1
|
Odinius TS, Siuda M, Lautner M, Leiding C, Neuner S, Bollwein H, Malama E. Sperm Functional Status: A Multiparametric Assessment of the Fertilizing Potential of Bovine Sperm. Vet Sci 2024; 11:678. [PMID: 39729018 DOI: 10.3390/vetsci11120678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/28/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Sperm viability is routinely assessed for the quality control of cryopreserved bovine sperm batches but is not usually conclusive regarding their fertilizing potential. In this study, we investigated the fertility predictive value of bull sperm viability in combination with DNA integrity or the functional status of viable sperm. In addition to sperm viability, we flow cytometrically assessed the percentage of sperm with high DNA fragmentation index (%DFI) and the fraction of viable sperm with low intracellular Ca2+ content and functional mitochondria using the Sperm Chromatin Structure Assay and a five-color staining panel in 791 and 733 cryopreserved batches with non-return rate (NRR) records after ≥100 first services, respectively. Using linear mixed-effects models and conditional inference trees, we examined the potential of sperm viability combined with either DNA integrity or the functional status of viable sperm to predict the batch-specific NRR. Batches with a %DFI of ≤6.86% were more likely to have a NRR of >60%, whereas %DFI values of >6.86% were more likely to be associated with a 55-60% or lower NRR. Combining post-thaw viability with the functional status of viable sperm did not reliably predict the NRR of individual batches. Concluding, the incorporation of DNA integrity assessment can considerably improve sperm fertility prognostics.
Collapse
Affiliation(s)
- Timea Sarah Odinius
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland
- AgroVet-Strickhof, Eschikon 27, CH-8315 Lindau, Switzerland
| | - Mathias Siuda
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland
- AgroVet-Strickhof, Eschikon 27, CH-8315 Lindau, Switzerland
| | - Matthias Lautner
- Besamungsverein Neustadt a.d. Aisch e.V., Karl-Eibl-Strasse 17-27, 91413 Neustadt an der Aisch, Germany
| | - Claus Leiding
- Besamungsverein Neustadt a.d. Aisch e.V., Karl-Eibl-Strasse 17-27, 91413 Neustadt an der Aisch, Germany
| | - Stefan Neuner
- Besamungsverein Neustadt a.d. Aisch e.V., Karl-Eibl-Strasse 17-27, 91413 Neustadt an der Aisch, Germany
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland
- AgroVet-Strickhof, Eschikon 27, CH-8315 Lindau, Switzerland
| | - Eleni Malama
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland
- AgroVet-Strickhof, Eschikon 27, CH-8315 Lindau, Switzerland
| |
Collapse
|
2
|
Bhat GR, Lone FA, Dalal J. Microfluidics-A novel technique for high-quality sperm selection for greater ART outcomes. FASEB Bioadv 2024; 6:406-423. [PMID: 39372125 PMCID: PMC11452445 DOI: 10.1096/fba.2024-00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 10/08/2024] Open
Abstract
Microfluidics represent a quality sperm selection technique. Human couples fail to conceive and this is so in a significant population of animals worldwide. Defects in male counterpart lead to failure of conception so are outcomes of assisted reproduction affected by quality of sperm. Microfluidics, deals with minute volumes (μL) of liquids run in small-scale microchannel networks in the form of laminar flow streamlines. Microfluidic sperm selection designs have been developed in chip formats, mimicking in vivo situations. Here sperms are selected and analyzed based on motility and sperm behavioral properties. Compared to conventional sperm selection methods, this selection method enables to produce high-quality motile sperm cells possessing non-damaged or least damaged DNA, achieve greater success of insemination in bovines, and achieve enhanced pregnancy rates and live births in assisted reproduction-in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). Besides, the concentration of sperm available to oocyte can be controlled by regulating the flow rate in microfluidic chips. The challenges in this technology are commercialization of chips, development of fully functional species-specific microfluidic tools, limited number of studies available in literature, and need of thorough understanding in reproductive physiology of domestic animals. In conclusion, incorporation of microfluidic system in assisted reproduction for sperm selection may promise a great success in IVF and ICSI outcomes. Future prospectives are to make this technology more superior and need to modify chip designs which is cost effective and species specific and ready for commercialization. Comprehensive studies in animal species are needed to be carried out for wider application of microfluidic sperm selection in in vitro procedures.
