1
|
Kao TL, Huang YC, Chen YH, Baumann P, Tseng CK. LARP3, LARP7, and MePCE are involved in the early stage of human telomerase RNA biogenesis. Nat Commun 2024; 15:5955. [PMID: 39009594 PMCID: PMC11250828 DOI: 10.1038/s41467-024-50422-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
Human telomerase assembly is a highly dynamic process. Using biochemical approaches, we find that LARP3 and LARP7/MePCE are involved in the early stage of human telomerase RNA (hTR) and that their binding to RNA is destabilized when the mature form is produced. LARP3 plays a negative role in preventing the processing of the 3'-extended long (exL) form and the binding of LARP7 and MePCE. Interestingly, the tertiary structure of the exL form prevents LARP3 binding and facilitates hTR biogenesis. Furthermore, low levels of LARP3 promote hTR maturation, increase telomerase activity, and elongate telomeres. LARP7 and MePCE depletion inhibits the conversion of the 3'-extended short (exS) form into mature hTR and the cytoplasmic accumulation of hTR, resulting in telomere shortening. Taken together our data suggest that LARP3 and LARP7/MePCE mediate the processing of hTR precursors and regulate the production of functional telomerase.
Collapse
Affiliation(s)
- Tsai-Ling Kao
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Cheng Huang
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Hsuan Chen
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Peter Baumann
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Chi-Kang Tseng
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Camara MB, Sobeh AM, Eichhorn CD. Progress in 7SK ribonucleoprotein structural biology. Front Mol Biosci 2023; 10:1154622. [PMID: 37051324 PMCID: PMC10083321 DOI: 10.3389/fmolb.2023.1154622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
The 7SK ribonucleoprotein (RNP) is a dynamic and multifunctional regulator of RNA Polymerase II (RNAPII) transcription in metazoa. Comprised of the non-coding 7SK RNA, core proteins, and numerous accessory proteins, the most well-known 7SK RNP function is the sequestration and inactivation of the positive transcription elongation factor b (P-TEFb). More recently, 7SK RNP has been shown to regulate RNAPII transcription through P-TEFb-independent pathways. Due to its fundamental role in cellular function, dysregulation has been linked with human diseases including cancers, heart disease, developmental disorders, and viral infection. Significant advances in 7SK RNP structural biology have improved our understanding of 7SK RNP assembly and function. Here, we review progress in understanding the structural basis of 7SK RNA folding, biogenesis, and RNP assembly.
Collapse
Affiliation(s)
- Momodou B. Camara
- Department of Chemistry, University of Nebraska, Lincoln, NE, United States
| | - Amr M. Sobeh
- Department of Chemistry, University of Nebraska, Lincoln, NE, United States
| | - Catherine D. Eichhorn
- Department of Chemistry, University of Nebraska, Lincoln, NE, United States
- Nebraska Center for Integrated Biomolecular Communication, Lincoln, NE, United States
- *Correspondence: Catherine D. Eichhorn,
| |
Collapse
|
3
|
Guo H, Cui Y, Huang L, Ge L, Xu X, Xue D, Tang M, Zheng J, Yi Y, Chen L. The RNA binding protein OsLa influences grain and anther development in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1397-1414. [PMID: 35322500 DOI: 10.1111/tpj.15746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/15/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
La proteins are found widely in eukaryotes and play a variety of vital roles. AtLa1 has been identified as an La protein that is necessary for embryogenesis in Arabidopsis; however, the existence and biological functions of La proteins in rice (Oryza sativa L.) remain unclear. In this study, we identified and characterized two La proteins in rice that are homologous to AtLa1 and named them OsLa1 and OsLa2. Both the OsLa1 and OsLa2 genes encode RNA-binding proteins with an La domain and two RNA-binding domains. Mutant OsLa1 reduced grain length and pollen fertility, whereas OsLa1 overexpression caused the opposite phenotypes. Further experiments indicated that OsLa1 modulates grain size by influencing cell expansion. Interestingly, mutant OsLa2 resulted in thin grains with decreased weight and a low seed-setting rate. We also found that OsLa1 interacted with OsLa2 and that both OsLa1 and OsLa2 interacted with OseIF6.1, a eukaryotic translation initiation factor involved in ribosome biogenesis. In addition, OsLa1 was able to bind to OseIF6.1 mRNA to modulate its expression. Complete OseIF6.1 knockout caused lethality and OseIF6.1/oseif6.1 heterozygous plants displayed low fertility and low seed setting. Together, our results enrich our knowledge of the role of La proteins in rice growth and development, as well as the relationship between La and eIF6 in rice.
