1
|
Wang M, Hu Y, Cai F, Guo L, Mao Y, Zhang Y. Jmjd2c maintains the ALDH bri+ cancer stemness with transcription factor SOX2 in lung squamous cell carcinoma. Cancer Biol Ther 2024; 25:2373447. [PMID: 38975736 PMCID: PMC11232651 DOI: 10.1080/15384047.2024.2373447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 06/24/2024] [Indexed: 07/09/2024] Open
Abstract
Lung squamous cell carcinoma (LSCC) is a deadly cancer in the world. Histone demethylase Jmjd2c is a key epigenetic regulator in various tumors, while the molecular mechanism underlying Jmjd2c regulatory in LSCC is still unclear. We used the aldehyde dehydrogenasebright (ALDHbri+) subtype as a research model for cancer stem cells (CSCs) in LSCC and detected the sphere formation ability and the proportion of ALDHbri+ CSCs with Jmjd2c interference and caffeic acid (CA) treatment. Additionally, we carried out bioinformatic analysis on the expression file of Jmjd2c RNAi mice and performed western blotting, qRT-PCR, Co-IP and GST pull-down assays to confirm the bioinformatic findings. Moreover, we generated Jmjd2c-silenced and Jmjd2c-SOX2-silenced ALDHbri+ tumor-bearing BALB/c nude mice to detect the effects on tumor progression. The results showed that Jmjd2c downregulation inhibited the sphere formation and the proportion of ALDHbri+ CSCs. The SOX2 decreased expression significantly in Jmjd2c RNAi mice, and they were positively co-expressed according to the bioinformatic analysis. In addition, SOX2 expression decreased in Jmjd2c shRNA ALDHbri+ CSCs, Jmjd2c and SOX2 proteins interacted with each other. Furthermore, Jmjd2c interference revealed significant blocking effect, and Jmjd2c-SOX2 interference contributed even stronger inhibition on ALDHbri+ tumor progression. The Jmjd2c and SOX2 levels were closely related to the development and prognosis of LSCC patients. This study indicated that Jmjd2c played key roles on maintaining ALDHbri+ CSC activity in LSCC by interacting with transcription factor SOX2. Jmjd2c might be a novel molecule for therapeutic targets and biomarkers in the diagnosis and clinical treatment of lung cancer.
Collapse
Affiliation(s)
- Min Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Yuling Hu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Feng Cai
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Lili Guo
- Department of Pathology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Yimin Mao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Yingmin Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| |
Collapse
|
2
|
Ooga M. Chromatin structure in totipotent mouse early preimplantation embryos. J Reprod Dev 2024; 70:152-159. [PMID: 38462486 PMCID: PMC11153117 DOI: 10.1262/jrd.2023-106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
Totipotency refers to the ability of a single cell to give rise to all the different cell types in the body. Terminally differentiated germ cells (sperm and oocytes) undergo reprogramming, which results in the acquisition of totipotency in zygotes. Since the 1990s, numerous studies have focused on the mechanisms of totipotency. With the emergence of the concept of epigenetic reprogramming, which is important for the undifferentiated and differentiated states of cells, the epigenomes of germ cells and fertilized oocytes have been thoroughly analyzed. However, in early immunostaining studies, detailed epigenomic information was difficult to obtain. In recent years, the explosive development of next-generation sequencing has made it possible to acquire genome-wide information and the rise of genome editing has facilitated the analysis of knockout mice, which was previously difficult. In addition, live imaging can effectively analyze zygotes and 2-cell embryos, for which the number of samples is limited, and provides biological insights that cannot be obtained by other methods. In this review, the progress of our research using these advanced techniques is traced back from the present to its earliest years.