Collapse
Affiliation(s)
- Ghulam Rasool Bhat
- Division of Animal Reproduction, Gynaecology and ObstetricsSher‐e‐Kashmir Institute of Agricultural Sciences and Technology of KashmirSrinagarIndia
| | - Farooz Ahmad Lone
- Division of Animal Reproduction, Gynaecology and ObstetricsSher‐e‐Kashmir Institute of Agricultural Sciences and Technology of KashmirSrinagarIndia
| | - Jasmer Dalal
- Division of Veterinary Gynaecology and ObstetricsLala Lajpat Rai Veterinary and Animal Sciences UniversityHisarIndia
| |
Collapse
|
3
|
Bollwein H, Malama E. Review: Evaluation of bull fertility. Functional and molecular approaches. Animal 2023; 17 Suppl 1:100795. [PMID: 37567681 DOI: 10.1016/j.animal.2023.100795] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 08/13/2023] Open
Abstract
With the term "assisted reproduction technologies" in modern cattle farming, one could imply the collection of techniques that aim at the optimal use of bovine gametes to produce animals of high genetic value in a time- and cost-efficient manner. The accurate characterisation of sperm quality plays a critical role for the efficiency of several assisted reproduction-related procedures, such as sperm processing, in vitro embryo production and artificial insemination. Bull fertility is ultimately a collective projection of the ability of a series of ejaculates to endure sperm processing stress, and achieve fertilisation of the oocyte and production of a viable and well-developing embryo. In this concept, the assessment of sperm functional and molecular characteristics is key to bull fertility diagnostics and prognostics. Among others, functional features linked to sperm plasma membrane, acrosome and DNA integrity are usually assessed as a measure of the ability of sperm to express the phenotypes that will allow them to maintain their homeostasis and orchestrate-in a strict temporal manner-the course of events that will enable the delivery of their genetic content to the oocyte upon fertilisation. Nevertheless, measures of sperm functionality are not always adequate indicators of bull fertility. Nowadays, advancements in the field of molecular biology have facilitated the profiling of several biomolecules in male gametes. The molecular profiling of bovine sperm offers a deeper insight into the mechanisms underlying sperm physiology and, thus, can reveal novel candidate markers for bull fertility prognosis. In this review, the importance of three organelles (the nucleus, the plasma membrane and the acrosome) for the characterisation of sperm fertilising capacity and bull fertility is discussed at functional and molecular levels. In particular, information about sperm head morphometry, chromatin structure, viability as well as the ability of sperm to capacitate and undergo the acrosome reaction are presented in relation to the cryotolerance of male gametes and bull fertility. Finally, major spermatozoal coding and non-coding RNAs, and proteins that are involved in the above-mentioned aspects of sperm functionality are also summarised.
Collapse
Affiliation(s)
- H Bollwein
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| | - E Malama
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| |
Collapse
|
4
|
Soto-Heras S, Sakkas D, Miller DJ. Sperm selection by the oviduct: perspectives for male fertility and assisted reproductive technologies†. Biol Reprod 2023; 108:538-552. [PMID: 36625382 PMCID: PMC10106845 DOI: 10.1093/biolre/ioac224] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
The contribution of sperm to embryogenesis is gaining attention with up to 50% of infertility cases being attributed to a paternal factor. The traditional methods used in assisted reproductive technologies for selecting and assessing sperm quality are mainly based on motility and viability parameters. However, other sperm characteristics, including deoxyribonucleic acid integrity, have major consequences for successful live birth. In natural reproduction, sperm navigate the male and female reproductive tract to reach and fertilize the egg. During transport, sperm encounter many obstacles that dramatically reduce the number arriving at the fertilization site. In humans, the number of sperm is reduced from tens of millions in the ejaculate to hundreds in the Fallopian tube (oviduct). Whether this sperm population has higher fertilization potential is not fully understood, but several studies in animals indicate that many defective sperm do not advance to the site of fertilization. Moreover, the oviduct plays a key role in fertility by modulating sperm transport, viability, and maturation, providing sperm that are ready to fertilize at the appropriate time. Here we present evidence of sperm selection by the oviduct with emphasis on the mechanisms of selection and the sperm characteristics selected. Considering the sperm parameters that are essential for healthy embryonic development, we discuss the use of novel in vitro sperm selection methods that mimic physiological conditions. We propose that insight gained from understanding how the oviduct selects sperm can be translated to assisted reproductive technologies to yield high fertilization, embryonic development, and pregnancy rates.