Collapse
Affiliation(s)
- Hongming Guo
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yuchao Cui
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Linjuan Huang
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Li Ge
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiaorong Xu
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Danyang Xue
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Ming Tang
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Jingsheng Zheng
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yin Yi
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Liang Chen
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Basu R, Eichhorn CD, Cheng R, Peterson RD, Feigon J. Structure of S. pombe telomerase protein Pof8 C-terminal domain is an xRRM conserved among LARP7 proteins. RNA Biol 2020; 18:1181-1192. [PMID: 33131423 DOI: 10.1080/15476286.2020.1836891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
La-related proteins 7 (LARP7) are a class of RNA chaperones that bind the 3' ends of RNA and are constitutively associated with their specific target RNAs. In metazoa, Larp7 binds to the long non-coding 7SK RNA as a core component of the 7SK RNP, a major regulator of eukaryotic transcription. In the ciliate Tetrahymena the LARP7 protein p65 is a component of telomerase, an essential ribonucleoprotein complex that maintains the telomeric DNA at eukaryotic chromosome ends. p65 is important for the ordered assembly of telomerase RNA (TER) with telomerase reverse transcriptase. Unexpectedly, Schizosaccharomyces pombe Pof8 was recently identified as a LARP7 protein and a core component of fission yeast telomerase essential for biogenesis. LARP7 proteins have a conserved N-terminal La motif and RRM1 (La module) and C-terminal RRM2 with specific RNA substrate recognition attributed to RRM2, first structurally characterized in p65 as an atypical RRM named xRRM. Here we present the X-ray crystal structure and NMR studies of S. pombe Pof8 RRM2. Sequence and structure comparison of Pof8 RRM2 to p65 and human Larp7 xRRMs reveals conserved features for RNA binding with the main variability in the length of the non-canonical helix α3. This study shows that Pof8 has conserved xRRM features, providing insight into TER recognition and the defining characteristics of the xRRM.
Collapse
Affiliation(s)
- Ritwika Basu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Catherine D Eichhorn
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Ryan Cheng
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Robert D Peterson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Li X, Zhang N, Wu N, Li J, Yang J, Yu Y, Zheng J, Li X, Wang X, Gong P, Zhang X. Identification of GdRFC1 as a novel regulator of telomerase in Giardia duodenalis. Parasitol Res 2020; 119:1035-1041. [PMID: 32072328 DOI: 10.1007/s00436-020-06610-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 01/15/2020] [Indexed: 11/25/2022]
Abstract
Telomerase plays a crucial role in ageing and tumourigenesis. However, the regulatory network of its activity is complicated and not fully understood. In the present study, a yeast two-hybrid screen identified a homologue of human replication factor C subunit 1 (RFC1) as a novel interacting protein of Giardia duodenalis GdTRBD (Giardia duodenalis telomerase ribonucleoprotein complex RNA binding domain GdTRBD). This interaction was further verified via GST pull-down in vitro and co-immunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC) in vivo. We also found that GdRFC1 (Giardia duodenalis replication factor C subunit 1) only interacted with GdTRBD in one nucleus in Giardia duodenalis via a proximity ligation assay (PLA). We reasoned that the two nuclei might have significant heterogeneity in their functional activities during the trophozoite stage and that the two molecules might be involved in other unidentified functions in addition to telomerase activity. In addition, knockdown of GdRFC1 decreased telomerase activity. Collectively, our results indicate that GdRFC1 is a novel binding partner and positive regulator of telomerase in Giardia duodenalis.
Collapse
Affiliation(s)
- Xianhe Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Nan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
- The First Bethune Hospital, Jilin University, Changchun, 130021, China
| | - Na Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Jianhua Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Ju Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Yanhui Yu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Jingtong Zheng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Xin Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Xiaocen Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China.
| | - Xichen Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China.
