1
|
Argyraki M, Damdimopoulou P, Chatzimeletiou K, Grimbizis GF, Tarlatzis BC, Syrrou M, Lambropoulos A. In-utero stress and mode of conception: impact on regulation of imprinted genes, fetal development and future health. Hum Reprod Update 2020; 25:777-801. [PMID: 31633761 DOI: 10.1093/humupd/dmz025] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/04/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Genomic imprinting is an epigenetic gene regulatory mechanism; disruption of this process during early embryonic development can have major consequences on both fetal and placental development. The periconceptional period and intrauterine life are crucial for determining long-term susceptibility to diseases. Treatments and procedures in assisted reproductive technologies (ART) and adverse in-utero environments may modify the methylation levels of genomic imprinting regions, including insulin-like growth factor 2 (IGF2)/H19, mesoderm-specific transcript (MEST), and paternally expressed gene 10 (PEG10), affecting the development of the fetus. ART, maternal psychological stress, and gestational exposures to chemicals are common stressors suspected to alter global epigenetic patterns including imprinted genes. OBJECTIVE AND RATIONALE Our objective is to highlight the effect of conception mode and maternal psychological stress on fetal development. Specifically, we monitor fetal programming, regulation of imprinted genes, fetal growth, and long-term disease risk, using the imprinted genes IGF2/H19, MEST, and PEG10 as examples. The possible role of environmental chemicals in genomic imprinting is also discussed. SEARCH METHODS A PubMed search of articles published mostly from 2005 to 2019 was conducted using search terms IGF2/H19, MEST, PEG10, imprinted genes, DNA methylation, gene expression, and imprinting disorders (IDs). Studies focusing on maternal prenatal stress, psychological well-being, environmental chemicals, ART, and placental/fetal development were evaluated and included in this review. OUTCOMES IGF2/H19, MEST, and PEG10 imprinted genes have a broad developmental effect on fetal growth and birth weight variation. Their disruption is linked to pregnancy complications, metabolic disorders, cognitive impairment, and cancer. Adverse early environment has a major impact on the developing fetus, affecting mostly growth, the structure, and subsequent function of the hypothalamic-pituitary-adrenal axis and neurodevelopment. Extensive evidence suggests that the gestational environment has an impact on epigenetic patterns including imprinting, which can lead to adverse long-term outcomes in the offspring. Environmental stressors such as maternal prenatal psychological stress have been found to associate with altered DNA methylation patterns in placenta and to affect fetal development. Studies conducted during the past decades have suggested that ART pregnancies are at a higher risk for a number of complications such as birth defects and IDs. ART procedures involve multiple steps that are conducted during critical windows for imprinting establishment and maintenance, necessitating long-term evaluation of children conceived through ART. Exposure to environmental chemicals can affect placental imprinting and fetal growth both in humans and in experimental animals. Therefore, their role in imprinting should be better elucidated, considering the ubiquitous exposure to these chemicals. WIDER IMPLICATIONS Dysregulation of imprinted genes is a plausible mechanism linking stressors such as maternal psychological stress, conception using ART, and chemical exposures with fetal growth. It is expected that a greater understanding of the role of imprinted genes and their regulation in fetal development will provide insights for clinical prevention and management of growth and IDs. In a broader context, evidence connecting impaired imprinted gene function to common diseases such as cancer is increasing. This implies early regulation of imprinting may enable control of long-term human health, reducing the burden of disease in the population in years to come.
