1
|
Briski O, Cabeza JP, Salamone DF, Fernández-Martin R, Gambini A. Efficiency of the zinc chelator 1,10-phenanthroline for assisted oocyte activation following ICSI in pigs. Reprod Fertil Dev 2024; 36:RD24129. [PMID: 39270059 DOI: 10.1071/rd24129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Context In vitro embryo production in pigs is an important tool for advancing biomedical research. Intracytoplasmic sperm injection (ICSI) circumvents the polyspermy problems associated with conventional IVF in porcine. However, the suboptimal efficiency for ICSI in pigs requires new strategies to increase blastocyst formation rates. Aim To investigate novel methods for assisted activation using the zinc chelator 1,10-phenanthroline (PHEN), and to improve embryo developmental competence and quality of ICSI porcine blastocyst. Methods ICSI embryos were treated with PHEN after or before sperm injection, recording pronuclear formation, blastocyst rate and the expression of SMARCA4, OCT4, SOX2 and CDX2. Key results Neither electrical nor PHEN significantly improves pronuclear formation rates before or after ICSI. Following in vitro culture to the blastocyst stage, no significant differences were observed in developmental rates among the groups. Moreover, the use of PHEN did not alter the total cell number or the expression of OCT4, SOX2 and CDX2 in pig ICSI blastocysts. Conclusions Assisted oocyte activation with PHEN does not affect the preimplantation development of ICSI-derived pig embryos. Implications These results hold significance in refining and advancing the application of assisted oocyte activation techniques. They offer insights into addressing fertility issues and propelling advancements in human and animal reproductive medicine.
Collapse
Affiliation(s)
- Olinda Briski
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina; and CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Juan P Cabeza
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Daniel F Salamone
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina; and CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Rafael Fernández-Martin
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina; and CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Andrés Gambini
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Qld 4343, Australia; and School of Veterinary Sciences, The University of Queensland, Gatton, Qld 4343, Australia
| |
Collapse
|
2
|
Fang X, Tanga BM, Bang S, Seong G, Saadeldin IM, Qamar AY, Shim J, Choi K, Lee S, Cho J. Vitamin C enhances porcine cloned embryo development and improves the derivation of embryonic stem-like cells. Reprod Biol 2022; 22:100632. [PMID: 35334451 DOI: 10.1016/j.repbio.2022.100632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 11/24/2022]
Abstract
Porcine cloning through somatic cell nuclear transfer (SCNT) has been widely used in biotechnology for generating animal disease models and genetically modified animals for xenotransplantation. Vitamin C is a multifunctional factor that reacts with several enzymes. In this study, we used porcine oocytes to investigate the effects of different concentrations of vitamin C on in vitro maturation (IVM), in vitro culture (IVC), and the derivation of nuclear transfer embryonic stem-like cells (NT-ESCs). We demonstrated that vitamin C promoted the cleavage and blastocyst rate of genetically modified cloned porcine embryos and improved the derivation of NT-ESCs. Vitamin C integrated into IVM and IVC enhanced cleavage and blastocyst formation (P < 0.05) in SCNT embryos. Glutathione level was increased, and reactive oxygen species levels were decreased (P < 0.05) due to vitamin C treatment. Vitamin C decreased the gene expression of apoptosis (BAX) and increased the expression of genes associated with nuclear reprogramming (NANOG, POU5F1, SOX2, c-Myc, Klf4, and TEAD4), antioxidation (SOD1), anti-apoptotic (Bcl2), and trophectoderm (CDX2). Moreover, vitamin C improved the attachment, derivation, and passaging of NT-ESCs, while the control group showed no outgrowths beyond the primary culture. In conclusion, supplementation of vitamin C at a dose of 50 µg/ml to the IVM and IVC culture media was appropriate to improve the outcomes of porcine IVM and IVC and for the derivation of NT-ESCs as a model to study the pre- and post-implantation embryonic development in cloned transgenic embryos. Therefore, we recommend the inclusion of vitamin C as a supplementary factor to IVM and IVC to improve porcine in vitro embryonic development.