Collapse
Affiliation(s)
- Masatoshi Ooga
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Kanagawa 252-5201, Japan
| |
Collapse
|
3
|
Chen K, Liu W, Zhu J, Kou X, Zhao Y, Wang H, Jiang C, Gao S, Kang L. Pivotal role for long noncoding RNAs in zygotic genome activation in mice. SCIENCE CHINA. LIFE SCIENCES 2024; 67:958-969. [PMID: 38305985 DOI: 10.1007/s11427-023-2502-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/22/2023] [Indexed: 02/03/2024]
Abstract
Vertebrate life begins with fertilization, and then the zygote genome is activated after transient silencing, a process termed zygotic genome activation (ZGA). Despite its fundamental role in totipotency and the initiation of life, the precise mechanism underlying ZGA initiation remains unclear. The existence of minor ZGA implies the possible critical role of noncoding RNAs in the initiation of ZGA. Here, we delineate the expression profile of long noncoding RNAs (lncRNAs) in early mouse embryonic development and elucidate their critical role in minor ZGA. Compared with protein-coding genes (PCGs), lncRNAs exhibit a stronger correlation with minor ZGA. Distinct H3K9me3 profiles can be observed between lncRNA genes and PCGs, and the enrichment of H3K9me3 before ZGA might explain the suspended expression of major ZGA-related PCGs despite possessing PolII pre-configuration. Furthermore, we identified the presence of PolII-enriched MuERV-L around the transcriptional start site of minor ZGA-related lncRNAs, and these repeats are responsible for the activation of minor ZGA-related lncRNAs and subsequent embryo development. Our study suggests that MuERV-L mediates minor ZGA lncRNA activation as a critical driver between epigenetic reprogramming triggered by fertilization and the embryo developmental program, thus providing clues for understanding the regulatory mechanism of totipotency and establishing bona fide totipotent stem cells.
Collapse
Affiliation(s)
- Kang Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenju Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jiang Zhu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China
| | - Xiaochen Kou
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China
| | - Yanhong Zhao
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China
| | - Hong Wang
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Cizhong Jiang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Shaorong Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China.
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China.
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Lan Kang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China.
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
4
|
Tourzani DA, Yin Q, Jackson EA, Rando OJ, Visconti PE, Gervasi MG. Sperm Energy Restriction and Recovery (SER) Alters Epigenetic Marks during the First Cell Cycle of Development in Mice. Int J Mol Sci 2022; 24:640. [PMID: 36614081 PMCID: PMC9820464 DOI: 10.3390/ijms24010640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
The sperm energy restriction and recovery (SER) treatment developed in our laboratory was shown to improve fertilization and blastocyst development following in vitro fertilization (IVF) in mice. Here, we investigated the effects of SER on early embryogenesis. Developmental events observed during the first cell cycle indicated that progression through the pronuclear stages of SER-generated embryos is advanced in comparison with control-generated embryos. These findings prompted further analysis of potential effects of SER on pronuclear chromatin dynamics, focusing on the key H3K4me3 and H3K27ac histone modifications. Nearly all the SER-generated embryos displayed H3K4me3 in the male pronuclei at 12 h post-insemination (HPI), while a subset of the control-generated embryos did not. Additionally, SER-generated embryos displayed a more homogenous intensity of H3K27ac at 8 and 12 HPI compared to control embryos. These changes in histone modifications during the first cell cycle were accompanied by differences in gene expression at the two-cell stage; both of these changes in early embryos could potentially play a role in the improved developmental outcomes of these embryos later in development. Our results indicate that sperm incubation conditions have an impact on early embryo development and can be useful for the improvement of assisted reproductive technology outcomes.