Collapse
Affiliation(s)
- Maria Argyraki
- First Department of Obstetrics and Gynecology, Laboratory of Genetics, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Pauliina Damdimopoulou
- Karolinska Institutet, Department of Clinical Sciences, Intervention and Technology, Unit of Obstetrics and Gynecology, K57 Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | - Katerina Chatzimeletiou
- First Department of Obstetrics and Gynecology, Unit for Human Reproduction, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Grigoris F Grimbizis
- First Department of Obstetrics and Gynecology, Unit for Human Reproduction, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Basil C Tarlatzis
- First Department of Obstetrics and Gynecology, Unit for Human Reproduction, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Maria Syrrou
- Department of Biology, Laboratory of Biology, School of Health Sciences, University of Ioannina, Dourouti University Campus, 45110, Ioannina, Greece
| | - Alexandros Lambropoulos
- First Department of Obstetrics and Gynecology, Laboratory of Genetics, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| |
Collapse
|
2
|
Shiina K, Komatsu M, Yokoi F, Bai H, Takahashi M, Kawahara M. Overgrowth of mice generated from postovulatory-aged oocyte spindles. FASEB Bioadv 2019; 1:393-403. [PMID: 32123841 PMCID: PMC6996386 DOI: 10.1096/fba.2019-00005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/16/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022] Open
Abstract
Oocyte spindle transfer (OST) is a potent reproductive technology used for mammals that enables the spindle in a deteriorated oocyte at the metaphase of the second meiotic division (MII) to serve as the genetic material for producing descendants. However, whether postnatal growth is achieved via OST using developmentally deteriorated MII oocytes remains unclear. At 16 h after human chorionic gonadotropin administration, denuded MII oocytes immediately after retrieval from oviducts (0 h-oocytes) were used for in vitro fertilization (IVF) as controls. For IVF using postovulatory-aged oocytes, the 0 h-oocytes were further incubated for 12 h and 24 h (12 h- and 24 h-oocytes). These mouse oocytes served as a model for assessing the postnatal growth of individuals produced via OST from developmentally deteriorated oocytes. The embryos from 12 h- and 24 h-oocyte spindles exhibited high rates of development up to the neonatal stage as good as the non-manipulated controls. However, the mice derived from the 24 h-oocyte spindles displayed heavier body weights and greater feed consumption than both controls and mice derived from 12 h-oocyte spindles. Our results demonstrate the feasibility of OST as a potent reproductive technology and its limitation in the use of excessively aged postovulatory oocytes in mammalian reproduction.
Collapse
Affiliation(s)
- Kouki Shiina
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture Hokkaido University Sapporo Japan
| | - Masaya Komatsu
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture Hokkaido University Sapporo Japan
| | - Fumi Yokoi
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture Hokkaido University Sapporo Japan
| | - Hanako Bai
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture Hokkaido University Sapporo Japan
| | - Masashi Takahashi
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture Hokkaido University Sapporo Japan
| | - Manabu Kawahara
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture Hokkaido University Sapporo Japan
| |
Collapse
|
3
|
Yamazaki W, Amano T, Bai H, Takahashi M, Kawahara M. The Influence of Polyploidy and Genome Composition on Genomic Imprinting in Mice. J Biol Chem 2016; 291:20924-20931. [PMID: 27531747 DOI: 10.1074/jbc.m116.744144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Indexed: 12/19/2022] Open
Abstract
Genomic imprinting is an epigenetic mechanism that switches the expression of imprinted genes involved in normal embryonic growth and development in a parent-of-origin-specific manner. Changes in DNA methylation statuses from polyploidization are a well characterized epigenetic modification in plants. However, how changes in ploidy affect both imprinted gene expression and methylation status in mammals remains unclear. To address this, we used quantitative real time PCR to analyze expression levels of imprinted genes in mouse tetraploid fetuses. We used bisulfite sequencing to assess the methylation statuses of differentially methylated regions (DMRs) that regulate imprinted gene expression in triploid and tetraploid fetuses. The nine imprinted genes H19, Gtl2, Dlk1, Igf2r, Grb10, Zim1, Peg3, Ndn, and Ipw were all unregulated; in particular, the expression of Zim1 was more than 10-fold higher, and the expression of Ipw was repressed in tetraploid fetuses. The methylation statuses of four DMRs H19, intergenic (IG), Igf2r, and Snrpn in tetraploid and triploid fetuses were similar to those in diploid fetuses. We also performed allele-specific RT-PCR sequencing to determine the alleles expressing the three imprinted genes Igf2, Gtl2, and Dlk1 in tetraploid fetuses. These three imprinted genes showed monoallelic expression in a parent-of-origin-specific manner. Expression of non-imprinted genes regulating neural cell development significantly decreased in tetraploid fetuses, which might have been associated with unregulated imprinted gene expression. This study provides the first detailed analysis of genomic imprinting in tetraploid fetuses, suggesting that imprinted gene expression is disrupted, but DNA methylation statuses of DMRs are stable following changes in ploidy in mammals.
