1
|
Lomoschitz A, Meyer J, Guitart T, Krepl M, Lapouge K, Hayn C, Schweimer K, Simon B, Šponer J, Gebauer F, Hennig J. The Drosophila RNA binding protein Hrp48 binds a specific RNA sequence of the msl-2 mRNA 3' UTR to regulate translation. Biophys Chem 2025; 316:107346. [PMID: 39504588 DOI: 10.1016/j.bpc.2024.107346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/02/2024] [Accepted: 10/26/2024] [Indexed: 11/08/2024]
Abstract
Repression of msl-2 mRNA translation is essential for viability of Drosophila melanogaster females to prevent hypertranscription of both X chromosomes. This translational control event is coordinated by the female-specific protein Sex-lethal (Sxl) which recruits the RNA binding proteins Unr and Hrp48 to the 3' untranslated region (UTR) of the msl-2 transcript and represses translation initiation. The mechanism exerted by Hrp48 during translation repression and its interaction with msl-2 are not well understood. Here we investigate the RNA binding specificity and affinity of the tandem RNA recognition motifs of Hrp48. Using NMR spectroscopy, molecular dynamics simulations and isothermal titration calorimetry, we identified the exact region of msl-2 3' UTR recognized by Hrp48. Additional biophysical experiments and translation assays give further insights into complex formation of Hrp48, Unr, Sxl and RNA. Our results show that Hrp48 binds independent of Sxl and Unr downstream of the E and F binding sites of Sxl and Unr to msl-2.
Collapse
Affiliation(s)
- Andrea Lomoschitz
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Julia Meyer
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Department of Biochemistry IV - Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Tanit Guitart
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Karine Lapouge
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory Heidelberg, 69117 Heidelberg, Germany
| | - Clara Hayn
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Kristian Schweimer
- Department of Biochemistry IV - Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Bernd Simon
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Molecular Biology and Biophysics - University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc 783 71, Czech Republic
| | - Fátima Gebauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Janosch Hennig
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Department of Biochemistry IV - Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany.
| |
Collapse
|
2
|
Kakumani PK, Guitart T, Houle F, Harvey LM, Goyer B, Germain L, Gebauer F, Simard MJ. CSDE1 attenuates microRNA-mediated silencing of PMEPA1 in melanoma. Oncogene 2021; 40:3231-3244. [PMID: 33833398 DOI: 10.1038/s41388-021-01767-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
MicroRNAs and RNA-binding proteins (RBPs) primarily target the 3' UTR of mRNAs to control their translation and stability. However, their co-regulatory effects on specific mRNAs in physiology and disease are yet to be fully explored. CSDE1 is an RBP that promotes metastasis in melanoma and mechanisms underlying its oncogenic activities need to be completely defined. Here we report that CSDE1 interacts with specific miRNA-induced silencing complexes (miRISC) in melanoma. We find an association of CSDE1 with AGO2, the essential component of miRISC, which is facilitated by target mRNAs and depends on the first cold shock domain of CSDE1. Both CSDE1 and AGO2 bind to 3' UTR of PMEPA1. CSDE1 counters AGO2 binding, leading to an increase of PMEPA1 expression. We also identify a miRNA, miR-129-5p, that represses PMEPA1 expression in melanoma. Collectively, our results show that PMEPA1 promotes tumorigenic traits and that CSDE1 along with miR-129-5p/AGO2 miRISC act antagonistically to fine-tune PMEPA1 expression toward the progression of melanoma.
Collapse
Affiliation(s)
- Pavan Kumar Kakumani
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC, Canada.
- Université Laval Cancer Research Centre, Québec, QC, Canada.
| | - Tanit Guitart
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Francois Houle
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC, Canada
- Université Laval Cancer Research Centre, Québec, QC, Canada
| | - Louis-Mathieu Harvey
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC, Canada
- Université Laval Cancer Research Centre, Québec, QC, Canada
| | - Benjamin Goyer
- Centre de recherche du CHU de Québec-Université Laval (Axe Médecine Régénératrice) and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Département de chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Lucie Germain
- Centre de recherche du CHU de Québec-Université Laval (Axe Médecine Régénératrice) and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Département de chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Fátima Gebauer
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Martin J Simard
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC, Canada.