Collapse
Affiliation(s)
- Darya A. Tourzani
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, University of Massachusetts, Amherst, MA 01003, USA
| | - Qiangzong Yin
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Erica A. Jackson
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, University of Massachusetts, Amherst, MA 01003, USA
| | - Oliver J. Rando
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Pablo E. Visconti
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, University of Massachusetts, Amherst, MA 01003, USA
| | - Maria G. Gervasi
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
5
|
Chen B, Deng M, Pan MH, Sun SC, Liu H. Regulation of paternal 5mC oxidation and H3K9me2 asymmetry by ERK1/2 in mouse zygotes. Cell Biosci 2022; 12:25. [PMID: 35255956 PMCID: PMC8900417 DOI: 10.1186/s13578-022-00758-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background Extracellular-signal-regulated kinase (ERK) direct cell fate determination during the early development. The intricate interaction between the deposition of H3K9me2, de novo 5mC, and its oxides affects the remodeling of zygotic epigenetic modification. However, the role of fertilization-dependent ERK in the first cell cycle during zygotic reprogramming remains elusive. Methods In the present study, we used the small molecule inhibitor to construct the rapid ERK1/2 inactivation system in early zygotes in mice. The pronuclear H3K9me2 deposition assay and the pre-implantation embryonic development ability were assessed to investigate the effect of fertilization-dependent ERK1/2 on zygotic reprogramming and developmental potential. Immunofluorescence and RT-PCR were performed to measure the 5mC or its oxides and H3K9me2 deposition, and the expression of related genes. Results We reported that zygotic ERK1/2 inhibition impaired the development competence of pre-implantation embryos. Following the ERK1/2 inhibition, H3K9me2, as well as 5mC and its oxides, were all accumulated abnormally, and the excess accumulation of paternal H3K9me2 and 5mC resulted in reduced asymmetry between parental pronuclei. Furthermore, ERK1/2 inhibition triggered paternal pronuclear localization of the H3K9 methyltransferase G9a and Tet methylcytosine dioxygenase 3 (Tet3). Moreover, the excess localization of G9a antagonized the tight binding of Tet3 to paternal chromatin when ERK1/2 was inhibited. Conclusions In conclusion, we propose that zygotic H3K9me2 and 5mC are regulated by fertilization-dependent ERK1/2, which contributes to the development competence of pre-implantation embryos in mice. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00758-x.
Collapse
|
6
|
Abstract
Dramatic nuclear reorganization occurs during early development to convert terminally differentiated gametes to a totipotent zygote, which then gives rise to an embryo. Aberrant epigenome resetting severely impairs embryo development and even leads to lethality. How the epigenomes are inherited, reprogrammed, and reestablished in this critical developmental period has gradually been unveiled through the rapid development of technologies including ultrasensitive chromatin analysis methods. In this review, we summarize the latest findings on epigenetic reprogramming in gametogenesis and embryogenesis, and how it contributes to gamete maturation and parental-to-zygotic transition. Finally, we highlight the key questions that remain to be answered to fully understand chromatin regulation and nuclear reprogramming in early development.
Collapse
Affiliation(s)
- Zhenhai Du
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ke Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
7
|
Abstract
The zygotic genome is transcriptionally silent immediately after fertilization. In mice, initial activation of the zygotic genome occurs in the middle of the one-cell stage. At the mid-to-late two-cell stage, a burst of gene activation occurs after the second round of DNA replication, and the profile of transcribed genes changes dramatically. These two phases of gene activation are called minor and major zygotic gene activation (ZGA), respectively. As they mark the beginning of the gene expression program, it is important to elucidate gene expression regulation during these stages. This article reviews the outcomes of studies that have clarified the profiles and regulatory mechanisms of ZGA.
Collapse
Affiliation(s)
- Fugaku Aoki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| |
Collapse
|
8
|
FULKA H, LOI P, PALAZZESE L, BENC M, FULKA, Jr. J. Nucleus reprogramming/remodeling through selective enucleation (SE) of immature oocytes and zygotes: a nucleolus point of view. J Reprod Dev 2022; 68:165-172. [PMID: 35431279 PMCID: PMC9184824 DOI: 10.1262/jrd.2022-004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is now approximately 25 years since the sheep Dolly, the first cloned mammal where the somatic cell nucleus from an adult donor was used for transfer, was born. So far, somatic cell
nucleus transfer, where G1-phase nuclei are transferred into cytoplasts obtained by enucleation of mature metaphase II (MII) oocytes followed by the activation of the reconstructed cells, is
the most efficient approach to reprogram/remodel the differentiated nucleus. In general, in an enucleated oocyte (cytoplast), the nuclear envelope (NE, membrane) of an injected somatic cell
nucleus breaks down and chromosomes condense. This condensation phase is followed, after subsequent activation, by chromatin decondensation and formation of a pseudo-pronucleus (i) whose
morphology should resemble the natural postfertilization pronuclei (PNs). Thus, the volume of the transferred nuclei increases considerably by incorporating the content released from the
germinal vesicles (GVs). In parallel, the transferred nucleus genes must be reset and function similarly as the relevant genes in normal embryo reprogramming. This, among others, covers the
relevant epigenetic modifications and the appropriate organization of chromatin in pseudo-pronuclei. While reprogramming in SCNT is often discussed, the remodeling of transferred nuclei is
much less studied, particularly in the context of the developmental potential of SCNT embryos. It is now evident that correct reprogramming mirrors appropriate remodeling. At the same time,
it is widely accepted that the process of rebuilding the nucleus following SCNT is instrumental to the overall success of this procedure. Thus, in our contribution, we will mostly focus on
the remodeling of transferred nuclei. In particular, we discuss the oocyte organelles that are essential for the development of SCNT embryos.