Collapse
Affiliation(s)
- Wataru Yamazaki
- From the Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589 and
| | - Tomoko Amano
- the Laboratory of Animal Genetics, Department of Sustainable Agriculture, College of Agriculture, Food and Environmental Science, Rakuno Gakuen University, Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Hanako Bai
- From the Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589 and
| | - Masashi Takahashi
- From the Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589 and
| | - Manabu Kawahara
- From the Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589 and
| |
Collapse
|
4
|
Complete in vitro generation of fertile oocytes from mouse primordial germ cells. Proc Natl Acad Sci U S A 2016; 113:9021-6. [PMID: 27457928 DOI: 10.1073/pnas.1603817113] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Reconstituting gametogenesis in vitro is a key goal for reproductive biology and regenerative medicine. Successful in vitro reconstitution of primordial germ cells and spermatogenesis has recently had a significant effect in the field. However, recapitulation of oogenesis in vitro remains unachieved. Here we demonstrate the first reconstitution, to our knowledge, of the entire process of mammalian oogenesis in vitro from primordial germ cells, using an estrogen-receptor antagonist that promotes normal follicle formation, which in turn is crucial for supporting oocyte growth. The fundamental events in oogenesis (i.e., meiosis, oocyte growth, and genomic imprinting) were reproduced in the culture system. The most rigorous evidence of the recapitulation of oogenesis was the birth of fertile offspring, with a maximum of seven pups obtained from a cultured gonad. Moreover, cryopreserved gonads yielded functional oocytes and offspring in this culture system. Thus, our in vitro system will enable both innovative approaches for a deeper understanding of oogenesis and a new avenue to create and preserve female germ cells.
Collapse
|
5
|
Taketo T. The role of sex chromosomes in mammalian germ cell differentiation: can the germ cells carrying X and Y chromosomes differentiate into fertile oocytes? Asian J Androl 2016; 17:360-6. [PMID: 25578929 PMCID: PMC4430933 DOI: 10.4103/1008-682x.143306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The sexual differentiation of germ cells into spermatozoa or oocytes is strictly regulated by their gonadal environment, testis or ovary, which is determined by the presence or absence of the Y chromosome, respectively. Hence, in normal mammalian development, male germ cells differentiate in the presence of X and Y chromosomes, and female germ cells do so in the presence of two X chromosomes. However, gonadal sex reversal occurs in humans as well as in other mammalian species, and the resultant XX males and XY females can lead healthy lives, except for a complete or partial loss of fertility. Germ cells carrying an abnormal set of sex chromosomes are efficiently eliminated by multilayered surveillance mechanisms in the testis, and also, though more variably, in the ovary. Studying the molecular basis for sex-specific responses to a set of sex chromosomes during gametogenesis will promote our understanding of meiotic processes contributing to the evolution of sex determining mechanisms. This review discusses the fate of germ cells carrying various sex chromosomal compositions in mouse models, the limitation of which may be overcome by recent successes in the differentiation of functional germ cells from embryonic stem cells under experimental conditions.
Collapse
Affiliation(s)
- Teruko Taketo
- Department of Surgery, Research Institute of MUHC; Department of Biology; Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Global DNA methylation and related mRNA profiles in sheep oocytes and early embryos derived from pre-pubertal and adult donors. Anim Reprod Sci 2016; 164:144-51. [DOI: 10.1016/j.anireprosci.2015.11.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 01/22/2023]
|
7
|
O'Doherty AM, O'Gorman A, al Naib A, Brennan L, Daly E, Duffy P, Fair T. Negative energy balance affects imprint stability in oocytes recovered from postpartum dairy cows. Genomics 2014; 104:177-85. [PMID: 25084396 DOI: 10.1016/j.ygeno.2014.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 12/27/2022]
Abstract
Ovarian follicle development in post-partum, high-producing dairy cows, occurs in a compromised endogenous metabolic environment (referred to as negative energy balance, NEB). Key events that occur during oocyte/follicle growth, such as the vital process of genomic imprinting, may be detrimentally affected by this altered ovarian environment. Imprinting is crucial for placental function and regulation of fetal growth, therefore failure to establish and maintain imprints during oocyte growth may contribute to early embryonic loss. Using ovum pick-up (OPU), oocytes and follicular fluid samples were recovered from cows between days 20 and 115 post-calving, encompassing the NEB period. In a complimentary study, cumulus oocyte complexes were in vitro matured under high non-esterified fatty acid (NEFA) concentrations and in the presence of the methyl-donor S-adenosylmethionine (SAM). Pyrosequencing revealed the loss of methylation at several imprinted loci in the OPU derived oocytes. The loss of DNA methylation was observed at the PLAGL1 locus in oocytes, following in vitro maturation (IVM) in the presence of elevated NEFAs and SAM. Finally, metabolomic analysis of postpartum follicular fluid samples revealed significant differences in several branched chain amino acids, with fatty acid profiles bearing similarities to those characteristic of lactating dairy cows. These results provide the first evidence that (1) the postpartum ovarian environment may affect maternal imprint acquisition and (2) elevated NEFAs during IVM can lead to the loss of imprinted gene methylation in bovine oocytes.