Collapse
Affiliation(s)
- Xun Fang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Bereket Molla Tanga
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seonggyu Bang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Gyeonghwan Seong
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Islam M Saadeldin
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea; Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ahmad Yar Qamar
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Joohyun Shim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, Republic of Korea
| | - Kimyung Choi
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, Republic of Korea
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jongki Cho
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Goszczynski DE, Cheng H, Demyda-Peyrás S, Medrano JF, Wu J, Ross PJ. In vitro breeding: application of embryonic stem cells to animal production†. Biol Reprod 2020; 100:885-895. [PMID: 30551176 DOI: 10.1093/biolre/ioy256] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/12/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022] Open
Abstract
Embryonic stem cells (ESCs) are derived from the inner cell mass of preimplantation blastocysts. For decades, attempts to efficiently derive ESCs in animal livestock species have been unsuccessful, but this goal has recently been achieved in cattle. Together with the recent reconstitution of the germ cell differentiation processes from ESCs in mice, these achievements open new avenues for the development of promising technologies oriented toward improving health, animal production, and the environment. In this article, we present a strategy that will notably accelerate genetic improvement in livestock populations by reducing the generational interval, namely in vitro breeding (IVB). IVB combines genomic selection, a widely used strategy for genetically improving livestock, with ESC derivation and in vitro differentiation of germ cells from pluripotent stem cells. We also review the most recent findings in the fields on which IVB is based. Evidence suggests this strategy will be soon within reach.
Collapse
Affiliation(s)
| | - Hao Cheng
- Department of Animal Science, University of California, Davis, California, USA
| | - Sebastian Demyda-Peyrás
- Instituto de Genetica Veterinaria, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, California, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Pablo J Ross
- Department of Animal Science, University of California, Davis, California, USA
| |
Collapse
|
4
|
Derivation of Porcine Embryonic Stem-Like Cells from In Vitro-Produced Blastocyst-Stage Embryos. Sci Rep 2016; 6:25838. [PMID: 27173828 PMCID: PMC4865852 DOI: 10.1038/srep25838] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 04/22/2016] [Indexed: 01/12/2023] Open
Abstract
Efficient isolation of embryonic stem (ES) cells from pre-implantation porcine embryos has remained a challenge. Here, we describe the derivation of porcine embryonic stem-like cells (pESLCs) by seeding the isolated inner cell mass (ICM) from in vitro-produced porcine blastocyst into α-MEM with basic fibroblast growth factor (bFGF). The pESL cells kept the normal karyotype and displayed flatten clones, similar in phenotype to human embryonic stem cells (hES cells) and rodent epiblast stem cells. These cells exhibited alkaline phosphatase (AP) activity and expressed pluripotency markers such as OCT4, NANOG, SOX2, SSEA-4, TRA-1-60, and TRA-1-81 as determined by both immunofluorescence and RT-PCR. Additionally, these cells formed embryoid body (EB), teratomas and also differentiated into 3 germ layers in vitro and in vivo. Microarray analysis showed the expression of the pluripotency markers, PODXL, REX1, SOX2, KLF5 and NR6A1, was significantly higher compared with porcine embryonic fibroblasts (PEF), but expression of OCT4, TBX3, REX1, LIN28A and DPPA5, was lower compared to the whole blastocysts or ICM of blastocyst. Our results showed that porcine embryonic stem-like cells can be established from in vitro-produced blastocyst-stage embryos, which promote porcine naive ES cells to be established.