- Université Laval Cancer Research Centre, Québec, QC, Canada.
| |
Collapse
|
3
|
Hollmann NM, Jagtap PKA, Masiewicz P, Guitart T, Simon B, Provaznik J, Stein F, Haberkant P, Sweetapple LJ, Villacorta L, Mooijman D, Benes V, Savitski MM, Gebauer F, Hennig J. Pseudo-RNA-Binding Domains Mediate RNA Structure Specificity in Upstream of N-Ras. Cell Rep 2020; 32:107930. [PMID: 32697992 PMCID: PMC7383231 DOI: 10.1016/j.celrep.2020.107930] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/03/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
RNA-binding proteins (RBPs) commonly feature multiple RNA-binding domains (RBDs), which provide these proteins with a modular architecture. Accumulating evidence supports that RBP architectural modularity and adaptability define the specificity of their interactions with RNA. However, how multiple RBDs recognize their cognate single-stranded RNA (ssRNA) sequences in concert remains poorly understood. Here, we use Upstream of N-Ras (Unr) as a model system to address this question. Although reported to contain five ssRNA-binding cold-shock domains (CSDs), we demonstrate that Unr includes an additional four CSDs that do not bind RNA (pseudo-RBDs) but are involved in mediating RNA tertiary structure specificity by reducing the conformational heterogeneity of Unr. Disrupting the interactions between canonical and non-canonical CSDs impacts RNA binding, Unr-mediated translation regulation, and the Unr-dependent RNA interactome. Taken together, our studies reveal a new paradigm in protein-RNA recognition, where interactions between RBDs and pseudo-RBDs select RNA tertiary structures, influence RNP assembly, and define target specificity.
Collapse
Affiliation(s)
- Nele Merret Hollmann
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | | | - Pawel Masiewicz
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Tanit Guitart
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Bernd Simon
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Jan Provaznik
- Genomics Core Facility, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Per Haberkant
- Proteomics Core Facility, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Lara Jayne Sweetapple
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Laura Villacorta
- Genomics Core Facility, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Dylan Mooijman
- Developmental Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Mikhail M Savitski
- Proteomics Core Facility, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Fátima Gebauer
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Janosch Hennig
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
4
|
Kakumani PK, Harvey LM, Houle F, Guitart T, Gebauer F, Simard MJ. CSDE1 controls gene expression through the miRNA-mediated decay machinery. Life Sci Alliance 2020; 3:e201900632. [PMID: 32161113 PMCID: PMC7067469 DOI: 10.26508/lsa.201900632] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
In animals, miRNAs are the most prevalent small non-coding RNA molecules controlling posttranscriptional gene regulation. The Argonaute proteins (AGO) mediate miRNA-guided gene silencing by recruiting multiple factors involved in translational repression, deadenylation, and decapping. Here, we report that CSDE1, an RNA-binding protein linked to stem cell maintenance and metastasis in cancer, interacts with AGO2 within miRNA-induced silencing complex and mediates gene silencing through its N-terminal domains. We show that CSDE1 interacts with LSM14A, a constituent of P-body assembly and further associates to the DCP1-DCP2 decapping complex, suggesting that CSDE1 could promote the decay of miRNA-induced silencing complex-targeted mRNAs. Together, our findings uncover a hitherto unknown mechanism used by CSDE1 in the control of gene expression mediated by the miRNA pathway.