| |
Collapse
|
6
|
Shan F, Mei S, Zhang J, Zhang X, Xu C, Liao S, Tu X. A telomerase subunit homolog La protein from
Trypanosoma brucei
plays an essential role in ribosomal biogenesis. FEBS J 2019; 286:3129-3147. [DOI: 10.1111/febs.14853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/23/2019] [Accepted: 04/13/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Fangzhen Shan
- Hefei National Laboratory for Physical Science at Microscale School of Life Science University of Science and Technology of China Hefei China
| | - Song Mei
- Key Laboratory of Tropical Forest Ecology Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Kunming China
| | - Jiahai Zhang
- Hefei National Laboratory for Physical Science at Microscale School of Life Science University of Science and Technology of China Hefei China
| | | | - Chao Xu
- Hefei National Laboratory for Physical Science at Microscale School of Life Science University of Science and Technology of China Hefei China
| | - Shanhui Liao
- Hefei National Laboratory for Physical Science at Microscale School of Life Science University of Science and Technology of China Hefei China
| | - Xiaoming Tu
- Hefei National Laboratory for Physical Science at Microscale School of Life Science University of Science and Technology of China Hefei China
| |
Collapse
|
7
|
Eichhorn CD, Yang Y, Repeta L, Feigon J. Structural basis for recognition of human 7SK long noncoding RNA by the La-related protein Larp7. Proc Natl Acad Sci U S A 2018; 115:E6457-E6466. [PMID: 29946027 PMCID: PMC6048529 DOI: 10.1073/pnas.1806276115] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The La and the La-related protein (LARP) superfamily is a diverse class of RNA binding proteins involved in RNA processing, folding, and function. Larp7 binds to the abundant long noncoding 7SK RNA and is required for 7SK ribonucleoprotein (RNP) assembly and function. The 7SK RNP sequesters a pool of the positive transcription elongation factor b (P-TEFb) in an inactive state; on release, P-TEFb phosphorylates RNA Polymerase II to stimulate transcription elongation. Despite its essential role in transcription, limited structural information is available for the 7SK RNP, particularly for protein-RNA interactions. Larp7 contains an N-terminal La module that binds UUU-3'OH and a C-terminal atypical RNA recognition motif (xRRM) required for specific binding to 7SK and P-TEFb assembly. Deletion of the xRRM is linked to gastric cancer in humans. We report the 2.2-Å X-ray crystal structure of the human La-related protein group 7 (hLarp7) xRRM bound to the 7SK stem-loop 4, revealing a unique binding interface. Contributions of observed interactions to binding affinity were investigated by mutagenesis and isothermal titration calorimetry. NMR 13C spin relaxation data and comparison of free xRRM, RNA, and xRRM-RNA structures show that the xRRM is preordered to bind a flexible loop 4. Combining structures of the hLarp7 La module and the xRRM-7SK complex presented here, we propose a structural model for Larp7 binding to the 7SK 3' end and mechanism for 7SK RNP assembly. This work provides insight into how this domain contributes to 7SK recognition and assembly of the core 7SK RNP.
Collapse
Affiliation(s)
- Catherine D Eichhorn
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569
| | - Yuan Yang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569
| | - Lucas Repeta
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569
| |
Collapse
|
8
|
Páez-Moscoso DJ, Pan L, Sigauke RF, Schroeder MR, Tang W, Baumann P. Pof8 is a La-related protein and a constitutive component of telomerase in fission yeast. Nat Commun 2018; 9:587. [PMID: 29422664 PMCID: PMC5805746 DOI: 10.1038/s41467-017-02284-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/17/2017] [Indexed: 01/06/2023] Open
Abstract
Telomerase reverse transcriptase (TERT) and the non-coding telomerase RNA subunit (TR) constitute the core of telomerase. Here we now report that the putative F-box protein Pof8 is also a constitutive component of active telomerase in fission yeast. Pof8 functions in a hierarchical assembly pathway by promoting the binding of the Lsm2-8 complex to telomerase RNA, which in turn promotes binding of the catalytic subunit. Loss of Pof8 reduces TER1 stability, causes a severe assembly defect, and results in critically short telomeres. Structure profile searches identified similarities between Pof8 and telomerase subunits from ciliated protozoa, making Pof8 next to TERT the most widely conserved telomerase subunits identified to date.
Collapse
Affiliation(s)
| | - Lili Pan
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | | | | | - Wen Tang
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.,RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Peter Baumann
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA. .,Howard Hughes Medical Institute, Kansas City, MO, 64110, USA. .,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, MO, 66160, USA. .,Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, 55099, Mainz, Germany.