Collapse
Affiliation(s)
- Helena FULKA
- Institute of Experimental Medicine, Prague, Czech Republic
| | - Pasqualino LOI
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Luca PALAZZESE
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Michal BENC
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Slovak Republic
| | | |
Collapse
|
9
|
Marei WFA, Leroy JLMR. Cellular Stress Responses in Oocytes: Molecular Changes and Clinical Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1387:171-189. [PMID: 34921349 DOI: 10.1007/5584_2021_690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The oocyte may be exposed to several sources of stress during its growth and maturation, which may lead to reduced fertility. Unfolded protein responses (UPRs) play a central role to maintain cell survival and repair. Transcription of heat shock proteins (HSPs) is a key element to facilitate reestablishment of cellular homeostasis. Unlike somatic cells, cellular mechanisms by which oocytes can sense and respond to stress are not well described. In here, we provide an overview about the impact of cellular stress, particularly due to lipotoxicity, oxidative stress, and heat stress on oocyte developmental competence. Next, we focus on the expression of HSPs in oocytes and their potential role in UPRs in oocytes and embryos. This is based on a comprehensive shotgun proteomic analysis of mature bovine oocytes performed in our laboratory, as well as a literature review. The topic is discussed in light of our understanding of similar mechanisms in other cell types and the limited transcriptional activity in oocytes. More fundamental research is needed both at the transcriptomic and proteomic levels to further understand cell stress response mechanisms in oocytes and early developing embryos, their critical interactions, and their long-term effects. Strategies to provide targeted external support to prevent or reduce cell stress levels during oocyte maturation or early embryo development under maternal metabolic stress conditions should be developed to maximize the odds of producing good quality embryos and guarantee optimal viability.
Collapse
Affiliation(s)
- Waleed F A Marei
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium. .,Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Jo L M R Leroy
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
10
|
Chromatin remodeling in bovine embryos indicates species-specific regulation of genome activation. Nat Commun 2020; 11:4654. [PMID: 32943640 PMCID: PMC7498599 DOI: 10.1038/s41467-020-18508-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 08/24/2020] [Indexed: 11/08/2022] Open
Abstract
The shift from maternal to embryonic control is a critical developmental milestone in preimplantation development. Widespread transcriptomic and epigenetic remodeling facilitate this transition from terminally differentiated gametes to totipotent blastomeres, but the identity of transcription factors (TF) and genomic elements regulating embryonic genome activation (EGA) are poorly defined. The timing of EGA is species-specific, e.g., the timing of murine and human EGA differ significantly. To deepen our understanding of mammalian EGA, here we profile changes in open chromatin during bovine preimplantation development. Before EGA, open chromatin is enriched for maternal TF binding, similar to that observed in humans and mice. During EGA, homeobox factor binding becomes more prevalent and requires embryonic transcription. A cross-species comparison of open chromatin during preimplantation development reveals strong similarity in the regulatory circuitry underlying bovine and human EGA compared to mouse. Moreover, TFs associated with murine EGA are not enriched in cattle or humans, indicating that cattle may be a more informative model for human preimplantation development than mice. Preimplantation embryos undergo extensive transcriptomic and epigenomic remodeling. Here the authors assay open chromatin in bovine oocytes, embryos, and embryonic stem cells, and compare the transcriptomes and epigenomes of cattle, human and mouse embryos, revealing species-specific regulation of genome activation.