Collapse
Affiliation(s)
- Alan M O'Doherty
- School of Agriculture & Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Aoife O'Gorman
- School of Agriculture & Food Science, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Abdullah al Naib
- Lyons Research Farm, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lorraine Brennan
- School of Agriculture & Food Science, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Edward Daly
- Lyons Research Farm, University College Dublin, Belfield, Dublin 4, Ireland
| | - Pat Duffy
- Lyons Research Farm, University College Dublin, Belfield, Dublin 4, Ireland
| | - Trudee Fair
- School of Agriculture & Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
8
|
Hara S, Takano T, Fujikawa T, Yamada M, Wakai T, Kono T, Obata Y. Forced expression of DNA methyltransferases during oocyte growth accelerates the establishment of methylation imprints but not functional genomic imprinting. Hum Mol Genet 2014; 23:3853-64. [PMID: 24599402 PMCID: PMC4065157 DOI: 10.1093/hmg/ddu100] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In mammals, genomic imprinting governed by DNA methyltransferase DNMT3A and its cofactor DNMT3L is essential for functional gametes. Oocyte-specific methylation imprints are established during oocyte growth concomitant with DNMT3A/DNMT3L expression, although the mechanisms of oocyte-specific imprinting are not fully understood. To determine whether the presence of DNMT3A/DNMT3L in oocytes is sufficient for acquisition of methylation imprints, we produced transgenic mice to induce DNMT3A/DNMT3L expression prematurely in oogenesis and analyzed DNA methylation imprints. The results showed that 2- to 4-fold greater expression of DNMT3A/DNMT3L was achieved in non-growing (ng) oocytes versus fully grown oocytes derived from wild-type mice, but the analyzed imprint domains were not methylated. Thus, the presence of DNMT3A/DNMT3L in ng oocytes is insufficient for methylation imprints, and imprinted regions are resistant to DNMT3A/DNMT3L in ng oocytes. In contrast, excess DNMT3A/DNMT3L accelerated imprint acquisition at Igf2r, Lit1, Zac1 and Impact but not Snrpn and Mest in growing oocytes. Therefore, DNMT3A/DNMT3L quantity is an important factor for imprint acquisition. Transcription at imprinted domains is proposed to be involved in de novo methylation; however, transcription at Lit1, Snrpn and Impact was observed in ng oocytes. Thus, transcription cannot induce DNMT3A catalysis at imprinted regions even if DNMT3A/DNMT3L is present. However, the accelerated methylation imprints in oocytes, with the exception of Igf2r, were erased during embryogenesis. In conclusion, a sufficient amount of DNMT3A/DNMT3L and a shift from the resistant to permissive state are essential to establish oocyte-specific methylation imprints and that maintenance of the acquired DNA methylation imprints is essential for functional imprinting.
