analysis of Nt-acetylation in yeast following nutrient starvation. Contrary to histone acetylation, which is sensitive to acetyl-CoA levels, we demonstrate that Nt-acetylation remains largely unaffected to changes in cellular metabolism. We did, however, identify two protein groups that were differentially Nt-acetylated, one showing the same sensitivity to acetyl-CoA as histones. We propose that specific, rather than global, Nt-acetylation events are subject to metabolic regulation. N-terminal acetylation (Nt-acetylation) is a highly abundant protein modification in eukaryotes and impacts a wide range of cellular processes, including protein quality control and stress tolerance. Despite its prevalence, the mechanisms regulating Nt-acetylation are still nebulous. Here, we present the first global study of Nt-acetylation in yeast cells as they progress to stationary phase in response to nutrient starvation. Surprisingly, we found that yeast cells maintain their global Nt-acetylation levels upon nutrient depletion, despite a marked decrease in acetyl-CoA levels. We further observed two distinct sets of protein N termini that display differential and opposing Nt-acetylation behavior upon nutrient starvation, indicating a dynamic process. The first protein cluster was enriched for annotated N termini showing increased Nt-acetylation in stationary phase compared with exponential growth phase. The second protein cluster was conversely enriched for alternative nonannotated N termini (i.e. N termini indicative of shorter N-terminal proteoforms) and, like histones, showed reduced acetylation levels in stationary phase when acetyl-CoA levels were low. Notably, the degree of Nt-acetylation of Pcl8, a negative regulator of glycogen biosynthesis and two components of the pre-ribosome complex (Rsa3 and Rpl7a) increased during starvation. Moreover, the steady-state levels of these proteins were regulated both by starvation and NatA activity. In summary, this study represents the first comprehensive analysis of metabolic regulation of Nt-acetylation and reveals that specific, rather than global, Nt-acetylation events are subject to metabolic regulation.
Collapse
Affiliation(s)
- Sylvia Varland
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway; Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway; Donnelly Center for Cellular and Bio‡molecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.
| | - Henriette Aksnes
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway; Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway
| | - Fedor Kryuchkov
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium; VIB Proteomics Core, B-9000 Ghent, Belgium
| | - Delphi Van Haver
- VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium; VIB Proteomics Core, B-9000 Ghent, Belgium
| | - Veronique Jonckheere
- VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Mathias Ziegler
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway; Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Petra Van Damme
- Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium.
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway; Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway
| |
Collapse
|
9
|
Wang H, Wang K, Du Q, Wang Y, Fu Z, Guo Z, Kang D, Li WX, Tang J. Maize Urb2 protein is required for kernel development and vegetative growth by affecting pre-ribosomal RNA processing. THE NEW PHYTOLOGIST 2018; 218:1233-1246. [PMID: 29479724 DOI: 10.1111/nph.15057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
Ribosome biogenesis is a fundamental process in eukaryotic cells. Although Urb2 protein has been implicated in ribosome biogenesis in yeast, the Urb2 domain is loosely conserved between plants and yeast, and the function of Urb2 protein in plants remains unknown. Here, we isolated a maize mutant, designated as urb2, with defects in kernel development and vegetative growth. Positional cloning and transgenic analysis revealed that urb2 encodes an Urb2 domain-containing protein. Compared with the wild-type (WT), the urb2 mutant showed decreased ratios of 60S/40S and 80S/40S and increased ratios of polyribosomes. The pre-rRNA intermediates of 35/33S rRNA, P-A3 and 18S-A3 were significantly accumulated in the urb2 mutant. Transcriptome profiling of the urb2 mutant indicated that ZmUrb2 affects the expression of a number of ribosome-related genes. We further demonstrated that natural variations in ZmUrb2 are significantly associated with maize kernel length. The overall results indicate that, by affecting pre-rRNA processing, the Urb2 protein is required for ribosome biogenesis in maize.