Collapse
|
5
|
Kim E, Hwang SU, Yoo H, Yoon JD, Jeon Y, Kim H, Jeung EB, Lee CK, Hyun SH. Putative embryonic stem cells derived from porcine cloned blastocysts using induced pluripotent stem cells as donors. Theriogenology 2016; 85:601-16. [DOI: 10.1016/j.theriogenology.2015.09.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/20/2015] [Accepted: 09/28/2015] [Indexed: 12/23/2022]
|
6
|
Abstract
This review deals with the latest advances in the study of embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) from domesticated species, with a focus on pigs, cattle, sheep, goats, horses, cats, and dogs. Whereas the derivation of fully pluripotent ESC from these species has proved slow, reprogramming of somatic cells to iPSC has been more straightforward. However, most of these iPSC depend on the continued expression of the introduced transgenes, a major drawback to their utility. The persistent failure in generating ESC and the dependency of iPSC on ectopic genes probably stem from an inability to maintain the stability of the endogenous gene networks necessary to maintain pluripotency. Based on work in humans and rodents, achievement of full pluripotency will likely require fine adjustments in the growth factors and signaling inhibitors provided to the cells. Finally, we discuss the future utility of these cells for biomedical and agricultural purposes.
Collapse
Affiliation(s)
- Toshihiko Ezashi
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211; , ,
| | - Ye Yuan
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211; , ,
| | - R Michael Roberts
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211; , ,
| |
Collapse
|
7
|
Saadeldin IM, Kim SJ, Lee BC. Blastomeres aggregation as an efficient alternative for trophoblast culture from porcine parthenogenetic embryos. Dev Growth Differ 2015; 57:362-368. [DOI: 10.1111/dgd.12215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Islam M. Saadeldin
- Department of Theriogenology and Biotechnology; College of Veterinary Medicine and the Research Institute for Veterinary Science; Seoul National University; Seoul 151-742 Korea
- Department of Physiology; Faculty of Veterinary Medicine; Zagazig University; Zagazig 44519 Egypt
| | - Su Jin Kim
- Department of Theriogenology and Biotechnology; College of Veterinary Medicine and the Research Institute for Veterinary Science; Seoul National University; Seoul 151-742 Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology; College of Veterinary Medicine and the Research Institute for Veterinary Science; Seoul National University; Seoul 151-742 Korea
- Designed Animal and Transplantation; Institute of Green Bio Science Technology; Seoul National University; Pyeongchang 232-916 Korea
| |
Collapse
|
8
|
Cheong SA, Kim E, Kwak SS, Jeon Y, Hyun SH. Improvement in the blastocyst quality and efficiency of putative embryonic stem cell line derivation from porcine embryos produced in vitro using a novel culturing system. Mol Med Rep 2015; 12:2140-8. [PMID: 25892608 DOI: 10.3892/mmr.2015.3634] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 03/26/2015] [Indexed: 11/05/2022] Open
Abstract
Porcine embryonic stem cells (pESCs) have great potential for application in translational biomedical research, including xenotransplantation and disease models. Obtaining high-quality blastocysts is the most important factor in the isolation and colonization of primary ESCs and the establishment of ESC lines. In pigs, in vitro-derived blastocysts have a limited cell number compared to in vivo-derived blastocysts and show an indefinite inner cell mass, which may result in failure to establish pESC lines. In the present study, the effects of resveratrol (RES), granulocyte-macrophage colony stimulating factor (GM-CSF) and β-mercaptoethanol (β-ME) on the quality of blastocysts and the efficiency of colony derivation were investigated for the establishment of ESCs. A novel culturing system was developed in which 2 µM RES was added to the oocyte in vitro maturation (IVM) medium, and 10 ng/ml pGM-CSF and 10 µM β-ME were added to embryo in vitro culture (IVC) medium. This novel system showed significantly more parthenogenetic activation (PA) blastocysts (54.5 ± 1.8% vs. 43.4 ± 1.2%; P<0.05) and in vitro fertilization (IVF) blastocysts (36.9 ± 3.3% vs. 26.2 ± 2.9%; P<0.06) at day seven as compared with that in the control system. The PA and IVF blastocysts from the novel system showed a significantly greater hatching rate (P<0.05) and greater cell numbers (55.1 ± 2.0 vs. 45.6 ± 2.0; P<0.05 and 78.9 ± 6.8 vs. 58.5 ± 7.2; P<0.06, for PA and IVF, respectively) at day seven compared to that in the control system. After seeding on feeder cells, the PA blastocysts produced by the novel system showed a significantly increased rate of attachment (28.8 ± 3.9% vs. 17.2 ± 2.4%; P<0.062). Finally, two putative pESC lines from PA embryos produced by the novel system and one by the control system were established. In conclusion, the novel system improved blastocyst quality and increased the derivation efficiency of putative pESC lines from porcine PA and IVF embryos produced in vitro.