Collapse
Affiliation(s)
- Pavan Kumar Kakumani
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, L'Hôtel-Dieu de Québec, Québec City, Canada
- Laval University Cancer Research Centre, Québec City, Canada
| | - Louis-Mathieu Harvey
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, L'Hôtel-Dieu de Québec, Québec City, Canada
- Laval University Cancer Research Centre, Québec City, Canada
| | - François Houle
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, L'Hôtel-Dieu de Québec, Québec City, Canada
- Laval University Cancer Research Centre, Québec City, Canada
| | - Tanit Guitart
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Fátima Gebauer
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Martin J Simard
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, L'Hôtel-Dieu de Québec, Québec City, Canada
- Laval University Cancer Research Centre, Québec City, Canada
| |
Collapse
|
5
|
Moore KS, von Lindern M. RNA Binding Proteins and Regulation of mRNA Translation in Erythropoiesis. Front Physiol 2018; 9:910. [PMID: 30087616 PMCID: PMC6066521 DOI: 10.3389/fphys.2018.00910] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022] Open
Abstract
Control of gene expression in erythropoiesis has to respond to signals that may emerge from intracellular processes or environmental factors. Control of mRNA translation allows for relatively rapid modulation of protein synthesis from the existing transcriptome. For instance, the protein synthesis rate needs to be reduced when reactive oxygen species or unfolded proteins accumulate in the cells, but also when iron supply is low or when growth factors are lacking in the environment. In addition, regulation of mRNA translation can be important as an additional layer of control on top of gene transcription, in which RNA binding proteins (RBPs) can modify translation of a set of transcripts to the cell’s actual protein requirement. The 5′ and 3′ untranslated regions of mRNA (5′UTR, 3′UTR) contain binding sites for general and sequence specific translation factors. They also contain secondary structures that may hamper scanning of the 5′UTR by translation complexes or may help to recruit translation factors. In addition, the term 5′UTR is not fully correct because many transcripts contain small open reading frames in their 5′UTR that are translated and contribute to regulation of mRNA translation. It is becoming increasingly clear that the transcriptome only partly predicts the proteome. The aim of this review is (i) to summarize how the availability of general translation initiation factors can selectively regulate transcripts because the 5′UTR contains secondary structures or short translated sequences, (ii) to discuss mechanisms that control the length of the mRNA poly(A) tail in relation to mRNA translation, and (iii) to give examples of sequence specific RBPs and their targets. We focused on transcripts and RBPs required for erythropoiesis. Whereas differentiation of erythroblasts to erythrocytes is orchestrated by erythroid transcription factors, the production of erythrocytes needs to respond to the availability of growth factors and nutrients, particularly the availability of iron.
Collapse
Affiliation(s)
- Kat S Moore
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, Netherlands
| | - Marieke von Lindern
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
6
|
Moschall R, Strauss D, García-Beyaert M, Gebauer F, Medenbach J. Drosophila Sister-of-Sex-lethal is a repressor of translation. RNA (NEW YORK, N.Y.) 2018; 24:149-158. [PMID: 29089381 PMCID: PMC5769743 DOI: 10.1261/rna.063776.117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
The RNA-binding protein Sex-lethal (Sxl) is an important post-transcriptional regulator of sex determination and dosage compensation in female Drosophila To prevent the assembly of the MSL dosage compensation complex in female flies, Sxl acts as a repressor of male-specific lethal-2 (msl-2) mRNA translation. It uses two distinct and mutually reinforcing blocks to translation that operate on the 5' and 3' untranslated regions (UTRs) of msl-2 mRNA, respectively. While 5' UTR-mediated translational control involves an upstream open reading frame, 3' UTR-mediated regulation strictly requires the co-repressor protein Upstream of N-ras (Unr), which is recruited to the transcript by Sxl. We have identified the protein Sister-of-Sex-lethal (Ssx) as a novel repressor of translation with Sxl-like activity. Both proteins have a comparable RNA-binding specificity and can associate with uracil-rich RNA regulatory elements present in msl-2 mRNA. Moreover, both repress translation when bound to the 5' UTR of msl-2 However, Ssx is inactive in 3' UTR-mediated regulation, as it cannot engage the co-repressor protein Unr. The difference in activity maps to the first RNA-recognition motif (RRM) of Ssx. Conversion of three amino acids within this domain into their Sxl counterpart results in a gain of function and repression via the 3' UTR, allowing detailed insights into the evolutionary origin of the two proteins and into the molecular requirements of an important translation regulatory pathway.
Collapse
Affiliation(s)
- Rebecca Moschall
- Institute of Biochemistry I, University of Regensburg, D-93053 Regensburg, Germany
| | - Daniela Strauss
- Institute of Biochemistry I, University of Regensburg, D-93053 Regensburg, Germany
| | - Marina García-Beyaert
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Fátima Gebauer
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Jan Medenbach
- Institute of Biochemistry I, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
7
|
Moschall R, Gaik M, Medenbach J. Promiscuity in post-transcriptional control of gene expression: Drosophila sex-lethal and its regulatory partnerships. FEBS Lett 2017; 591:1471-1488. [PMID: 28391641 PMCID: PMC5488161 DOI: 10.1002/1873-3468.12652] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/08/2017] [Accepted: 04/04/2017] [Indexed: 12/28/2022]
Abstract
The Drosophila RNA‐binding protein Sex‐lethal (Sxl) is a potent post‐transcriptional regulator of gene expression that controls female development. It regulates the expression of key factors involved in sex‐specific differences in morphology, behavior, and dosage compensation. Functional Sxl protein is only expressed in female flies, where it binds to U‐rich RNA motifs present in its target mRNAs to regulate their fate. Sxl is a very versatile regulator that, by shuttling between the nucleus and the cytoplasm, can regulate almost all aspects of post‐transcriptional gene expression including RNA processing, nuclear export, and translation. For these functions, Sxl employs multiple interactions to either antagonize RNA‐processing factors or to recruit various coregulators, thus allowing it to establish a female‐specific gene expression pattern. Here, we summarize the current knowledge about Sxl function and review recent mechanistic and structural studies that further our understanding of how such a seemingly ‘simple’ RNA‐binding protein can exert this plethora of different functions.