Collapse
Affiliation(s)
- Hongqiu Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agriculture and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Kai Wang
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingguo Du
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yafei Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiyuan Fu
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhanyong Guo
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dingming Kang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agriculture and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wen-Xue Li
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
10
|
He J, Yang Y, Zhang J, Chen J, Wei X, He J, Luo L. Ribosome biogenesis protein Urb1 acts downstream of mTOR complex 1 to modulate digestive organ development in zebrafish. J Genet Genomics 2017; 44:567-576. [DOI: 10.1016/j.jgg.2017.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 12/23/2022]
|
11
|
Woolford JL, Baserga SJ. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 2013; 195:643-81. [PMID: 24190922 PMCID: PMC3813855 DOI: 10.1534/genetics.113.153197] [Citation(s) in RCA: 588] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/26/2013] [Indexed: 01/09/2023] Open
Abstract
Ribosomes are highly conserved ribonucleoprotein nanomachines that translate information in the genome to create the proteome in all cells. In yeast these complex particles contain four RNAs (>5400 nucleotides) and 79 different proteins. During the past 25 years, studies in yeast have led the way to understanding how these molecules are assembled into ribosomes in vivo. Assembly begins with transcription of ribosomal RNA in the nucleolus, where the RNA then undergoes complex pathways of folding, coupled with nucleotide modification, removal of spacer sequences, and binding to ribosomal proteins. More than 200 assembly factors and 76 small nucleolar RNAs transiently associate with assembling ribosomes, to enable their accurate and efficient construction. Following export of preribosomes from the nucleus to the cytoplasm, they undergo final stages of maturation before entering the pool of functioning ribosomes. Elaborate mechanisms exist to monitor the formation of correct structural and functional neighborhoods within ribosomes and to destroy preribosomes that fail to assemble properly. Studies of yeast ribosome biogenesis provide useful models for ribosomopathies, diseases in humans that result from failure to properly assemble ribosomes.
Collapse
Affiliation(s)
- John L. Woolford
- Department of Biological Sciences, Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Susan J. Baserga
- Molecular Biophysics and Biochemistry, Genetics and Therapeutic Radiology, Yale University, New Haven, Connecticut 06520-8024
| |
Collapse
|
12
|
Rodríguez-Galán O, García-Gómez JJ, de la Cruz J. Yeast and human RNA helicases involved in ribosome biogenesis: current status and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:775-90. [PMID: 23357782 DOI: 10.1016/j.bbagrm.2013.01.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 11/17/2022]
Abstract
Ribosome biogenesis is a fundamental process that is conserved in eukaryotes. Although spectacular progress has been made in understanding mammalian ribosome synthesis in recent years, by far, this process has still been best characterised in the yeast Saccharomyces cerevisiae. In yeast, besides the rRNAs, the ribosomal proteins and the 75 small nucleolar RNAs, more than 250 non-ribosomal proteins, generally referred to as trans-acting factors, are involved in ribosome biogenesis. These factors include nucleases, RNA modifying enzymes, ATPases, GTPases, kinases and RNA helicases. Altogether, they likely confer speed, accuracy and directionality to the ribosome synthesis process, however, the precise functions for most of them are still largely unknown. This review summarises our current knowledge on eukaryotic RNA helicases involved in ribosome biogenesis, particularly focusing on the most recent advances with respect to the molecular roles of these enzymes and their co-factors in yeast and human cells. This article is part of a Special Issue entitled: The Biology of RNA helicases-Modulation for life.