Collapse
Affiliation(s)
- Seung A Cheong
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361‑763, Republic of Korea
| | - Eunhye Kim
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361‑763, Republic of Korea
| | - Seong-Sung Kwak
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361‑763, Republic of Korea
| | - Yubyeol Jeon
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361‑763, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361‑763, Republic of Korea
| |
Collapse
|
9
|
Post-maturation zona perforation improves porcine parthenogenetic trophoblast culture. Placenta 2014; 35:286-8. [PMID: 24593992 DOI: 10.1016/j.placenta.2014.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/13/2014] [Accepted: 02/04/2014] [Indexed: 01/25/2023]
Abstract
This study was designed to optimize a method to improve porcine parthenogenetic embryo hatching and trophoblast culture. Mature oocytes (D0PPA) and day 6 blastocysts (D6PPA) were perforated with a 20 μm diameter needle for assisted hatching. The two groups showed a significant difference in hatching rate and blastocyst cell doubling when compared to a non-perforated control group. D0PPA blastocysts were able to form tertiary trophoblast colonies but D6PPA and control groups were not able to grow beyond primary colonies. Quantitative real-time PCR analysis showed significant differences in BAX, BAX/BCL2L1 and HSP70-2 mRNA expression between the experimental groups.
Collapse
|
10
|
Li X, Shan ZY, Wu YS, Shen XH, Liu CJ, Shen JL, Liu ZH, Lei L. Generation of neural progenitors from induced Bama miniature pig pluripotent cells. Reproduction 2014; 147:65-72. [DOI: 10.1530/rep-13-0196] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pig pluripotent cells may represent an advantageous experimental tool for developing therapeutic application in the human biomedical field. However, it has previously been proven to be difficult to establish from the early embryo and its pluripotency has not been distinctly documented. In recent years, induced pluripotent stem (iPS) cell technology provides a new method of reprogramming somatic cells to pluripotent state. The generation of iPS cells together with or without certain small molecules has become a routine technique. However, the generation of iPS cells from pig embryonic tissues using viral infections together with small molecules has not been reported. Here, we reported the generation of induced pig pluripotent cells (iPPCs) using the iPS technology in combination with valproic acid (VPA). VPA treatment significantly increased the expression of pluripotent genes and played an important role in early reprogramming. We showed that iPPCs resembled pig epiblast cells in their morphology and pluripotent markers, such as OCT4, NANOG, and SSEA1. It had a normal karyotype and could form embryoid bodies, which express three germ layer markersin vitro. In addition, the iPPCs might directly differentiate into neural progenitors after being induced with the retinoic acid and extracellular matrix. Our study established a reasonable method to generate pig pluripotent cells, which might be a new donor cell source for human neural disease therapy.