| |
Collapse
|
9
|
Maraia RJ, Mattijssen S, Cruz-Gallardo I, Conte MR. The La and related RNA-binding proteins (LARPs): structures, functions, and evolving perspectives. WILEY INTERDISCIPLINARY REVIEWS. RNA 2017; 8:10.1002/wrna.1430. [PMID: 28782243 PMCID: PMC5647580 DOI: 10.1002/wrna.1430] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 01/02/2023]
Abstract
La was first identified as a polypeptide component of ribonucleic protein complexes targeted by antibodies in autoimmune patients and is now known to be a eukaryote cell-ubiquitous protein. Structure and function studies have shown that La binds to a common terminal motif, UUU-3'-OH, of nascent RNA polymerase III (RNAP III) transcripts and protects them from exonucleolytic decay. For precursor-tRNAs, the most diverse and abundant of these transcripts, La also functions as an RNA chaperone that helps to prevent their misfolding. Related to this, we review evidence that suggests that La and its link to RNAP III were significant in the great expansions of the tRNAomes that occurred in eukaryotes. Four families of La-related proteins (LARPs) emerged during eukaryotic evolution with specialized functions. We provide an overview of the high-resolution structural biology of La and LARPs. LARP7 family members most closely resemble La but function with a single RNAP III nuclear transcript, 7SK, or telomerase RNA. A cytoplasmic isoform of La protein as well as LARPs 6, 4, and 1 function in mRNA metabolism and translation in distinct but similar ways, sometimes with the poly(A)-binding protein, and in some cases by direct binding to poly(A)-RNA. New structures of LARP domains, some complexed with RNA, provide novel insights into the functional versatility of these proteins. We also consider LARPs in relation to ancestral La protein and potential retention of links to specific RNA-related pathways. One such link may be tRNA surveillance and codon usage by LARP-associated mRNAs. WIREs RNA 2017, 8:e1430. doi: 10.1002/wrna.1430 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Richard J. Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
- Commissioned Corps, U.S. Public Health Service, Rockville, MD USA
| | - Sandy Mattijssen
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Isabel Cruz-Gallardo
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK
| | - Maria R. Conte
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK
| |
Collapse
|
10
|
Küspert M, Murakawa Y, Schäffler K, Vanselow JT, Wolf E, Juranek S, Schlosser A, Landthaler M, Fischer U. LARP4B is an AU-rich sequence associated factor that promotes mRNA accumulation and translation. RNA (NEW YORK, N.Y.) 2015; 21:1294-305. [PMID: 26001795 PMCID: PMC4478348 DOI: 10.1261/rna.051441.115] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/02/2015] [Indexed: 05/23/2023]
Abstract
mRNAs are key molecules in gene expression and subject to diverse regulatory events. Regulation is accomplished by distinct sets of trans-acting factors that interact with mRNAs and form defined mRNA-protein complexes (mRNPs). The resulting "mRNP code" determines the fate of any given mRNA and thus controlling gene expression at the post-transcriptional level. The La-related protein 4B (LARP4B) belongs to an evolutionarily conserved family of RNA-binding proteins characterized by the presence of a La-module implicated in direct RNA binding. Biochemical experiments have shown previously direct interactions of LARP4B with factors of the translation machinery. This finding along with the observation of an association with actively translating ribosomes suggested that LARP4B is a factor contributing to the mRNP code. To gain insight into the function of LARP4B in vivo we tested its mRNA association at the transcriptome level and its impact on the proteome. PAR-CLIP analyses allowed us to identify the in vivo RNA targets of LARP4B. We show that LARP4B binds to a distinct set of cellular mRNAs by contacting their 3' UTRs. Biocomputational analysis combined with in vitro binding assays identified the LARP4B-binding motif on mRNA targets. The reduction of cellular LARP4B levels leads to a marked destabilization of its mRNA targets and consequently their reduced translation. Our data identify LARP4B as a component of the mRNP code that influences the expression of its mRNA targets by affecting their stability.
Collapse
Affiliation(s)
- Maritta Küspert
- Biozentrum Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | - Katrin Schäffler
- Biozentrum Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Jens T Vanselow
- Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg, D-97080 Würzburg, Germany
| | - Elmar Wolf
- Biozentrum Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Stefan Juranek
- Biozentrum Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Andreas Schlosser
- Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg, D-97080 Würzburg, Germany
| | | | - Utz Fischer
- Biozentrum Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg, D-97080 Würzburg, Germany Department of Radiation Medicine and Applied Sciences, University of California at San Diego, San Diego, California 92037, USA
| |
Collapse
|
11
|
Gardano L, Holland L, Oulton R, Le Bihan T, Harrington L. Native gel electrophoresis of human telomerase distinguishes active complexes with or without dyskerin. Nucleic Acids Res 2011; 40:e36. [PMID: 22187156 PMCID: PMC3300002 DOI: 10.1093/nar/gkr1243] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Telomeres, the ends of linear chromosomes, safeguard against genome instability. The enzyme responsible for extension of the telomere 3′ terminus is the ribonucleoprotein telomerase. Whereas telomerase activity can be reconstituted in vitro with only the telomerase RNA (hTR) and telomerase reverse transcriptase (TERT), additional components are required in vivo for enzyme assembly, stability and telomere extension activity. One such associated protein, dyskerin, promotes hTR stability in vivo and is the only component to co-purify with active, endogenous human telomerase. We used oligonucleotide-based affinity purification of hTR followed by native gel electrophoresis and in-gel telomerase activity detection to query the composition of telomerase at different purification stringencies. At low salt concentrations (0.1 M NaCl), affinity-purified telomerase was ‘supershifted’ with an anti-dyskerin antibody, however the association with dyskerin was lost after purification at 0.6 M NaCl, despite the retention of telomerase activity and a comparable yield of hTR. The interaction of purified hTR and dyskerin in vitro displayed a similar salt-sensitive interaction. These results demonstrate that endogenous human telomerase, once assembled and active, does not require dyskerin for catalytic activity. Native gel electrophoresis may prove useful in the characterization of telomerase complexes under various physiological conditions.