Collapse
|
13
|
Fernández-Pevida A, Rodríguez-Galán O, Díaz-Quintana A, Kressler D, de la Cruz J. Yeast ribosomal protein L40 assembles late into precursor 60 S ribosomes and is required for their cytoplasmic maturation. J Biol Chem 2012; 287:38390-407. [PMID: 22995916 DOI: 10.1074/jbc.m112.400564] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most ribosomal proteins play important roles in ribosome biogenesis and function. Here, we have examined the contribution of the essential ribosomal protein L40 in these processes in the yeast Saccharomyces cerevisiae. Deletion of either the RPL40A or RPL40B gene and in vivo depletion of L40 impair 60 S ribosomal subunit biogenesis. Polysome profile analyses reveal the accumulation of half-mers and a moderate reduction in free 60 S ribosomal subunits. Pulse-chase, Northern blotting, and primer extension analyses in the L40-depleted strain clearly indicate that L40 is not strictly required for the precursor rRNA (pre-rRNA) processing reactions but contributes to optimal 27 SB pre-rRNA maturation. Moreover, depletion of L40 hinders the nucleo-cytoplasmic export of pre-60 S ribosomal particles. Importantly, all these defects most likely appear as the direct consequence of impaired Nmd3 and Rlp24 release from cytoplasmic pre-60 S ribosomal subunits and their inefficient recycling back into the nucle(ol)us. In agreement, we show that hemagglutinin epitope-tagged L40A assembles in the cytoplasm into almost mature pre-60 S ribosomal particles. Finally, we have identified that the hemagglutinin epitope-tagged L40A confers resistance to sordarin, a translation inhibitor that impairs the function of eukaryotic elongation factor 2, whereas the rpl40a and rpl40b null mutants are hypersensitive to this antibiotic. We conclude that L40 is assembled at a very late stage into pre-60 S ribosomal subunits and that its incorporation into 60 S ribosomal subunits is a prerequisite for subunit joining and may ensure proper functioning of the translocation process.
Collapse
|
14
|
Martin R, Straub AU, Doebele C, Bohnsack MT. DExD/H-box RNA helicases in ribosome biogenesis. RNA Biol 2012; 10:4-18. [PMID: 22922795 DOI: 10.4161/rna.21879] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ribosome synthesis requires a multitude of cofactors, among them DExD/H-box RNA helicases. Bacterial RNA helicases involved in ribosome assembly are not essential, while eukaryotes strictly require multiple DExD/H-box proteins that are involved in the much more complex ribosome biogenesis pathway. Here, RNA helicases are thought to act in structural remodeling of the RNPs including the modulation of protein binding, and they are required for allowing access or the release of specific snoRNPs from pre-ribosomes. Interestingly, helicase action is modulated by specific cofactors that can regulate recruitment and enzymatic activity. This review summarizes the current knowledge and focuses on recent findings and open questions on RNA helicase function and regulation in ribosome synthesis.
Collapse
Affiliation(s)
- Roman Martin
- Centre for Biochemistry and Molecular Cell Biology, Göttingen University, Göttingen, Germany
| | | | | | | |
Collapse
|
15
|
Santos MCT, Goldfeder MB, Zanchin NIT, Oliveira CC. The essential nucleolar yeast protein Nop8p controls the exosome function during 60S ribosomal subunit maturation. PLoS One 2011; 6:e21686. [PMID: 21747919 PMCID: PMC3126838 DOI: 10.1371/journal.pone.0021686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 06/08/2011] [Indexed: 11/19/2022] Open
Abstract
The yeast nucleolar protein Nop8p has previously been shown to interact with Nip7p and to be required for 60S ribosomal subunit formation. Although depletion of Nop8p in yeast cells leads to premature degradation of rRNAs, the biochemical mechanism responsible for this phenotype is still not known. In this work, we show that the Nop8p amino-terminal region mediates interaction with the 5.8S rRNA, while its carboxyl-terminal portion interacts with Nip7p and can partially complement the growth defect of the conditional mutant strain Δnop8/GAL::NOP8. Interestingly, Nop8p mediates association of Nip7p to pre-ribosomal particles. Nop8p also interacts with the exosome subunit Rrp6p and inhibits the complex activity in vitro, suggesting that the decrease in 60S ribosomal subunit levels detected upon depletion of Nop8p may result from degradation of pre-rRNAs by the exosome. These results strongly indicate that Nop8p may control the exosome function during pre-rRNA processing.