Collapse
Affiliation(s)
| | - Monika Gaik
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Medenbach
- Institute of Biochemistry I, University of Regensburg, Germany
| |
Collapse
|
8
|
Dashti ZJS, Gamieldien J, Christoffels A. Computational characterization of Iron metabolism in the Tsetse disease vector, Glossina morsitans: IRE stem-loops. BMC Genomics 2016; 17:561. [PMID: 27503259 PMCID: PMC4977773 DOI: 10.1186/s12864-016-2932-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/12/2016] [Indexed: 11/29/2022] Open
Abstract
Background Iron metabolism and regulation is an indispensable part of species survival, most importantly for blood feeding insects. Iron regulatory proteins are central regulators of iron homeostasis, whose binding to iron response element (IRE) stem-loop structures within the UTRs of genes regulate expression at the post-transcriptional level. Despite the extensive literature on the mechanism of iron regulation in human, less attention has been given to insect and more specifically the blood feeding insects, where research has mainly focused on the characterization of ferritin and transferrin. We thus, examined the mechanism of iron homeostasis through a genome-wide computational identification of IREs and other enriched motifs in the UTRs of Glossina morsitans with the view to identify new IRE-regulated genes. Results We identified 150 genes, of which two are known to contain IREs, namely the ferritin heavy chain and the MRCK-alpha. The remainder of the identified genes is considered novel including 20 hypothetical proteins, for which an iron-regulatory mechanism of action was inferred. Forty-three genes were found with IRE-signatures of regulation in two or more insects, while 46 were only found to be IRE-regulated in two species. Notably 39 % of the identified genes exclusively shared IRE-signatures in other Glossina species, which are potentially Glossina-specific adaptive measures in addressing its unique reproductive biology and blood meal-induced iron overload. In line with previous findings, we found no evidence pertaining to an IRE regulation of Transferrin, which highlight the importance of ferritin heavy chain and the other proposed transporters in the tsetse fly. In the context of iron-sequestration, key players of tsetse immune defence against trypanosomes have been introduced namely 14 stress and immune response genes, while 28 cell-envelop, transport, and binding genes were assigned a putative role in iron trafficking. Additionally, we identified and annotated enriched motifs in the UTRs of the putative IRE-regulated genes to derive at a co-regulatory network that maintains iron homeostasis in tsetse flies. Three putative microRNA-binding sites namely Gy-box, Brd-box and K-box motifs were identified among the regulatory motifs, enriched in the UTRs of the putative IRE-regulated genes. Conclusion Beyond our current view of iron metabolism in insects, with ferritin and transferrin as its key players, this study provides a comprehensive catalogue of genes with possible roles in the acquisition; transport and storage of iron hence iron homeostasis in the tsetse fly. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2932-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zahra Jalali Sefid Dashti
- South African Medical Research Council Bioinformatics Unit, The South African National Bioinformatics Institute (SANBI), University of the Western Cape, Robert Sobukwe Street, Bellville, South Africa
| | - Junaid Gamieldien
- South African Medical Research Council Bioinformatics Unit, The South African National Bioinformatics Institute (SANBI), University of the Western Cape, Robert Sobukwe Street, Bellville, South Africa
| | - Alan Christoffels
- South African Medical Research Council Bioinformatics Unit, The South African National Bioinformatics Institute (SANBI), University of the Western Cape, Robert Sobukwe Street, Bellville, South Africa.