Collapse
Affiliation(s)
- Sandra Soto-Heras
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - David J Miller
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
5
|
Ruiz-Díaz S, Mazzarella R, Navarrete-López P, Fernández-González R, de Frutos C, Maroto M, Cucala C, Beltrán-Breña P, Lombó M, Rizos D, Gutiérrez-Adán A. Bull spermatozoa selected by thermotaxis exhibit high DNA integrity, specific head morphometry, and improve ICSI outcome. J Anim Sci Biotechnol 2023; 14:11. [PMID: 36627704 PMCID: PMC9832681 DOI: 10.1186/s40104-022-00810-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/24/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Sperm migration by thermotaxis is a guidance mechanism that operates along the oviduct and it has proved to be a valid method for selecting spermatozoa with low DNA fragmentation (SDF) in mice, humans, and stallions. This study aimed to analyse if bull spermatozoa could be selected by thermotaxis and to assess their quality in terms of SDF as well as determine the presence of a specific sperm subpopulation based on sperm morphometry and assess their fertilizing capacity by ICSI. METHODS We used frozen-thawed sperm from 6 bulls and sperm selection by thermotaxis was performed with TALP medium supplemented with 25 mmol/L of HEPES and 5 mmol/L of caffeine. In these conditions, sperm selection was achieved, obtaining a net thermotaxis of 3.6%. Subsequently, we analysed the SDF of the migrated and not-migrated spermatozoa using the neutral COMET assay, and we evaluated the size of the sperm head using Hemacolor® staining with Motic Images Plus 3 software. Additionally, migrated and not-migrated spermatozoa by thermotaxis were used to fertilize bovine in vitro matured (IVM) oocytes by ICSI, a very inefficient procedure in cattle that is only successful when the oocyte is artificially activated. RESULTS The results showed lower SDF (χ², P < 0.001, 13.3% reduction, n = 8) and lower head size parameters (length and width, P < 0.01; and perimeter and area, P < 0.001; n = 4) in those spermatozoa migrated in comparison to those not-migrated. The distribution of sperm subpopulations structure varied between groups, highlighting cluster 2, characterized by spermatozoa with small head size, and high ellipticity and elongated heads, as the most abundant in the thermotaxis migrated group. When performed ICSI (without oocyte artificial activation) with the thermotactic sperm, the blastocyst rate was 32.2% ± 9.3% in the group microinjected with the thermotactic spermatozoa vs. 8.3% ± 7.8% in the group of not-migrated sperm (χ², P < 0.05). CONCLUSION Our results showed that bull sperm selection by thermotaxis has a much higher DNA integrity, small and elongated head size parameters, and different sperm subpopulation structure than the not-selected spermatozoa. Additionally, we evidenced that thermotactic spermatozoa improve ICSI success rates.