Collapse
Affiliation(s)
- Marcia C. T. Santos
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Mauricio B. Goldfeder
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Nilson I. T. Zanchin
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, São Paulo, Brazil
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, São Paulo, Brazil
| | - Carla C. Oliveira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
16
|
Díaz de la Loza MDC, Gallardo M, García-Rubio ML, Izquierdo A, Herrero E, Aguilera A, Wellinger RE. Zim17/Tim15 links mitochondrial iron-sulfur cluster biosynthesis to nuclear genome stability. Nucleic Acids Res 2011; 39:6002-15. [PMID: 21511814 PMCID: PMC3152343 DOI: 10.1093/nar/gkr193] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Genomic instability is related to a wide-range of human diseases. Here, we show that mitochondrial iron–sulfur cluster biosynthesis is important for the maintenance of nuclear genome stability in Saccharomyces cerevisiae. Cells lacking the mitochondrial chaperone Zim17 (Tim15/Hep1), a component of the iron–sulfur biosynthesis machinery, have limited respiration activity, mimic the metabolic response to iron starvation and suffer a dramatic increase in nuclear genome recombination. Increased oxidative damage or deficient DNA repair do not account for the observed genomic hyperrecombination. Impaired cell-cycle progression and genetic interactions of ZIM17 with components of the RFC-like complex involved in mitotic checkpoints indicate that replicative stress causes hyperrecombination in zim17Δ mutants. Furthermore, nuclear accumulation of pre-ribosomal particles in zim17Δ mutants reinforces the importance of iron–sulfur clusters in normal ribosome biosynthesis. We propose that compromised ribosome biosynthesis and cell-cycle progression are interconnected, together contributing to replicative stress and nuclear genome instability in zim17Δ mutants.
Collapse
Affiliation(s)
- María Del Carmen Díaz de la Loza
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, Avd Américo Vespucio, 41092 Sevilla, Spain
| | | | | | | | | | | | | |
Collapse
|
17
|
A role for the universal Kae1/Qri7/YgjD (COG0533) family in tRNA modification. EMBO J 2011; 30:882-93. [PMID: 21285948 DOI: 10.1038/emboj.2010.363] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 12/21/2010] [Indexed: 11/09/2022] Open
Abstract
The YgjD/Kae1 family (COG0533) has been on the top-10 list of universally conserved proteins of unknown function for over 5 years. It has been linked to DNA maintenance in bacteria and mitochondria and transcription regulation and telomere homeostasis in eukaryotes, but its actual function has never been found. Based on a comparative genomic and structural analysis, we predicted this family was involved in the biosynthesis of N(6)-threonylcarbamoyl adenosine, a universal modification found at position 37 of tRNAs decoding ANN codons. This was confirmed as a yeast mutant lacking Kae1 is devoid of t(6)A. t(6)A(-) strains were also used to reveal that t(6)A has a critical role in initiation codon restriction to AUG and in restricting frameshifting at tandem ANN codons. We also showed that YaeZ, a YgjD paralog, is required for YgjD function in vivo in bacteria. This work lays the foundation for understanding the pleiotropic role of this universal protein family.
Collapse
|
18
|
Oeffinger M, Fatica A, Rout MP, Tollervey D. Yeast Rrp14p is required for ribosomal subunit synthesis and for correct positioning of the mitotic spindle during mitosis. Nucleic Acids Res 2007; 35:1354-66. [PMID: 17272295 PMCID: PMC1849896 DOI: 10.1093/nar/gkl824] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Here we report that Rrp14p/Ykl082p is associated with pre-60S particles and to a lesser extent with earlier 90S pre-ribosomes. Depletion of Rrp14p inhibited pre-rRNA synthesis on both the 40S and 60S synthesis pathways. Synthesis of the 20S precursor to the 18S rRNA was largely blocked, as was maturation of the 27SB pre-rRNA to the 5.8S and 25S rRNAs. Unexpectedly, Rrp14p-depleted cells also showed apparently specific cell-cycle defects. Following release from synchronization in S phase, Rrp14p-depleted cells uniformly arrested in metaphase with short mitotic spindles that were frequently incorrectly aligned with the site of bud formation. In the absence of Bub2p, which is required for the spindle orientation checkpoint, this metaphase arrest was not seen in Rrp14p-depleted cells, which then arrested with multiple buds, several SPBs and binucleate mother cells. These data suggest that Rrp14p may play some role in cell polarity and/or spindle positioning, in addition to its function in ribosome synthesis.