Collapse
Affiliation(s)
- Satoshi Hara
- Department of BioScience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Takashi Takano
- Department of BioScience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Tsugunari Fujikawa
- Department of BioScience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Munehiro Yamada
- Department of BioScience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Takuya Wakai
- Department of BioScience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Tomohiro Kono
- Department of BioScience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yayoi Obata
- Department of BioScience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| |
Collapse
|
9
|
Fauser BCJM, Devroey P, Diedrich K, Balaban B, Bonduelle M, Delemarre-van de Waal HA, Estella C, Ezcurra D, Geraedts JPM, Howles CM, Lerner-Geva L, Serna J, Wells D. Health outcomes of children born after IVF/ICSI: a review of current expert opinion and literature. Reprod Biomed Online 2013; 28:162-82. [PMID: 24365026 DOI: 10.1016/j.rbmo.2013.10.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 10/03/2013] [Accepted: 10/08/2013] [Indexed: 01/28/2023]
Abstract
The Sixth Evian Annual Reproduction (EVAR) Workshop Group Meeting was held to evaluate the impact of IVF/intracytoplasmic sperm injection on the health of assisted-conception children. Epidemiologists, reproductive endocrinologists, embryologists and geneticists presented data from published literature and ongoing research on the incidence of genetic and epigenetic abnormalities and congenital malformations in assisted-conception versus naturally conceived children to reach a consensus on the reasons for potential differences in outcomes between these two groups. IVF-conceived children have lower birthweights and higher peripheral fat, blood pressure and fasting glucose concentrations than controls. Growth, development and cognitive function in assisted-conception children are similar to controls. The absolute risk of imprinting disorders after assisted reproduction is less than 1%. A direct link between assisted reproduction and health-related outcomes in assisted-conception children could not be established. Women undergoing assisted reproduction are often older, increasing the chances of obtaining abnormal gametes that may cause deviations in outcomes between assisted-conception and naturally conceived children. However, after taking into account these factors, it is not clear to what extent poorer outcomes are due to the assisted reproduction procedures themselves. Large-scale, multicentre, prospective epidemiological studies are needed to investigate this further and to confirm long-term health consequences in assisted-conception children. Assisted reproduction treatment is a general term used to describe methods of achieving pregnancy by artificial means and includes IVF and sperm implantation. The effect of assisted reproduction treatment on the health of children born using these artificial methods is not fully understood. In April 2011, fertility research experts met to give presentations based on research in this area and to look carefully at the evidence for the effects of assisted reproduction treatment on children's health. The purpose of this review was to reach an agreement on whether there are differences in the health of assisted-conception children with naturally conceived children. The researchers discovered no increased risk in birth defects in assisted-conception children compared with naturally conceived children. They found that IVF-conceived children have lower birth weights and higher fat under the skin, higher blood pressure and higher fasting glucose concentrations than naturally conceived children; however, growth, development and cognitive function are similar between groups. A very low risk of disorders of genetic control was observed in assisted-conception children. Overall, there did not appear to be a direct link between assisted reproduction treatment and children's health. The researchers concluded that the cause of some differences in the health of children conceived using assisted reproduction treatment may be due to the age of the woman receiving treatment. Large-scale, research studies are needed to study the long-term health of children conceived using assisted reproduction treatment.
Collapse
Affiliation(s)
- B C J M Fauser
- Department of Reproductive Medicine and Gynaecology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - P Devroey
- Center for Reproductive Medicine, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - K Diedrich
- Department of Obstetrics and Gynecology, University Clinic of Schleswig-Holstein, Campus Luebeck, 23538 Luebeck, Germany
| | - B Balaban
- Assisted Reproduction Unit, American Hospital of Istanbul, Guzelbahce Sokak No 20, Nisantasi, Istanbul 34365, Turkey
| | - M Bonduelle
- Centre for Medical Genetics, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | | | - C Estella
- Fundación Instituto Valenciano de Infertilidad (FIVI), Valencia University, and Instituto Universitario IVI/INCLIVA, Parc Científic Universitat de València C/Catedrático Agustín Escardino n(o) 9, Edificio 3, 46980 Paterna, Spain; Departamento de Biología Molecular and Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - D Ezcurra