Collapse
|
11
|
Primed pluripotent cell lines derived from various embryonic origins and somatic cells in pig. PLoS One 2013; 8:e52481. [PMID: 23326334 PMCID: PMC3543426 DOI: 10.1371/journal.pone.0052481] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/19/2012] [Indexed: 01/18/2023] Open
Abstract
Since pluripotent embryonic stem cell (ESC) lines were first derived from the mouse, tremendous efforts have been made to establish ESC lines in several domestic species including the pig; however, authentic porcine ESCs have not yet been established. It has proven difficult to maintain an ESC-like state in pluripotent porcine cell lines due to the frequent occurrence of spontaneous differentiation into an epiblast stem cell (EpiSC)-like state during culture. We have been able to derive EpiSC-like porcine ESC (pESC) lines from blastocyst stage porcine embryos of various origins, including in vitro fertilized (IVF), in vivo derived, IVF aggregated, and parthenogenetic embryos. In addition, we have generated induced pluripotent stem cells (piPSCs) via plasmid transfection of reprogramming factors (Oct4, Sox2, Klf4, and c-Myc) into porcine fibroblast cells. In this study, we analyzed characteristics such as marker expression, pluripotency and the X chromosome inactivation status in female of our EpiSC-like pESC lines along with our piPSC line. Our results show that these cell lines demonstrate the expression of genes associated with the Activin/Nodal and FGF2 pathways along with the expression of pluripotent markers Oct4, Sox2, Nanog, SSEA4, TRA 1–60 and TRA 1–81. Furthermore all of these cell lines showed in vitro differentiation potential, the X chromosome inactivation in female and a normal karyotype. Here we suggest that the porcine species undergoes reprogramming into a primed state during the establishment of pluripotent stem cell lines.
Collapse
|
12
|
Alberio R, Perez AR. Recent advances in stem and germ cell research: implications for the derivation of pig pluripotent cells. Reprod Domest Anim 2013; 47 Suppl 4:98-106. [PMID: 22827357 DOI: 10.1111/j.1439-0531.2012.02062.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pluripotent stem cells have the unique capacity to contribute to all the tissues of an adult animal after transfer into a host embryo. How pluripotency is acquired during early development and how it is maintained in stem cells have attracted the interest of many scientists for over three decades. Much progress in our understanding of how stem cells arise in culture and the signals required for homoeostasis has enabled the derivation of pluripotent cells in multiple species. Here, we discuss recent developments in stem cell biology that will impact the generation of pluripotent cells from different embryonic origins and will contribute to increase our capacity for generating transgenic animals.
Collapse
Affiliation(s)
- R Alberio
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Loughborough, UK.
| | | |
Collapse
|
13
|
Bui HT, Kwon DN, Kang MH, Oh MH, Park MR, Park WJ, Paik SS, Van Thuan N, Kim JH. Epigenetic reprogramming in somatic cells induced by extract from germinal vesicle stage pig oocytes. Development 2012; 139:4330-40. [PMID: 23132243 DOI: 10.1242/dev.086116] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genomic reprogramming factors in the cytoplasm of germinal vesicle (GV) stage oocytes have been shown to improve the efficiency of producing cloned mouse offspring through the exposure of nuclei to a GV cytoplasmic extract prior to somatic cell nuclear transfer (SCNT) to enucleated oocytes. Here, we developed an extract of GV stage pig oocytes (GVcyto-extract) to investigate epigenetic reprogramming events in treated somatic cell nuclei. This extract induced differentiation-associated changes in fibroblasts, resulting in cells that exhibit pluripotent stem cell-like characteristics and that redifferentiate into three primary germ cell layers both in vivo and in vitro. The GVcyto-extract treatment induced large numbers of high-quality SCNT-generated blastocysts, with methylation and acetylation of H3-K9 and expression of Oct4 and Nanog at levels similar to in vitro fertilized embryos. Thus, GVcyto-extract could elicit differentiation plasticity in treated fibroblasts, and SCNT-mediated reprogramming reset the epigenetic state in treated cells more efficiently than in untreated cells. In summary, we provide evidence for the generation of stem-like cells from differentiated somatic cells by treatment with porcine GVcyto-extract.
Collapse
Affiliation(s)
- Hong-Thuy Bui
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Deug-Nam Kwon
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Min-Hui Kang
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Mi-Hye Oh
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Mi-Ryung Park
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Woo-Jin Park
- Hanyang University Hospital, Department of Histopathology, Molecular pathology, 17 Haengdang-dong, Seondong-gu, Seoul 133-792, Korea
| | - Seung-Sam Paik
- Hanyang University Hospital, Department of Histopathology, Molecular pathology, 17 Haengdang-dong, Seondong-gu, Seoul 133-792, Korea
| | - Nguyen Van Thuan
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Jin-Hoi Kim
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| |
Collapse
|