Collapse
Affiliation(s)
- Sara Ruiz-Díaz
- Department of Animal Reproduction, INIA-CSIC, 28040, Madrid, Spain
- Mistral Fertility Clinics S.L, Clínica Tambre, Calle Tambre, 8, 28002, Madrid, Spain
| | | | | | | | - Celia de Frutos
- Department of Animal Reproduction, INIA-CSIC, 28040, Madrid, Spain
| | - María Maroto
- Department of Animal Reproduction, INIA-CSIC, 28040, Madrid, Spain
| | - Claudia Cucala
- Department of Animal Reproduction, INIA-CSIC, 28040, Madrid, Spain
| | | | - Marta Lombó
- Department of Animal Reproduction, INIA-CSIC, 28040, Madrid, Spain
| | - Dimitrios Rizos
- Department of Animal Reproduction, INIA-CSIC, 28040, Madrid, Spain
| | | |
Collapse
|
6
|
Umezu K, Larina IV. Optical coherence tomography for dynamic investigation of mammalian reproductive processes. Mol Reprod Dev 2023; 90:3-13. [PMID: 36574640 PMCID: PMC9877170 DOI: 10.1002/mrd.23665] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022]
Abstract
The biological events associated with mammalian reproductive processes are highly dynamic and tightly regulated by molecular, genetic, and biomechanical factors. Implementation of live imaging in reproductive research is vital for the advancement of our understanding of normal reproductive physiology and for improving the management of reproductive disorders. Optical coherence tomography (OCT) is emerging as a promising tool for dynamic volumetric imaging of various reproductive processes in mice and other animal models. In this review, we summarize recent studies employing OCT-based approaches toward the investigation of reproductive processes in both, males and females. We describe how OCT can be applied to study structural features of the male reproductive system and sperm transport through the male reproductive tract. We review OCT applications for in vitro and dynamic in vivo imaging of the female reproductive system, staging and tracking of oocytes and embryos, and investigations of the oocyte/embryo transport through the oviduct. We describe how the functional OCT approach can be applied to the analysis of cilia dynamics within the male and female reproductive systems. We also discuss the areas of research, where OCT could find potential applications to progress our understanding of normal reproductive physiology and reproductive disorders.
Collapse
Affiliation(s)
- Kohei Umezu
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Irina V Larina
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
7
|
Xiao W, Yu M, Yuan Y, Liu X, Chen Y. Thermotaxis of mammalian sperm. Mol Hum Reprod 2022; 28:6650698. [PMID: 35894944 DOI: 10.1093/molehr/gaac027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Sperm are guided through the female reproductive tract. A temperature difference of about 2 °C exists between the storage site and fertilization site of the mammalian oviduct, leading to the hypothesis that sperm can sense and swim towards the oocyte along a rising temperature gradient, known as thermotaxis. Research over the past two decades has reported that sperm feature a sophisticated thermal detection system to detect and track ambient temperature gradients. More recently, thermotaxis is expected to be added to the microfluidic isolation method based on sperm tactic responses for sperm selection. In this paper, mammalian sperm thermotaxis is discussed, explaining the underlying behavioral mechanisms and molecular basis, according to the latest research. Finally, this paper explores the possible application of sperm thermotaxis in assisted reproductive technologies.
Collapse
Affiliation(s)
- Wanglong Xiao
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, P. R. China
| | - Mengdi Yu
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, P. R. China
| | - Yan Yuan
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, P. R. China
| | - Xingzhu Liu
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, 330031, P. R. China
| | - Ying Chen
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, P. R. China.,Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang, Jiangxi, P. R. China
| |
Collapse
|
8
|
Ali MA, Wang Y, Qin Z, Yuan X, Zhang Y, Zeng C. Odorant and Taste Receptors in Sperm Chemotaxis and Cryopreservation: Roles and Implications in Sperm Capacitation, Motility and Fertility. Genes (Basel) 2021; 12:genes12040488. [PMID: 33801624 PMCID: PMC8065900 DOI: 10.3390/genes12040488] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 11/24/2022] Open
Abstract
Sperm chemotaxis, which guide sperm toward oocyte, is tightly associated with sperm capacitation, motility, and fertility. However, the molecular mechanism of sperm chemotaxis is not known. Reproductive odorant and taste receptors, belong to G-protein-coupled receptors (GPCR) super-family, cause an increase in intracellular Ca2+ concentration which is pre-requisite for sperm capacitation and acrosomal reaction, and result in sperm hyperpolarization and increase motility through activation of Ca2+-dependent Cl¯ channels. Recently, odorant receptors (ORs) in olfactory transduction pathway were thought to be associated with post-thaw sperm motility, freeze tolerance or freezability and cryo-capacitation-like change during cryopreservation. Investigation of the roles of odorant and taste receptors (TRs) is important for our understanding of the freeze tolerance or freezability mechanism and improve the motility and fertility of post-thaw sperm. Here, we reviewed the roles, mode of action, impact of odorant and taste receptors on sperm chemotaxis and post-thaw sperm quality.