| |
Collapse
|
9
|
Cooperativity in RNA–protein interactions: the complex is more than the sum of its partners. Curr Opin Neurobiol 2016; 39:146-51. [DOI: 10.1016/j.conb.2016.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 12/13/2022]
|
10
|
Stimulation of translation by human Unr requires cold shock domains 2 and 4, and correlates with poly(A) binding protein interaction. Sci Rep 2016; 6:22461. [PMID: 26936655 PMCID: PMC4776140 DOI: 10.1038/srep22461] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/11/2016] [Indexed: 11/09/2022] Open
Abstract
The RNA binding protein Unr, which contains five cold shock domains, has several specific roles in post-transcriptional control of gene expression. It can act as an activator or inhibitor of translation initiation, promote mRNA turnover, or stabilise mRNA. Its role depends on the mRNA and other proteins to which it binds, which includes cytoplasmic poly(A) binding protein 1 (PABP1). Since PABP1 binds to all polyadenylated mRNAs, and is involved in translation initiation by interaction with eukaryotic translation initiation factor 4G (eIF4G), we investigated whether Unr has a general role in translational control. We found that Unr strongly stimulates translation in vitro, and mutation of cold shock domains 2 or 4 inhibited its translation activity. The ability of Unr and its mutants to stimulate translation correlated with its ability to bind RNA, and to interact with PABP1. We found that Unr stimulated the binding of PABP1 to mRNA, and that Unr was required for the stable interaction of PABP1 and eIF4G in cells. siRNA-mediated knockdown of Unr reduced the overall level of cellular translation in cells, as well as that of cap-dependent and IRES-dependent reporters. These data describe a novel role for Unr in regulating cellular gene expression.
Collapse
|
11
|
Hennig J, Militti C, Popowicz GM, Wang I, Sonntag M, Geerlof A, Gabel F, Gebauer F, Sattler M. Structural basis for the assembly of the Sxl–Unr translation regulatory complex. Nature 2014; 515:287-90. [DOI: 10.1038/nature13693] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 07/16/2014] [Indexed: 01/16/2023]
|
12
|
Hennig J, Wang I, Sonntag M, Gabel F, Sattler M. Combining NMR and small angle X-ray and neutron scattering in the structural analysis of a ternary protein-RNA complex. JOURNAL OF BIOMOLECULAR NMR 2013; 56:17-30. [PMID: 23456097 DOI: 10.1007/s10858-013-9719-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 02/19/2013] [Indexed: 05/12/2023]
Abstract
Many processes in the regulation of gene expression and signaling involve the formation of protein complexes involving multi-domain proteins. Individual domains that mediate protein-protein and protein-nucleic acid interactions are typically connected by flexible linkers, which contribute to conformational dynamics and enable the formation of complexes with distinct binding partners. Solution techniques are therefore required for structural analysis and to characterize potential conformational dynamics. Nuclear magnetic resonance spectroscopy (NMR) provides such information but often only sparse data are obtained with increasing molecular weight of the complexes. It is therefore beneficial to combine NMR data with additional structural restraints from complementary solution techniques. Small angle X-ray/neutron scattering (SAXS/SANS) data can be efficiently combined with NMR-derived information, either for validation or by providing additional restraints for structural analysis. Here, we show that the combination of SAXS and SANS data can help to refine structural models obtained from data-driven docking using HADDOCK based on sparse NMR data. The approach is demonstrated with the ternary protein-protein-RNA complex involving two RNA recognition motif (RRM) domains of Sex-lethal, the N-terminal cold shock domain of Upstream-to-N-Ras, and msl-2 mRNA. Based on chemical shift perturbations we have mapped protein-protein and protein-RNA interfaces and complemented this NMR-derived information with SAXS data, as well as SANS measurements on subunit-selectively deuterated samples of the ternary complex. Our results show that, while the use of SAXS data is beneficial, the additional combination with contrast variation in SANS data resolves remaining ambiguities and improves the docking based on chemical shift perturbations of the ternary protein-RNA complex.
Collapse
Affiliation(s)
- Janosch Hennig
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | | | | | | | | |
Collapse
|
13
|
Abstract
The regulation of mRNA translation is a major checkpoint in the flux of information from the transcriptome to the proteome. Critical for translational control are the trans-acting factors, RNA-binding proteins (RBPs) and small RNAs that bind to the mRNA and modify its translatability. This review summarizes the mechanisms by which RBPs regulate mRNA translation, with special focus on those binding to the 3′-untranslated region. It also discusses how recent high-throughput technologies are revealing exquisite layers of complexity and are helping to untangle translational regulation at a genome-wide scale.