Collapse
|
11
|
Sun Y, Miao N, Sun T. Detect accessible chromatin using ATAC-sequencing, from principle to applications. Hereditas 2019; 156:29. [PMID: 31427911 PMCID: PMC6696680 DOI: 10.1186/s41065-019-0105-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
Background Chromatin accessibility is crucial for gene expression regulation in specific cells and in multiple biological processes. Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq) is an effective way to reveal chromatin accessibility at a genome-wide level. Through ATAC-seq, produced reads from a small number of cells reflect accessible regions that correspond to nucleosome positioning and transcription factor binding sites, due to probing hyperactive Tn5 transposase to DNA sequence. Conclusion In this review, we summarize both principle and features of ATAC-seq, highlight its applications in basic and clinical research. ATAC-seq has generated comprehensive chromatin accessible maps, and is becoming a powerful tool to understand dynamic gene expression regulation in stem cells, early embryos and tumors.
Collapse
Affiliation(s)
- Yuanyuan Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, 668 Jimei Road, Xiamen, 361021 Fujian China
| | - Nan Miao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, 668 Jimei Road, Xiamen, 361021 Fujian China
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, 668 Jimei Road, Xiamen, 361021 Fujian China
| |
Collapse
|
12
|
Li X, Ding D, Yao J, Zhou B, Shen T, Qi Y, Ni T, Wei G. Chromatin remodeling factor BAZ1A regulates cellular senescence in both cancer and normal cells. Life Sci 2019; 229:225-232. [PMID: 31085244 DOI: 10.1016/j.lfs.2019.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022]
Abstract
AIMS Cellular senescence is a well-known cancer prevention mechanism, inducing cancer cells to senescence can enhance cancer immunotherapy. However, how cellular senescence is regulated is not fully understood. Dynamic chromatin changes have been discovered during cellular senescence, while the causality remains elusive. BAZ1A, a gene coding the accessory subunit of ATP-dependent chromatin remodeling complex, showed decreased expression in multiple cellular senescence models. We aim to investigate the functional role of BAZ1A in regulating senescence in cancer and normal cells. MATERIALS AND METHODS Knockdown of BAZ1A was performed via lentivirus mediated short hairpin RNA (shRNA) in various cancer cell lines (A549 and U2OS) and normal cells (HUVEC, NIH3T3 and MEF). A series of senescence-associated phenotypes were quantified by CCK-8 assay, SA-β-Gal staining and EdU incorporation assay, etc. KEY FINDINGS: Knockdown (KD) of BAZ1A induced series of senescence-associated phenotypes in both cancer and normal cells. BAZ1A-KD caused the upregulated expression of SMAD3, which in turn activated the transcription of p21 coding gene CDKN1A and resulted in senescence-associated phenotypes in human cancer cells (A549 and U2OS). SIGNIFICANCE Our results revealed chromatin remodeling modulator BAZ1A acting as a novel regulator of cellular senescence in both normal and cancer cells, indicating a new target for potential cancer treatment.
Collapse
Affiliation(s)
- Xueping Li
- Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Dong Ding
- Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jun Yao
- Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Bin Zhou
- Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ting Shen
- Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yun Qi
- The State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ting Ni
- Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Gang Wei
- Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
13
|
Liu Y, Xu S, Lian X, Su Y, Zhong Y, Lv R, Mo K, Zhu H, Xiaojiang W, Xu L, Wang S. Atypical GATA protein TRPS1 plays indispensable roles in mouse two-cell embryo. Cell Cycle 2019; 18:437-451. [PMID: 30712485 DOI: 10.1080/15384101.2019.1577650] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Zygotic genome activation (ZGA) is one of the most critical events at the beginning of mammalian preimplantation embryo development (PED). The mechanisms underlying mouse ZGA remain unclear although it has been widely studied. In the present study, we identified that tricho-rhino-phalangeal syndrome 1 (TRPS1), an atypical GATA family member, is an important factor for ZGA in mouse PED. We found that the Trps1 mRNA level peaked at the one-cell stage while TRPS1 protein did so at the two/four-cell stage. Knockdown of Trps1 by the microinjection of Trps1 siRNA reduced the developmental rate of mouse preimplantation embryos by approximately 30%, and increased the expression of ZGA marker genes MuERV-L and Zscan4d via suppressing the expression of major histone markers H3K4me3 and H3K27me3. Furthermore, Trps1 knockdown decreased the expression of Sox2 but increased Oct4 expression. We conclude that TRPS1 may be indispensable for zygotic genome activation during mouse PED.