Collapse
Affiliation(s)
- Laura Gardano
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | | | | | | | | |
Collapse
|
12
|
Tetrahymena telomerase protein p65 induces conformational changes throughout telomerase RNA (TER) and rescues telomerase reverse transcriptase and TER assembly mutants. Mol Cell Biol 2010; 30:4965-76. [PMID: 20713447 DOI: 10.1128/mcb.00827-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The biogenesis of the Tetrahymena telomerase ribonucleoprotein particle (RNP) is enhanced by p65, a La family protein. Single-molecule and biochemical studies have uncovered a hierarchical assembly of the RNP, wherein the binding of p65 to stems I and IV of telomerase RNA (TER) causes a conformational change that facilitates the subsequent binding of telomerase reverse transcriptase (TERT) to TER. We used purified p65 and variants of TERT and TER to investigate the conformational rearrangements that occur during RNP assembly. Nuclease protection assays and mutational analysis revealed that p65 interacts with and stimulates conformational changes in regions of TER beyond stem IV. Several TER mutants exhibited telomerase activity only in the presence of p65, revealing the importance of p65 in promoting the correct RNP assembly pathway. In addition, p65 rescued TERT assembly mutants but not TERT activity mutants. Taken together, these results suggest that p65 stimulates telomerase assembly and activity in two ways. First, by sequestering stems I and IV, p65 limits the ensemble of structural conformations of TER, thereby presenting TERT with the active conformation of TER. Second, p65 acts as a molecular buttress within the assembled RNP, mutually stabilizing TER and TERT in catalytically active conformations.
Collapse
|
13
|
Schäffler K, Schulz K, Hirmer A, Wiesner J, Grimm M, Sickmann A, Fischer U. A stimulatory role for the La-related protein 4B in translation. RNA (NEW YORK, N.Y.) 2010; 16:1488-99. [PMID: 20573744 PMCID: PMC2905749 DOI: 10.1261/rna.2146910] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
La-related proteins (LARPs) belong to an evolutionarily conserved family of factors with predicted roles in RNA metabolism. Here, we have analyzed the cellular interactions and function of LARP4B, a thus far uncharacterized member of the LARP family. We show that LARP4B is a cytosolic protein that accumulates upon arsenite treatment in cellular stress granules. Biochemical experiments further uncovered an interaction of LARP4B with the cytosolic poly(A) binding protein 1 (PABPC1) and the receptor for activated C Kinase (RACK1), a component of the 40S ribosomal subunit. Under physiological conditions, LARP4B co-sedimented with polysomes in cellular extracts, suggesting a role in translation. In agreement with this notion, overexpression of LARP4B stimulated protein synthesis, whereas knockdown of the factor by RNA interference impaired translation of a large number of cellular mRNAs. In sum, we identified LARP4B as a stimulatory factor of translation. We speculate that LARP4B exerts its function by bridging mRNA factors of the 3' end with initiating ribosomes.
Collapse
Affiliation(s)
- Katrin Schäffler
- Department of Biochemistry, Theodor Boveri-Institute, University of Wuerzburg, Wuerzburg D-97074, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Bayfield MA, Yang R, Maraia RJ. Conserved and divergent features of the structure and function of La and La-related proteins (LARPs). BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:365-78. [PMID: 20138158 PMCID: PMC2860065 DOI: 10.1016/j.bbagrm.2010.01.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/08/2010] [Accepted: 01/27/2010] [Indexed: 12/19/2022]
Abstract
Genuine La proteins contain two RNA binding motifs, a La motif (LAM) followed by a RNA recognition motif (RRM), arranged in a unique way to bind RNA. These proteins interact with an extensive variety of cellular RNAs and exhibit activities in two broad categories: i) to promote the metabolism of nascent pol III transcripts, including precursor-tRNAs, by binding to their common, UUU-3'OH containing ends, and ii) to modulate the translation of certain mRNAs involving an unknown binding mechanism. Characterization of several La-RNA crystal structures as well as biochemical studies reveal insight into their unique two-motif domain architecture and how the LAM recognizes UUU-3'OH while the RRM binds other parts of a pre-tRNA. Recent studies of members of distinct families of conserved La-related proteins (LARPs) indicate that some of these harbor activity related to genuine La proteins, suggesting that their UUU-3'OH binding mode has been appropriated for the assembly and regulation of a specific snRNP (e.g., 7SK snRNP assembly by hLARP7/PIP7S). Analyses of other LARP family members suggest more diverged RNA binding modes and specialization for cytoplasmic mRNA-related functions. Thus it appears that while genuine La proteins exhibit broad general involvement in both snRNA-related and mRNA-related functions, different LARP families may have evolved specialized activities in either snRNA or mRNA-related functions. In this review, we summarize recent progress that has led to greater understanding of the structure and function of La proteins and their roles in tRNA processing and RNP assembly dynamics, as well as progress on the different LARPs.