Collapse
|
14
|
Before It Gets Started: Regulating Translation at the 5' UTR. Comp Funct Genomics 2012; 2012:475731. [PMID: 22693426 PMCID: PMC3368165 DOI: 10.1155/2012/475731] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 02/22/2012] [Accepted: 03/11/2012] [Indexed: 12/21/2022] Open
Abstract
Translation regulation plays important roles in both normal physiological conditions and diseases states. This regulation requires cis-regulatory elements located mostly in 5' and 3' UTRs and trans-regulatory factors (e.g., RNA binding proteins (RBPs)) which recognize specific RNA features and interact with the translation machinery to modulate its activity. In this paper, we discuss important aspects of 5' UTR-mediated regulation by providing an overview of the characteristics and the function of the main elements present in this region, like uORF (upstream open reading frame), secondary structures, and RBPs binding motifs and different mechanisms of translation regulation and the impact they have on gene expression and human health when deregulated.
Collapse
|
15
|
Mihailovich M, Wurth L, Zambelli F, Abaza I, Militti C, Mancuso FM, Roma G, Pavesi G, Gebauer F. Widespread generation of alternative UTRs contributes to sex-specific RNA binding by UNR. RNA (NEW YORK, N.Y.) 2012; 18:53-64. [PMID: 22101243 PMCID: PMC3261744 DOI: 10.1261/rna.029603.111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 10/03/2011] [Indexed: 05/31/2023]
Abstract
Upstream of N-ras (UNR) is a conserved RNA-binding protein that regulates mRNA translation and stability by binding to sites generally located in untranslated regions (UTRs). In Drosophila, sex-specific binding of UNR to msl2 mRNA and the noncoding RNA roX is believed to play key roles in the control of X-chromosome dosage compensation in both sexes. To investigate broader sex-specific functions of UNR, we have identified its RNA targets in adult male and female flies by high-throughput RNA binding and transcriptome analysis. Here we show that UNR binds to a large set of protein-coding transcripts and to a smaller set of noncoding RNAs in a sex-specific fashion. The analyses also reveal a strong correlation between sex-specific binding of UNR and sex-specific differential expression of UTRs in target genes. Validation experiments indicate that UNR indeed recognizes sex-specifically processed transcripts. These results suggest that UNR exploits the transcript diversity generated by alternative processing and alternative promoter usage to bind and regulate target genes in a sex-specific manner.
Collapse
Affiliation(s)
- Marija Mihailovich
- Gene Regulation Programme, Centre for Genomic Regulation (CRG) and UPF, 08003 Barcelona, Spain
| | - Laurence Wurth
- Gene Regulation Programme, Centre for Genomic Regulation (CRG) and UPF, 08003 Barcelona, Spain
| | - Federico Zambelli
- Department of Biomolecular Science and Biotechnology, University of Milano, 20133 Milano, Italy
| | - Irina Abaza
- Gene Regulation Programme, Centre for Genomic Regulation (CRG) and UPF, 08003 Barcelona, Spain
| | - Cristina Militti
- Gene Regulation Programme, Centre for Genomic Regulation (CRG) and UPF, 08003 Barcelona, Spain
| | - Francesco M. Mancuso
- Bioinformatics Unit, Centre for Genomic Regulation (CRG) and UPF, 08003 Barcelona, Spain
| | - Guglielmo Roma
- Bioinformatics Unit, Centre for Genomic Regulation (CRG) and UPF, 08003 Barcelona, Spain
| | - Giulio Pavesi
- Department of Biomolecular Science and Biotechnology, University of Milano, 20133 Milano, Italy
| | - Fátima Gebauer
- Gene Regulation Programme, Centre for Genomic Regulation (CRG) and UPF, 08003 Barcelona, Spain
| |
Collapse
|
16
|
The translation initiation factor eIF4E regulates the sex-specific expression of the master switch gene Sxl in Drosophila melanogaster. PLoS Genet 2011; 7:e1002185. [PMID: 21829374 PMCID: PMC3145617 DOI: 10.1371/journal.pgen.1002185] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 05/20/2011] [Indexed: 11/27/2022] Open
Abstract