- Global Development and Medical Unit, Merck Serono SA Geneva, Chemin des Mines 9, 1202 Geneva, Switzerland
| | - J P M Geraedts
- Department of Genetics and Cell Biology, Research Institute GROW, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - C M Howles
- Global Development and Medical Unit, Merck Serono SA Geneva, Chemin des Mines 9, 1202 Geneva, Switzerland
| | - L Lerner-Geva
- Woman and Child Health Research Unit, Gertner Institute for Epidemiology and Health Policy Research, Tel Hashomer 52621, Israel
| | - J Serna
- Instituto Valenciano de Infertilidad (IVI) Zaragoza, C/María Zambrano, 31, 50018 Zaragoza, Spain
| | - D Wells
- University of Oxford, Nuffield Department of Obstetrics and Gynaecology, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | |
Collapse
|
10
|
Vermeiden JPW, Bernardus RE. Are imprinting disorders more prevalent after human in vitro fertilization or intracytoplasmic sperm injection? Fertil Steril 2013; 99:642-51. [PMID: 23714438 DOI: 10.1016/j.fertnstert.2013.01.125] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/15/2013] [Accepted: 01/22/2013] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To review the literature and present original data to answer the question of whether in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) is associated with an increase in imprinted diseases in offspring. If the answer is positive, to investigate whether there is a causal relationship between IVF or ICSI and the imprinted diseases. DESIGN Review study. RESULT(S) Eight epidemiologic studies were suitable to calculate the weighted relative risk for the birth of a child with Beckwith-Wiedemann syndrome following IVF or ICSI compared with the risk in the normal population. This relative risk was 5.2 (95% CI 1.6-7.4). In one study the relative risk was corrected for parents' fertility problems and no significant association was found. Data on the Silver-Russell syndrome are too sparse to draw conclusions, but a positive association with IVF or ICSI treatment is probable. No significant associations were found between the incidences of the Angelman and Prader-Willi syndromes and IVF or ICSI treatments. Children with Prader-Willi syndrome or Angelman syndrome are more likely to be born to parents with fertility problems. All retinoblastomas in children born after IVF or ICSI could be explained by de novo mutations in the RB1 gene and were not associated with imprinted genes. Imprinted diseases result from methylation errors already present in sperms or oocytes. There is no proof of a causal relationship between imprinted diseases and IVF or ICSI treatments. CONCLUSION(S) Imprinting disorders are more prevalent after human IVF or ICSI. Future studies should correct for fertility problems in the affected and comparison groups. It is highly improbable that assisted reproduction technologies cause imprinted diseases in humans.
Collapse
|
11
|
Zhang GM, Gu CH, Zhang YL, Sun HY, Qian WP, Zhou ZR, Wan YJ, Jia RX, Wang LZ, Wang F. Age-associated changes in gene expression of goat oocytes. Theriogenology 2013; 80:328-36. [PMID: 23746875 DOI: 10.1016/j.theriogenology.2013.04.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 04/16/2013] [Accepted: 04/21/2013] [Indexed: 11/19/2022]
Abstract
Oocyte aging severely decreases the quality of oocytes, which hampers fertilization and subsequent embryo development. In the present study, age-dependent molecular changes in goat oocytes were investigated. First, the quality of goat oocytes with various in vitro culture times (24, 30, 36, 48, and 60 hours) was evaluated on the basis of developmental rates of parthenogenetically activated embryos and apoptosis of cumulus cells (CCs). Second, relative gene expression of six genes (mitochondrial genes: PGC-1α and NRF-1; epigenetic modification genes: SNRPN and HAT1; mitotic spindle checkpoint protein: SMAD2; and hyaluronan synthase gene: HAS3) were analyzed during oocyte aging. Third, we further studied the changes of seven genes (PGC-1α and NRF-1; apoptotic-related genes: BAX and BCL2; hyaluronan synthase gene: HAS2; metabolism-related gene: STAR; and superoxide dismutase gene: SOD1) in CCs during oocyte aging. In these studies, the blastocyst rate gradually decreased and the number of apoptotic cells significantly increased as the culture time increased (P < 0.05). Moreover, relative gene expressions of PGC-1α, NRF-1 and SMAD2 significantly decreased from 24 to 36 hours (P < 0.05), whereas the levels of HAT1 and HAS3 slowly increased as culture was prolonged. Furthermore, the levels of PGC-1α, BCL2, HAS2 and SOD1 quickly reduced, and BAX significantly increased from 24 to 36 hours in aged CCs (P < 0.05). In conclusion, goat oocytes started to age at 30 hours in vitro culture, and gene expression patterns of oocytes and CCs significantly changed as the oocytes aged. Gene expression pattern changes in CCs may provide a convenient and effective way to detect oocyte aging without compromising oocyte integrity.