Collapse
Affiliation(s)
- Mark A Bayfield
- Department of Biology, York University, Toronto, ON, Canada.
| | | | | |
Collapse
|
15
|
Xie M, Podlevsky JD, Qi X, Bley CJ, Chen JJL. A novel motif in telomerase reverse transcriptase regulates telomere repeat addition rate and processivity. Nucleic Acids Res 2009; 38:1982-96. [PMID: 20044353 PMCID: PMC2847249 DOI: 10.1093/nar/gkp1198] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Mingyi Xie
- Department of Chemistry & Biochemistry and School of Life Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Joshua D. Podlevsky
- Department of Chemistry & Biochemistry and School of Life Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Xiaodong Qi
- Department of Chemistry & Biochemistry and School of Life Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Christopher J. Bley
- Department of Chemistry & Biochemistry and School of Life Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Julian J.-L. Chen
- Department of Chemistry & Biochemistry and School of Life Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
- *To whom correspondence should be addressed. Tel: +1 480 965 3650; Fax: +1 480 965 2747;
| |
Collapse
|
16
|
Sekaran VG, Soares J, Jarstfer MB. Structures of telomerase subunits provide functional insights. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1190-201. [PMID: 19665593 DOI: 10.1016/j.bbapap.2009.07.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/09/2009] [Accepted: 07/28/2009] [Indexed: 01/14/2023]
Abstract
BACKGROUND Telomerase continues to generate substantial attention both because of its pivotal roles in cellular proliferation and aging and because of its unusual structure and mechanism. By replenishing telomeric DNA lost during the cell cycle, telomerase overcomes one of the many hurdles facing cellular immortalization. Functionally, telomerase is a reverse transcriptase, and it shares structural and mechanistic features with this class of nucleotide polymerases. Telomerase is a very unusual reverse transcriptase because it remains stably associated with its template and because it reverse transcribes multiple copies of its template onto a single primer in one reaction cycle. SCOPE OF REVIEW Here, we review recent findings that illuminate our understanding of telomerase. Even though the specific emphasis is on structure and mechanism, we also highlight new insights into the roles of telomerase in human biology. GENERAL SIGNIFICANCE Recent advances in the structural biology of telomerase, including high resolution structures of the catalytic subunit of a beetle telomerase and two domains of a ciliate telomerase catalytic subunit, provide new perspectives into telomerase biochemistry and reveal new puzzles.
Collapse
Affiliation(s)
- Vijay G Sekaran
- Division of Medicinal Chemistry and Natural Products, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
17
|
Bousquet-Antonelli C, Deragon JM. A comprehensive analysis of the La-motif protein superfamily. RNA (NEW YORK, N.Y.) 2009; 15:750-64. [PMID: 19299548 PMCID: PMC2673062 DOI: 10.1261/rna.1478709] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 01/22/2009] [Indexed: 05/24/2023]
Abstract
The extremely well-conserved La motif (LAM), in synergy with the immediately following RNA recognition motif (RRM), allows direct binding of the (genuine) La autoantigen to RNA polymerase III primary transcripts. This motif is not only found on La homologs, but also on La-related proteins (LARPs) of unrelated function. LARPs are widely found amongst eukaryotes and, although poorly characterized, appear to be RNA-binding proteins fulfilling crucial cellular functions. We searched the fully sequenced genomes of 83 eukaryotic species scattered along the tree of life for the presence of LAM-containing proteins. We observed that these proteins are absent from archaea and present in all eukaryotes (except protists from the Plasmodium genus), strongly suggesting that the LAM is an ancestral motif that emerged early after the archaea-eukarya radiation. A complete evolutionary and structural analysis of these proteins resulted in their classification into five families: the genuine La homologs and four LARP families. Unexpectedly, in each family a conserved domain representing either a classical RRM or an RRM-like motif immediately follows the LAM of most proteins. An evolutionary analysis of the LAM-RRM/RRM-L regions shows that these motifs co-evolved and should be used as a single entity to define the functional region of interaction of LARPs with their substrates. We also found two extremely well conserved motifs, named LSA and DM15, shared by LARP6 and LARP1 family members, respectively. We suggest that members of the same family are functional homologs and/or share a common molecular mode of action on different RNA baits.