In female fruit flies, Sex-lethal (Sxl) turns off the X chromosome dosage compensation system by a mechanism involving a combination of alternative splicing and translational repression of the male specific lethal-2 (msl-2) mRNA. A genetic screen identified the translation initiation factor eif4e as a gene that acts together with Sxl to repress expression of the Msl-2 protein. However, eif4e is not required for Sxl mediated repression of msl-2 mRNA translation. Instead, eif4e functions as a co-factor in Sxl-dependent female-specific alternative splicing of msl-2 and also Sxl pre-mRNAs. Like other factors required for Sxl regulation of splicing, eif4e shows maternal-effect female-lethal interactions with Sxl. This female lethality can be enhanced by mutations in other co-factors that promote female-specific splicing and is caused by a failure to properly activate the Sxl-positive autoregulatory feedback loop in early embryos. In this feedback loop Sxl proteins promote their own synthesis by directing the female-specific alternative splicing of Sxl-Pm pre-mRNAs. Analysis of pre-mRNA splicing when eif4e activity is compromised demonstrates that Sxl-dependent female-specific splicing of both Sxl-Pm and msl-2 pre-mRNAs requires eif4e activity. Consistent with a direct involvement in Sxl-dependent alternative splicing, eIF4E is associated with unspliced Sxl-Pm pre-mRNAs and is found in complexes that contain early acting splicing factors—the U1/U2 snRNP protein Sans-fils (Snf), the U1 snRNP protein U1-70k, U2AF38, U2AF50, and the Wilms' Tumor 1 Associated Protein Fl(2)d—that have been directly implicated in Sxl splicing regulation. Gene expression in eukaryotes is a complex process that occurs in several discrete steps. Some of those steps are separated into different sub-cellular compartments and thus might be expected to occur independently of one another and involve entirely distinct factors. For example pre-mRNA splicing takes place in the nucleus where it is coupled with transcription, while mRNA translation requires export to the cytoplasm and ribosome loading. We describe studies on the fruit fly Drosophila which indicate that a cytoplasmic translation initiation factor, the cap binding protein eIF4E, plays a key role in alternative splicing in the nucleus. When eIF4E activity is compromised, we observe defects in sex-specific splicing of pre-mRNAs that are regulated by the sex determination master switch gene Sex-lethal. Our data argue that eIF4E likely plays a direct role in the regulation of alternative splicing by Sex-lethal.
Collapse
|
17
|
Mihailovich M, Militti C, Gabaldón T, Gebauer F. Eukaryotic cold shock domain proteins: highly versatile regulators of gene expression. Bioessays 2010; 32:109-18. [PMID: 20091748 DOI: 10.1002/bies.200900122] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cold shock domain (CSD)-containing proteins have been found in all three domains of life and function in a variety of processes that are related, for the most part, to post-transcriptional gene regulation. The CSD is an ancient beta-barrel fold that serves to bind nucleic acids. The CSD is structurally and functionally similar to the S1 domain, a fold with otherwise unrelated primary sequence. The flexibility of the CSD/S1 domain for RNA recognition confers an enormous functional versatility to the proteins that contain them. This review summarizes the current knowledge on eukaryotic CSD/S1 domain-containing proteins with a special emphasis on UNR (upstream of N-ras), a member of this family with multiple copies of the CSD.
Collapse
Affiliation(s)
- Marija Mihailovich
- Gene Regulation Programme, Centre de Regulació Genòmica (CRG-UPF), Barcelona, Spain
| | | | | | | |
Collapse
|
18
|
The SXL-UNR corepressor complex uses a PABP-mediated mechanism to inhibit ribosome recruitment to msl-2 mRNA. Mol Cell 2009; 36:571-82. [PMID: 19941818 DOI: 10.1016/j.molcel.2009.09.042] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 07/06/2009] [Accepted: 09/08/2009] [Indexed: 11/22/2022]
Abstract
Drosophila female viability requires translational repression of msl-2 mRNA by the SXL-UNR 3' UTR corepressor complex, which inhibits ribosome recruitment by an unknown mechanism. Here, we reveal a key role for the poly(A)-binding protein (PABP), a translational activator, in this inhibitory mechanism. Efficient msl-2 mRNA silencing via the 3' UTR requires both a poly(A) tail and PABP function, and we find that UNR directly interacts with PABP. To investigate how the repressor complex and PABP affect RNP composition during early steps in translation initiation, we established direct biochemical assays for synergistic recruitment of eIF4F and ribosomes by the cap and poly(A) tail. We find that the repressor complex targets ribosome binding after PABP-mediated recruitment of eIF4E/G. Our results uncover an important regulatory mechanism of Drosophila dosage compensation and provide insight into PABP-dependent translational control by 3' UTR-bound regulatory proteins.