Collapse
Affiliation(s)
| | - Alessandro Fatica
- Wellcome Trust Centre for Cell Biology, University of EdinburghEdinburgh EH9 3JR, Scotland, UK
- Department of Genetics and Molecular Biology, University of Rome ‘La Sapienza’P. Aldo Moro, 5, 00185 Rome, Italy
| | - Michael P. Rout
- Rockefeller University, 1230 York AvenueNew York, NY10021, USA
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of EdinburghEdinburgh EH9 3JR, Scotland, UK
- To whom correspondence should be addressed. Tel: +44 131 650 7092; Fax: +44 131 650 7040;
| |
Collapse
|
19
|
Rosado IV, Dez C, Lebaron S, Caizergues-Ferrer M, Henry Y, de la Cruz J. Characterization of Saccharomyces cerevisiae Npa2p (Urb2p) reveals a low-molecular-mass complex containing Dbp6p, Npa1p (Urb1p), Nop8p, and Rsa3p involved in early steps of 60S ribosomal subunit biogenesis. Mol Cell Biol 2007; 27:1207-21. [PMID: 17145778 PMCID: PMC1800719 DOI: 10.1128/mcb.01523-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 10/08/2006] [Accepted: 11/24/2006] [Indexed: 11/20/2022] Open
Abstract
We report the characterization of the yeast Npa2p (Urb2p) protein, which is essential for 60S ribosomal subunit biogenesis. We identified this protein in a synthetic lethal screening with the rsa3 null allele. Rsa3p is a genetic partner of the putative RNA helicase Dbp6p. Mutation or depletion of Npa2p leads to a net deficit in 60S subunits and a decrease in the levels all 27S pre-rRNAs and mature 25S and 5.8S rRNAs. This is likely due to instability of early pre-60S particles. Consistent with a role of Npa2p in 60S subunit biogenesis, green fluorescent protein-tagged Npa2p localizes predominantly to the nucleolus and TAP-tagged Npa2p sediments with large complexes in sucrose gradients and is associated mainly with 27SA(2) pre-rRNA-containing preribosomal particles. In addition, we reveal a genetic synthetic interaction between Npa2p, several factors required for early steps of 60S subunit biogenesis (Dbp6p, Dbp7p, Dbp9p, Npa1p, Nop8p, and Rsa3p), and the 60S protein Rpl3p. Furthermore, coimmunoprecipitation and gel filtration analyses demonstrated that at least Npa2p, Dbp6p, Npa1p, Nop8p, and Rsa3p are present together in a subcomplex of low molecular mass whose integrity is independent of RNA. Our results support the idea that these five factors work in concert during the early steps of 60S subunit biogenesis.
Collapse
Affiliation(s)
- Iván V Rosado
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, E-41012 Seville, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Sekiguchi T, Hayano T, Yanagida M, Takahashi N, Nishimoto T. NOP132 is required for proper nucleolus localization of DEAD-box RNA helicase DDX47. Nucleic Acids Res 2006; 34:4593-608. [PMID: 16963496 PMCID: PMC1636366 DOI: 10.1093/nar/gkl603] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Previously, we described a novel nucleolar protein, NOP132, which interacts with the small GTP binding protein RRAG A. To elucidate the function of NOP132 in the nucleolus, we identified proteins that interact with NOP132 using mass spectrometric methods. NOP132 associated mainly with proteins involved in ribosome biogenesis and RNA metabolism, including the DEAD-box RNA helicase protein, DDX47, whose yeast homolog is Rrp3, which has roles in pre-rRNA processing. Immunoprecipitation of FLAG-tagged DDX47 co-precipitated rRNA precursors, as well as a number of proteins that are probably involved in ribosome biogenesis, implying that DDX47 plays a role in pre-rRNA processing. Introduction of NOP132 small interfering RNAs induced a ring-like localization of DDX47 in the nucleolus, suggesting that NOP132 is required for the appropriate localization of DDX47 within the nucleolus. We propose that NOP132 functions in the recruitment of pre-rRNA processing proteins, including DDX47, to the region where rRNA is transcribed within the nucleolus.