Collapse
Affiliation(s)
- Yue Liu
- a Key Laboratory of Stem Cell Engineering and Regenerative Medicine , Fujian Province University
| | - Songhua Xu
- b Department of Human Anatomy, Histology and Embryology , Fujian Medical University , Fuzhou , P. R. China
| | - Xiuli Lian
- b Department of Human Anatomy, Histology and Embryology , Fujian Medical University , Fuzhou , P. R. China
| | - Yang Su
- b Department of Human Anatomy, Histology and Embryology , Fujian Medical University , Fuzhou , P. R. China
| | - Yuhuan Zhong
- b Department of Human Anatomy, Histology and Embryology , Fujian Medical University , Fuzhou , P. R. China
| | - Ruimin Lv
- b Department of Human Anatomy, Histology and Embryology , Fujian Medical University , Fuzhou , P. R. China
| | - Kaien Mo
- b Department of Human Anatomy, Histology and Embryology , Fujian Medical University , Fuzhou , P. R. China
| | - Huimin Zhu
- c Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences , Fujian Medical University , Fuzhou , P. R. China.,d Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences , Fujian Medical University , Fuzhou , P. R. China
| | - Wang Xiaojiang
- b Department of Human Anatomy, Histology and Embryology , Fujian Medical University , Fuzhou , P. R. China
| | - Lixuan Xu
- b Department of Human Anatomy, Histology and Embryology , Fujian Medical University , Fuzhou , P. R. China
| | - Shie Wang
- a Key Laboratory of Stem Cell Engineering and Regenerative Medicine , Fujian Province University.,b Department of Human Anatomy, Histology and Embryology , Fujian Medical University , Fuzhou , P. R. China
| |
Collapse
|
14
|
Ooga M, Funaya S, Hashioka Y, Fujii W, Naito K, Suzuki MG, Aoki F. Chd9 mediates highly loosened chromatin structure in growing mouse oocytes. Biochem Biophys Res Commun 2018; 500:583-588. [PMID: 29665362 DOI: 10.1016/j.bbrc.2018.04.105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/13/2018] [Indexed: 11/25/2022]
Abstract
During oogenesis, oocytes prepare for embryonic development following fertilization. The mechanisms underlying this process are still unknown. Recently, it has been suggested that a loosened chromatin structure is involved in pluripotency and totipotency in embryonic stem (ES) cells and early preimplantation embryos, respectively. Here, we explored chromatin looseness in oocytes by fluorescence recovery after photobleaching (FRAP) using enhanced green fluorescent protein-tagged histone H2B. The results indicated that the chromatin in growing oocytes was already highly loosened to a level comparable to that in early preimplantation embryos. To elucidate the mechanism underlying the loosened chromatin structure in oocytes, we focused on chromodomain helicase DNA binding protein 9 (Chd9), which is highly expressed in growing oocytes. The oocytes from Chd9 knockout mice (Chd9-/-) generated using the CRISPR/Cas9 system exhibited a less loosened chromatin structure than that of wild-type mice, suggesting that Chd9 is involved in the loosened chromatin structure in growing oocytes. These results suggest that a loosened chromatin structure, which is mediated by Chd9, is a prerequisite for the acquisition of totipotency after fertilization.
Collapse
Affiliation(s)
- Masatoshi Ooga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Satoshi Funaya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Yuki Hashioka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Wataru Fujii
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Naito
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masataka G Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Fugaku Aoki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan.
| |
Collapse
|