Collapse
|
19
|
Abstract
Background Many studies report about detection and functional characterization of cis-regulatory motifs in untranslated regions (UTRs) of mRNAs but little is known about the nature and functional role of their distribution. To address this issue we have developed a computational approach based on the use of data mining techniques. The idea is that of mining frequent combinations of translation regulatory motifs, since their significant co-occurrences could reveal functional relationships important for the post-transcriptional control of gene expression. The experimentation has been focused on targeted mitochondrial transcripts to elucidate the role of translational control in mitochondrial biogenesis and function. Results The analysis is based on a two-stepped procedure using a sequential pattern mining algorithm. The first step searches for frequent patterns (FPs) of motifs without taking into account their spatial displacement. In the second step, frequent sequential patterns (FSPs) of spaced motifs are generated by taking into account the conservation of spacers between each ordered pair of co-occurring motifs. The algorithm makes no assumption on the relation among motifs and on the number of motifs involved in a pattern. Different FSPs can be found depending on different combinations of two parameters, i.e. the threshold of the minimum percentage of sequences supporting the pattern, and the granularity of spacer discretization. Results can be retrieved at the UTRminer web site: . The discovered FPs of motifs amount to 216 in the overall dataset and to 140 in the human subset. For each FP, the system provides information on the discovered FSPs, if any. A variety of search options help users in browsing the web resource. The list of sequence IDs supporting each pattern can be used for the retrieval of information from the UTRminer database. Conclusion Computational prediction of structural properties of regulatory sequences is not trivial. The presented data mining approach is able to overcome some limits observed in other competitive tools. Preliminary results on UTR sequences from nuclear transcripts targeting mitochondria are promising and lead us to be confident on the effectiveness of the approach for future developments.
Collapse
|
20
|
Patalano S, Mihailovich M, Belacortu Y, Paricio N, Gebauer F. Dual sex-specific functions of Drosophila Upstream of N-ras in the control of X chromosome dosage compensation. Development 2009; 136:689-98. [PMID: 19168682 DOI: 10.1242/dev.027656] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dosage compensation in Drosophila melanogaster involves the assembly of the MSL-2-containing dosage compensation complex (DCC) on the single X chromosome of male flies. Translational repression of msl-2 mRNA blocks this process in females. Previous work indicated that the ubiquitous protein Upstream of N-ras (UNR) is a necessary co-factor for msl-2 repression in vitro. Here, we explore the function of UNR in vivo. Hypomorphic Unr mutant flies showed DCC assembly on high-affinity sites in the female X chromosomes, confirming that UNR inhibits dosage compensation in female flies. Unexpectedly, male mutant flies and UNR-depleted SL2 cells showed decreased DCC binding to the X chromosome, suggesting a role for UNR in DCC assembly or targeting. Consistent with this possibility, UNR overexpression resulted in moderate loss of DCC from the male X chromosome and predominant male lethality. Immunoprecipitation experiments revealed that UNR binds to roX1 and roX2, the non-coding RNA components of the DCC, providing possible targets for UNR function in males. These results uncover dual sex-specific functions of UNR in dosage compensation: to repress DCC formation in female flies and to promote DCC assembly on the male X chromosome.
Collapse
|
21
|
Anantharaman V, Aravind L. Analysis of DBC1 and its homologs suggests a potential mechanism for regulation of sirtuin domain deacetylases by NAD metabolites. Cell Cycle 2008; 7:1467-72. [PMID: 18418069 PMCID: PMC2423810 DOI: 10.4161/cc.7.10.5883] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Deleted in Breast Cancer-1 (DBC1) and its paralog CARP-1 are large multi-domain proteins, with a nuclear or perinuclear localization, and a role in promoting apoptosis upon processing by caspases. Recent studies on human DBC1 show that it is a specific inhibitor of the sirtuin-type deacetylase, Sirt1, which deacetylates histones and p53. Using sensitive sequence profile searches and HMM-HMM comparisons we show that the central conserved globular domain present in the DBC1 and it homologs from diverse eukaryotes is a catalytically inactive version of the Nudix hydrolase (MutT) domain. Given that Nudix domains are known to bind nucleoside diphosphate sugars and NAD, we predict that this domain in DBC1 and its homologs binds NAD metabolites such as ADP-ribose. Hence, we propose that DBC1 and its homologs are likely to regulate the activity of SIRT1 or related deacetylases by sensing the soluble products or substrates of the NAD-dependent deacetylation reaction. The complex domain architectures of the members of the DBC1 family, which include fusions to the RNA-binding S1-like domain, the DNA-binding SAP domain and EF-hand domains, suggest that they are likely to function as integrators of distinct regulatory signals including chromatin protein modification, soluble compounds in NAD metabolism, apoptotic stimuli and RNA recognition.
Collapse
Affiliation(s)
- Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|