Collapse
Affiliation(s)
- Takeshi Sekiguchi
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | |
Collapse
|
21
|
de la Cruz J, Sanz-Martínez E, Remacha M. The essential WD-repeat protein Rsa4p is required for rRNA processing and intra-nuclear transport of 60S ribosomal subunits. Nucleic Acids Res 2005; 33:5728-39. [PMID: 16221974 PMCID: PMC1253832 DOI: 10.1093/nar/gki887] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2005] [Revised: 09/20/2005] [Accepted: 09/20/2005] [Indexed: 11/12/2022] Open
Abstract
We report the characterization of a novel factor, Rsa4p (Ycr072cp), which is essential for the synthesis of 60S ribosomal subunits. Rsa4p is a conserved WD-repeat protein that seems to localize in the nucleolus. In vivo depletion of Rsa4p results in a deficit of 60S ribosomal subunits and the appearance of half-mer polysomes. Northern hybridization and primer extension analyses of pre-rRNA and mature rRNAs show that depletion of Rsa4p leads to the accumulation of the 27S, 25.5S and 7S pre-rRNAs, resulting in a reduction of the mature 25S and 5.8S rRNAs. Pulse-chase analyses of pre-rRNA processing reveal that, at least, this is due to a strong delay in the maturation of 27S pre-rRNA intermediates to mature 25S rRNA. Furthermore, depletion of Rsa4p inhibited the release of the pre-60S ribosomal particles from the nucleolus to the nucleoplasm, as judged by the predominantly nucleolar accumulation of the large subunit Rpl25-eGFP reporter construct. We propose that Rsa4p associates early with pre-60S ribosomal particles and provides a platform of interaction for correct processing of rRNA precursors and nucleolar release of 60S ribosomal subunits.
Collapse
Affiliation(s)
- Jesús de la Cruz
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes, 6 Apartado 1095, E-41012 Sevilla, Spain.
| | | | | |
Collapse
|
22
|
De Marchis ML, Giorgi A, Schininà ME, Bozzoni I, Fatica A. Rrp15p, a novel component of pre-ribosomal particles required for 60S ribosome subunit maturation. RNA (NEW YORK, N.Y.) 2005; 11:495-502. [PMID: 15769876 PMCID: PMC1370738 DOI: 10.1261/rna.7200205] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In eukaryotes ribosome biogenesis required that rRNAs primary transcripts are assembled in pre-ribosomal particles and processed. Protein factors and pre-ribosomal complexes involved in this complex pathway are not completely depicted. The essential ORF YPR143W encodes in yeast for an uncharacterized protein product, named here Rrp15p. Cellular function of Rrp15p has not so far defined even if nucleolar location was referred. With the aim to define the possible role of this orphan gene, we performed TAP-tagging of Rrp15p and investigated its molecular association with known pre-ribosomal complexes. Comparative sucrose gradient sedimentation analyses of yeast lysates expressing the TAP-tagged Rrp15p, strongly indicated that this protein is a component of the pre-60S particles. Northern hybridization, primer extension and functional proteomics on TAP-affinity isolated complexes proved that Rrp15p predominately associated with pre-rRNAs and proteins previously characterized as components of early pre-60S ribosomal particles. Finally, depletion of Rrp15p inhibited the accumulation of 27S and 7S pre-rRNAs and 5.8S and 25S mature rRNA. These results provide the first indication that Rrp15p is a novel factor involved in the early maturation steps of the 60S subunits. Moreover, the identification of the protein kinase CK2 in the Rrp15p-containing pre-ribosomal particles here reported, sustains the link between ribosome synthesis and cell cycle progression.
Collapse
Affiliation(s)
- Maria Laura De Marchis
- Dipartimento di Genetica e Biologia Molecolare, Universita' di Roma "la Sapienza," P.le Aldo Moro 5, 00185, Rome, Italy
| | | | | | | | | |
Collapse
|
23
|
Current awareness on yeast. Yeast 2005; 22:71-8. [PMID: 15685779 DOI: 10.1002/yea.1157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|