Collapse
Affiliation(s)
- Guo-Min Zhang
- Center of Embryo Engineering and Technology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Shaw L, Sneddon SF, Zeef L, Kimber SJ, Brison DR. Global gene expression profiling of individual human oocytes and embryos demonstrates heterogeneity in early development. PLoS One 2013; 8:e64192. [PMID: 23717564 PMCID: PMC3661520 DOI: 10.1371/journal.pone.0064192] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/10/2013] [Indexed: 11/19/2022] Open
Abstract
Early development in humans is characterised by low and variable embryonic viability, reflected in low fecundity and high rates of miscarriage, relative to other mammals. Data from assisted reproduction programmes provides additional evidence that this is largely mediated at the level of embryonic competence and is highly heterogeneous among embryos. Understanding the basis of this heterogeneity has important implications in a number of areas including: the regulation of early human development, disorders of pregnancy, assisted reproduction programmes, the long term health of children which may be programmed in early development, and the molecular basis of pluripotency in human stem cell populations. We have therefore investigated global gene expression profiles using polyAPCR amplification and microarray technology applied to individual human oocytes and 4-cell and blastocyst stage embryos. In order to explore the basis of any variability in detail, each developmental stage is replicated in triplicate. Our data show that although transcript profiles are highly stage-specific, within each stage they are relatively variable. We describe expression of a number of gene families and pathways including apoptosis, cell cycle and amino acid metabolism, which are variably expressed and may be reflective of embryonic developmental competence. Overall, our data suggest that heterogeneity in human embryo developmental competence is reflected in global transcript profiles, and that the vast majority of existing human embryo gene expression data based on pooled oocytes and embryos need to be reinterpreted.
Collapse
Affiliation(s)
- Lisa Shaw
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- Department of Reproductive Medicine, Old St Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Sharon F. Sneddon
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- Department of Reproductive Medicine, Old St Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Leo Zeef
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Susan J. Kimber
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Daniel R. Brison
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- Department of Reproductive Medicine, Old St Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Bui HT, Kwon DN, Kang MH, Oh MH, Park MR, Park WJ, Paik SS, Van Thuan N, Kim JH. Epigenetic reprogramming in somatic cells induced by extract from germinal vesicle stage pig oocytes. Development 2012; 139:4330-40. [PMID: 23132243 DOI: 10.1242/dev.086116] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genomic reprogramming factors in the cytoplasm of germinal vesicle (GV) stage oocytes have been shown to improve the efficiency of producing cloned mouse offspring through the exposure of nuclei to a GV cytoplasmic extract prior to somatic cell nuclear transfer (SCNT) to enucleated oocytes. Here, we developed an extract of GV stage pig oocytes (GVcyto-extract) to investigate epigenetic reprogramming events in treated somatic cell nuclei. This extract induced differentiation-associated changes in fibroblasts, resulting in cells that exhibit pluripotent stem cell-like characteristics and that redifferentiate into three primary germ cell layers both in vivo and in vitro. The GVcyto-extract treatment induced large numbers of high-quality SCNT-generated blastocysts, with methylation and acetylation of H3-K9 and expression of Oct4 and Nanog at levels similar to in vitro fertilized embryos. Thus, GVcyto-extract could elicit differentiation plasticity in treated fibroblasts, and SCNT-mediated reprogramming reset the epigenetic state in treated cells more efficiently than in untreated cells. In summary, we provide evidence for the generation of stem-like cells from differentiated somatic cells by treatment with porcine GVcyto-extract.