Collapse
Affiliation(s)
- Malik Ahsan Ali
- College of Animal Science and Technology and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.W.); (Z.Q.); (X.Y.); (Y.Z.)
- Department of Theriogenology, Riphah College of Veterinary Sciences, Lahore 54000, Punjab, Pakistan;
- Department of Theriogenology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Punjab, Pakistan
| | - Yihan Wang
- College of Animal Science and Technology and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.W.); (Z.Q.); (X.Y.); (Y.Z.)
| | - Ziyue Qin
- College of Animal Science and Technology and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.W.); (Z.Q.); (X.Y.); (Y.Z.)
| | - Xiang Yuan
- College of Animal Science and Technology and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.W.); (Z.Q.); (X.Y.); (Y.Z.)
| | - Yan Zhang
- College of Animal Science and Technology and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.W.); (Z.Q.); (X.Y.); (Y.Z.)
| | - Changjun Zeng
- College of Animal Science and Technology and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.W.); (Z.Q.); (X.Y.); (Y.Z.)
- Correspondence: ; Tel./Fax: +86-28-86291010
| |
Collapse
|
9
|
Oseguera-López I, Ruiz-Díaz S, Ramos-Ibeas P, Pérez-Cerezales S. Novel Techniques of Sperm Selection for Improving IVF and ICSI Outcomes. Front Cell Dev Biol 2019; 7:298. [PMID: 31850340 PMCID: PMC6896825 DOI: 10.3389/fcell.2019.00298] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
Almost 50% of the infertility cases are due to male factors. Assisted reproductive technologies (ARTs) allow to overcome the incapacity of these patients' spermatozoa to fertilize the oocyte and produce a viable and healthy offspring, but the efficiency of the different techniques has still the potential to improve. According to the latest reports of the European Society of Human Reproduction and Embryology (ESHRE) and the Centers for Disease Control and Prevention of the United States (CDC), the percentages of deliveries per ART cycle in 2014 and 2016 were 21 and 22%, respectively. Among the reasons for this relatively low efficiency, the quality of the spermatozoa has been pointed out as critical, and the presence of high percentages of DNA-damaged spermatozoa in patients' ejaculates is possibly one of the main factors reducing the ARTs outcomes. Thus, one of the main challenges in reproductive medicine is to ensure the highest quality of the spermatozoa used in ARTs, and specifically, in terms of genetic integrity. The latest techniques for the preparation and selection of human spermatozoa are herein discussed focusing on those proven to improve one or several of the following parameters: sperm genetic integrity, fertilization capacity, embryo production, and in vitro survival, as well as pregnancy and delivery rates following in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). In addition, we discuss the potential of techniques developed in non-human mammals that could be further transferred to the clinic.