Collapse
|
18
|
Nykamp K, Lee MH, Kimble J. C. elegans La-related protein, LARP-1, localizes to germline P bodies and attenuates Ras-MAPK signaling during oogenesis. RNA (NEW YORK, N.Y.) 2008; 14:1378-89. [PMID: 18515547 PMCID: PMC2441978 DOI: 10.1261/rna.1066008] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 04/16/2008] [Indexed: 05/09/2023]
Abstract
RNA regulators are critical for animal development, especially in the germ line where gene expression is often modulated by changes in mRNA stability, translation, and localization. In this paper, we focus on Caenorhabditis elegans LARP-1, a representative of one La-related protein (Larp) family found broadly among eukaryotes. LARP-1 possesses a signature La motif, which is an ancient RNA-binding domain, plus a second conserved motif, typical of LARP-1 homologs and therefore dubbed the LARP1 domain. LARP-1 appears to bind RNA in vitro via both the La motif and the LARP1 domain. larp-1 null mutants have an oogenesis defect reminiscent of hyperactive Ras-MAPK signaling; this defect is suppressed or enhanced by down- or up-regulating the Ras-MAPK pathway, respectively. Consistent with a role in down-regulating the Ras-MAPK pathway, larp-1 null mutants have higher than normal levels of selected pathway mRNAs and proteins. LARP-1 protein colocalizes with P bodies, which function in RNA degradation. We suggest that LARP-1 functions in P bodies to attenuate the abundance of conserved Ras-MAPK mRNAs. We also propose that the cluster of LARP-1 homologs may function generally to control the expression of key developmental regulators.
Collapse
Affiliation(s)
- Keith Nykamp
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
19
|
Rouda S, Skordalakes E. Structure of the RNA-binding domain of telomerase: implications for RNA recognition and binding. Structure 2008; 15:1403-12. [PMID: 17997966 DOI: 10.1016/j.str.2007.09.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Revised: 09/03/2007] [Accepted: 09/06/2007] [Indexed: 12/22/2022]
Abstract
Telomerase, a ribonucleoprotein complex, replicates the linear ends of eukaryotic chromosomes, thus taking care of the "end of replication problem." TERT contains an essential and universally conserved domain (TRBD) that makes extensive contacts with the RNA (TER) component of the holoenzyme, and this interaction is thought to facilitate TERT/TER assembly and repeat-addition processivity. Here, we present a high-resolution structure of TRBD from Tetrahymena thermophila. The nearly all-helical structure comprises a nucleic acid-binding fold suitable for TER binding. An extended pocket on the surface of the protein, formed by two conserved motifs (CP and T motifs) comprises TRBD's RNA-binding pocket. The width and the chemical nature of this pocket suggest that it binds both single- and double-stranded RNA, possibly stem I, and the template boundary element (TBE). Moreover, the structure provides clues into the role of this domain in TERT/TER stabilization and telomerase repeat-addition processivity.
Collapse
Affiliation(s)
- Susan Rouda
- Gene Expression and Regulation Program, The Wistar Institute, University of Pennsylvania, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
20
|
Abstract
The structure and integrity of telomeres are essential for genome stability. Telomere dysregulation can lead to cell death, cell senescence, or abnormal cell proliferation. The maintenance of telomere repeats in most eukaryotic organisms requires telomerase, which consists of a reverse transcriptase (RT) and an RNA template that dictates the synthesis of the G-rich strand of telomere terminal repeats. Structurally, telomerase reverse transcriptase (TERT) contains unique and variable N- and C-terminal extensions that flank a central RT-like domain. The enzymology of telomerase includes features that are both similar to and distinct from those characteristic of other RTs. Two distinguishing features of TERT are its stable association with the telomerase RNA and its ability to repetitively reverse transcribe the template segment of RNA. Here we discuss TERT structure and function; its regulation by RNA-DNA, TERT-DNA, TERT-RNA, TERT-TERT interactions, and TERT-associated proteins; and the relationship between telomerase enzymology and telomere maintenance.
Collapse
Affiliation(s)
- Chantal Autexier
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Quebec, Canada.
| | | |
Collapse
|
21
|
Zhang QS, Manche L, Xu RM, Krainer AR. hnRNP A1 associates with telomere ends and stimulates telomerase activity. RNA (NEW YORK, N.Y.) 2006; 12:1116-28. [PMID: 16603717 PMCID: PMC1464852 DOI: 10.1261/rna.58806] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Telomerase is a ribonucleoprotein enzyme complex that reverse-transcribes an integral RNA template to add short DNA repeats to the 3'-ends of telomeres. G-quadruplex structure in a DNA substrate can block its extension by telomerase. We have found that hnRNP A1--which was previously implicated in telomere length regulation--binds to both single-stranded and structured human telomeric repeats, and in the latter case, it disrupts their higher-order structure. Using an in vitro telomerase assay, we observed that depletion of hnRNP A/B proteins from 293 human embryonic kidney cell extracts dramatically reduced telomerase activity, which was fully recovered upon addition of purified recombinant hnRNP A1. This finding suggests that hnRNP A1 functions as an auxiliary, if not essential, factor of telomerase holoenzyme. We further show, using chromatin immunoprecipitation, that hnRNP A1 associates with human telomeres in vivo. We propose that hnRNP A1 stimulates telomere elongation through unwinding of a G-quadruplex or G-G hairpin structure formed at each translocation step.