Collapse
Affiliation(s)
- Hong-Thuy Bui
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Deug-Nam Kwon
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Min-Hui Kang
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Mi-Hye Oh
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Mi-Ryung Park
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Woo-Jin Park
- Hanyang University Hospital, Department of Histopathology, Molecular pathology, 17 Haengdang-dong, Seondong-gu, Seoul 133-792, Korea
| | - Seung-Sam Paik
- Hanyang University Hospital, Department of Histopathology, Molecular pathology, 17 Haengdang-dong, Seondong-gu, Seoul 133-792, Korea
| | - Nguyen Van Thuan
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Jin-Hoi Kim
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| |
Collapse
|
14
|
Abstract
There is evidence that expression and methylation of the imprinted paternally expressed gene 1/mesoderm-specific transcript homologue (PEG1/MEST) gene may be affected by assisted reproductive technologies (ARTs) and infertility. In this study, we sought to assess the imprinting status of the MEST gene in a large cohort of in vitro-derived human preimplantation embryos, in order to characterise potentially adverse effects of ART and infertility on this locus in early human development. Embryonic genomic DNA from morula or blastocyst stage embryos was screened for a transcribed AflIII polymorphism in MEST and imprinting analysis was then performed in cDNA libraries derived from these embryos. In 10 heterozygous embryos, MEST expression was monoallelic in seven embryos, predominantly monoallelic in two embryos, and biallelic in one embryo. Screening of cDNA derived from 61 additional human preimplantation embryos, for which DNA for genotyping was unavailable, identified eight embryos with expression originating from both alleles (biallelic or predominantly monoallelic). In some embryos, therefore, the onset of imprinted MEST expression occurs during late preimplantation development. Variability in MEST imprinting was observed in both in vitro fertilization and intracytoplasmic sperm injection-derived embryos. Biallelic or predominantly monoallelic MEST expression was not associated with any one cause of infertility. Characterisation of the main MEST isoforms revealed that isoform 2 was detected in early development and was itself variably imprinted between embryos. To our knowledge, this report constitutes the largest expression study to date of genomic imprinting in human preimplantation embryos and reveals that for some imprinted genes, contrasting imprinting states exist between embryos.
Collapse
|
15
|
Rancourt RC, Harris HR, Michels KB. Methylation levels at imprinting control regions are not altered with ovulation induction or in vitro fertilization in a birth cohort. Hum Reprod 2012; 27:2208-16. [PMID: 22587996 DOI: 10.1093/humrep/des151] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Do fertility treatments, including ovulation induction (OI), alter epigenetic mechanisms such as DNA methylation at imprinted loci? SUMMARY ANSWER We observed small but statistically significant differences in certain imprinting control regions (ICRs) based on the method of conception, however, these small changes in methylation did not correlate to the overall transcriptional levels of the genes adjacent to the ICRs (such as KCNQ1 and SNRPN). WHAT IS KNOWN AND WHAT THIS PAPER ADDS Assisted reproductive technology (ART) has been associated with an increase in the risk of rare childhood disorders caused by loss of imprinting (LOI). This study provides novel epigenetic analyses on infants conceived by OI and examines how methylation levels correlate with gene expression. DESIGN Data and biospecimens used in this study were from 147 participants of the Epigenetic Birth Cohort comprising 1941 mother-child dyads recruited between June 2007 and June 2009 at the Department of Obstetrics, Gynecology and Reproductive Biology at Brigham and Women's Hospital (BWH) in Boston, MA, USA. Wilcoxon rank-sum tests were used to examine the differences in median percent methylation at each differentially methylated region (DMR) between the spontaneous conception control group and the fertility treatment groups (OI and IVF). PARTICIPANTS AND SETTING For each woman who reported IVF we selected a woman who conceived spontaneously matched on age (± 2 years). To increase efficiency, we matched the same controls from the spontaneously conceived group to participants who reported OI. If an appropriate control was not identified that had been previously matched to an IVF participant, a new control was selected. The final analytic sample consisted of 61 spontaneous, 59 IVF and 27 OI conceptions. MAIN RESULTS AND THE ROLE OF CHANCE No functionally relevant differences in methylation levels were observed across five (out of six) imprinted DMRs in either the placenta or cord blood of infants conceived with OI or IVF compared with infants conceived spontaneously. While KCNQ1, SNRPN and H19 DMRs demonstrated small but statistically significant differences in methylation based on the method of conception, expression levels of the genes related to these control regions only correlated with the methylation levels of H19. BIAS, CONFOUNDING AND OTHER REASONS FOR CAUTION Limitations of our study include the limited sample size, lack of information on OI medication used and culture medium for the IVF procedures and underlying reasons for infertility among OI and IVF patients. We did not perform allele-specific expression analyses and therefore cannot make any inferences about LOI. GENERALIZABILITY TO OTHER POPULATIONS These results are likely to be generalizable to non-Hispanic white individuals in populations with similar ART and fertility treatments.
Collapse
Affiliation(s)
- R C Rancourt
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|