Collapse
Affiliation(s)
| | - Sara Ruiz-Díaz
- Mistral Fertility Clinics S.L., Clínica Tambre, Madrid, Spain
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Priscila Ramos-Ibeas
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Serafín Pérez-Cerezales
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
10
|
Nagata MB, Egashira J, Katafuchi N, Endo K, Ogata K, Yamanaka K, Yamanouchi T, Matsuda H, Hashiyada Y, Yamashita K. Bovine sperm selection procedure prior to cryopreservation for improvement of post-thawed semen quality and fertility. J Anim Sci Biotechnol 2019; 10:91. [PMID: 31807306 PMCID: PMC6857337 DOI: 10.1186/s40104-019-0395-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/21/2019] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The application of cryopreservation and artificial insemination technology have contributed to the advancement of animal reproduction. However, a substantial proportion of spermatozoa undergoes alterations and loses their fertility during cryopreservation, rendering the frozen-thawed semen impractical for routine use. Cryopreservation is known to reduce sperm lifespan and fertility. Variation in cryosurvival of spermatozoa from different sires and even with the individual sire is common in artificial insemination (AI) centers. Our goal is to improve post-thawed semen quality by optimization of cryopreservation technique through sperm selection prior to cryopreservation process. RESULTS Our strategy of sperm selection based on rheotaxis and thermotaxis (SSRT) on macrosale in a rotating fluid flow demonstrated the ability to maintain the original pre-freezing structural integrity, viability and biological function related to fertilization competence. This strategy has a positive effect on the cryosurvival and fertilizing abilities of spermatozoa as supported by the improvement on pregnancy rate of Japanese Black heifers and Holstein repeat breeders. This technique protected further sublethal damage to bovine spermatozoa (higher % cryosurvival than the control) and resulted in the improvement of DNA integrity. Prefreeze selected spermatozoa demonstrated slower and controlled capacitation than unprocessed control which is thought to be related to sperm longevity and consequently to appropriate timing during in vivo fertilization. CONCLUSIONS These results provide solid evidence that improvement of post-thawed semen quality by SSRT method is beneficial in terms of cryosurvival, longevity of post-thawed sperm, and optimization of in vivo fertilization, embryo development and calving as supported by the favorable results of field fertility study.
Collapse
Affiliation(s)
- MariaPortia B. Nagata
- Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 807-1 Shuku-machi, Tosu, Saga, 841-0052 Japan
| | - Junki Egashira
- Saga Prefectural Livestock Experiment Station, 23242-2 Yamauchi-machi, Miyano, Takeo, Saga, 849-2305 Japan
| | - Naoto Katafuchi
- Saga Prefectural Livestock Experiment Station, 23242-2 Yamauchi-machi, Miyano, Takeo, Saga, 849-2305 Japan
| | - Kenji Endo
- Morinaga Dairy Service Co. Ltd., 1-159 Toyoharaotsu, Nasu-gun Nasu-machi, Tochigi, 329-3224 Japan
| | - Kazuko Ogata
- National Livestock Breeding Center (NLBC), 1 Odakurahara, Odakura, Nishigo-mura, Nishishirakawa-gun, Fukushima, 961-8511 Japan
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ikenodai 2, Tsukuba, Ibaraki, 305-0901 Japan
| | - Kenichi Yamanaka
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, 840-8502 Japan
| | - Tadayuki Yamanouchi
- National Livestock Breeding Center (NLBC), 1 Odakurahara, Odakura, Nishigo-mura, Nishishirakawa-gun, Fukushima, 961-8511 Japan
| | - Hideo Matsuda
- National Livestock Breeding Center (NLBC), 1 Odakurahara, Odakura, Nishigo-mura, Nishishirakawa-gun, Fukushima, 961-8511 Japan
| | - Yutaka Hashiyada
- National Livestock Breeding Center (NLBC), 1 Odakurahara, Odakura, Nishigo-mura, Nishishirakawa-gun, Fukushima, 961-8511 Japan
- Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi, Ishikawa, 921-8836 Japan
| | - Kenichi Yamashita
- Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 807-1 Shuku-machi, Tosu, Saga, 841-0052 Japan
| |
Collapse
|
11
|
Bucher K, Malama E, Siuda M, Janett F, Bollwein H. Multicolor flow cytometric analysis of cryopreserved bovine sperm: A tool for the evaluation of bull fertility. J Dairy Sci 2019; 102:11652-11669. [PMID: 31521361 DOI: 10.3168/jds.2019-16572] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/11/2019] [Indexed: 01/10/2023]
Abstract