Collapse
Affiliation(s)
- Qing-Shuo Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | |
Collapse
|
22
|
Abstract
Telomerase is a specialized reverse transcriptase, which catalyzes the addition of telomeric repeats to the 3' ends of linear chromosomes using its integral RNA subunit as the template. An active Tetrahymena thermophila telomerase complex can be reconstituted in vitro from two essential components, tTERT, the catalytic protein subunit, and tTR, the RNA subunit. While the sequence specificity of telomerase has been investigated using template sequence mutants, there is no information regarding its backbone specificity. To address this question, we engineered two mutant forms of the telomerase RNA subunit that contain DNA only in the templating region and used rabbit reticulocyte lysates to reconstitute telomerase activity with the chimeric tTRs. The resultant telomerase mutants were able to extend telomeric DNA primers, albeit with reduced efficiency compared to the wild type. The reduced activity is presumed to be a function of the nascent DNA-template duplex structure. Additionally, the DNA-dependent telomerase mutants were RNase-sensitive, confirming that nontemplate portions of tTR are critical for maintaining activity of the telomerase ribonucleoprotein complex even after it is assembled. The splint ligation approach that we outline will allow the generation of tTR mutants containing a variety of nucleotide analogues, facilitating more elaborate studies of the interactions between the telomerase template and active site.
Collapse
Affiliation(s)
- Jason D Legassie
- School of Pharmacy, Division of Medicinal Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-7360, USA
| | | |
Collapse
|
23
|
Prathapam R, Witkin KL, O'Connor CM, Collins K. A telomerase holoenzyme protein enhances telomerase RNA assembly with telomerase reverse transcriptase. Nat Struct Mol Biol 2005; 12:252-7. [PMID: 15696174 PMCID: PMC2913471 DOI: 10.1038/nsmb900] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 01/03/2005] [Indexed: 01/07/2023]
Abstract
Telomerase maintains the simple sequence repeats at chromosome ends, protecting cells from genomic rearrangement, proliferative senescence and death. The telomerase reverse transcriptase (TERT) and telomerase RNA (TER) alone can assemble into active enzyme in a heterologous cell extract, but the physiological process of telomerase biogenesis is more complex. The endogenous accumulation of Tetrahymena thermophila TERT and TER requires an additional telomerase holoenzyme protein, p65. Here, we reconstitute this cellular pathway for telomerase ribonucleoprotein biogenesis in vitro. We demonstrate that tandem RNA interaction domains in p65 recognize the sequence of the TER 3' stem. Notably, the p65-TER complex recruits TERT much more efficiently than does TER alone. Using bacterially expressed p65 and TERT polypeptides, we show that p65 enhances TERT-TER interaction by a mechanism involving a conserved bulge in the protein-bridging TER molecule. These findings reveal a pathway for telomerase holoenzyme biogenesis that preassembles TER for TERT recruitment.
Collapse
Affiliation(s)
- Ramadevi Prathapam
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
24
|
Rivera MA, Blackburn EH. Processive utilization of the human telomerase template: lack of a requirement for template switching. J Biol Chem 2004; 279:53770-81. [PMID: 15456773 DOI: 10.1074/jbc.m407768200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ribonucleoprotein telomerase is a specialized reverse transcriptase minimally composed of an RNA, TER, and a protein catalytic subunit, TERT. The TER and TERT subunits of telomerase associate to form a dimeric enzyme in several organisms, including human. A small portion of TER, the template domain, is used by telomerase for the synthesis of tandem repeats of telomeric DNA. We studied some of the requirements for processive template usage by human telomerase. A blunt-ended duplex DNA primer was not utilized by telomerase. With a duplex telomeric DNA primer, a single-stranded 3' overhang with a minimum length of approximately 6 bases was required for efficient priming activity. Large substitutions in the human TER templating domain did not abolish enzymatic activity, although insertion of two residues into this sequence reduced processivity, as did a template mutation that results in a mismatch between the template region used for copying DNA and the region used for alignment of the substrate primer. Finally, by using a complementary pair of catalytically inactive telomerase RNA pseudoknot mutants in combination with a marked template, we demonstrated that processive synthesis by an obligatory dimer of human telomerase does not require template switching. These results indicate that processive template usage by human telomerase, like that of Tetrahymena telomerase, is strongly dependent on the base identities in the template domain and that a dimeric human telomerase can processively utilize a single template.
Collapse
Affiliation(s)
- Melissa A Rivera
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143-2200, USA
| | | |
Collapse
|