The study aimed at the analysis of the functional status of cryopreserved bovine sperm using multicolor flow cytometry. The value of sperm functional traits as predictors of bull fertility was further evaluated through a retrospective fertility study. For this purpose, 20 Holstein-Friesian bulls serving as mature sperm donors in an artificial insemination (AI) center were selected based on their annual 56-d non-return rate (%) after at least 1,000 AI, and were accordingly classified as high (HF; nHF = 10 bulls) or low fertility bulls (LF; nLF = 10 bulls). Four to 5 cryopreserved ejaculates per bull (91 ejaculates in total) were examined immediately after thawing (0 h) and after a 3-h incubation at 38°C (3 h). A panel of 5 fluorochromes including calcein violet, propidium iodide, pycoerythrin-conjugated lectin of Arachis hypogea, Fluo-4, and cyanine dye DiIC1(5) was configured by means of a 3-laser flow cytometer, to simultaneously assess sperm esterase activity, plasma membrane integrity, acrosomal status, intracellular Ca2+ levels, and mitochondrial membrane potential, respectively. The % relative size of 18 sperm sub-populations showing 2 or more of a combination of the following features was determined: high esterase activity (Cpos), intact plasma membrane (PIneg), unstained acrosome (PNAneg), low intracellular Ca2+ levels (Fneg), and high mitochondrial membrane potential (Mpos). In both fertility groups, Mpos cells comprised more than 90 and 84% of PInegPNAneg sperm at 0 and 3 h, respectively. The percentage of CposPInegPNAnegFnegMpos sperm did not differ between HF and LF ejaculates; however, the percentage of Fneg cells within the PInegPNAneg and PInegMpos sperm populations at 0 h was higher in the HF than in the LF bulls. Applying the random forest ensemble learning method, approximately two-thirds of ejaculates could be correctly assigned to their fertility group. The fraction of Fneg sperm within the PInegMpos population at 0 h was the most important fertility predictor among the 18 defined sperm populations. In conclusion, multicolor flow cytometry offered an insight into the functional heterogeneity of cryopreserved bovine sperm. Indeed, the ability of viable sperm to retain low Ca2+ levels differed between bulls of diverse fertility. A classifier based on selected sperm populations assessed through multicolor flow cytometry could contribute to the prognosis of bull fertility after AI.
Collapse
Affiliation(s)
- K Bucher
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich CH-8057, Switzerland
| | - E Malama
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich CH-8057, Switzerland; Veterinary Research Institute, Hellenic Agricultural Organization Demeter, Thermi 57001, Thessaloniki, Greece.
| | - M Siuda
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich CH-8057, Switzerland
| | - F Janett
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich CH-8057, Switzerland
| | - H Bollwein
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich CH-8057, Switzerland
| |
Collapse
|
12
|
Martin-Hidalgo D, Gil MC, Hurtado de Llera A, Perez CJ, Bragado MJ, Garcia-Marin LJ. Boar sperm hyperactivated motility is induced by temperature via an intracellular calcium-dependent pathway. Reprod Fertil Dev 2018; 30:1462-1471. [DOI: 10.1071/rd17549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/12/2018] [Indexed: 01/26/2023] Open
Abstract
Herein we describe a new protocol to induce boar sperm hypermotility: temperature-induced hypermotility (TIH). Briefly, spermatozoa stored at 17°C in a calcium-free Tyrode’s basal medium (containing EGTA) were exposed to increased temperature by incubation at 38.5°C. Hypermotility induced by the calcium ionophore A23187 was used as a control (calcium ionophore-induced hyperactivity (CIIH)). The increase in temperature led to an increase in the percentage of hypermotile spermatozoa. When the slope of the temperature increase is near zero, sperm hyperactivity becomes a more progressive movement. Motility parameters of sperm hyperactivation induced by TIH were different from those following CIIH. Cluster analysis revealed that these two populations of hyperactivated spermatozoa are different. TIH is independent of extracellular Ca2+ but dependent on intracellular Ca2+ release. Moreover, TIH is unaffected by protein kinase A (PKA) inhibition, whereas CIIH is reduced by half in the presence of a PKA inhibitor. In conclusion, we have demonstrated that: (1) a temperature increase in boar spermatozoa is a stimulus that can induce a hyperactive population, which is differs from the hyperactive sperm population induced by calcium ionophore; (2) the temperature increase in spermatozoa triggers the release of Ca2+ from intracellular stores; (3) extracellular calcium is not required for TIH; and (4) TIH in boar spermatozoa is independent of PKA activity.
Collapse
|