1
|
Niinuma S, Wake Y, Nakagawa Y, Kaneko T. Importance of nuclear localization signal-fused Cas9 in the production of genome-edited mice via embryo electroporation. Biochem Biophys Res Commun 2023; 685:149140. [PMID: 37918326 DOI: 10.1016/j.bbrc.2023.149140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
Previously, to generate genome-edited animals by introducing CRISPR-associated protein 9 (Cas9) into embryos, we developed the Technique for Animal Knockout system by Electroporation (TAKE). Additionally, by fluorescently labeling Cas9, we successfully visualized the Cas9 introduced into the pronuclei of embryos; however, whether Cas9 was introduced directly into the pronuclei by electric pulse or transferred from the cytoplasm by nuclear localization signal (NLS) remained unknown. Herein, we evaluated the localization of Cas9 with (Cas9-NLS) or without NLS (Cas9-noNLS) in mice embryos following electroporation by fusing them with GFP. Furthermore, we visually studied their effects on genome-editing rates in offspring by targeting tyrosinase gene. Fluorescence intensity in pronuclei of Cas9-NLS-electroporated embryos and genome-editing rates of offspring were significantly higher than those of Cas9-noNLS-electroporated embryos. Furthermore, fluorescence in Cas9-NLS-electroporated embryos in which pronuclei had not yet appeared 2.5 h after insemination was observed in the pronuclei of embryos appearing 3.5 h after electroporation. We demonstrated the effective transportation of Cas9 from the cytoplasm to pronuclei by the NLS following TAKE, which resulted in increased genome-editing rates in offspring. The TAKE along with fluorescently labeled nucleases can be used to verify nuclease delivery into individual embryos prior to embryo transfer for efficiently producing genome-edited animals.
Collapse
Affiliation(s)
- Sakura Niinuma
- Division of Science and Engineering, Graduate School of Arts and Science, Iwate University, Iwate, 020-8551, Japan
| | - Yui Wake
- Division of Science and Engineering, Graduate School of Arts and Science, Iwate University, Iwate, 020-8551, Japan
| | - Yuki Nakagawa
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Iwate, 020-8551, Japan
| | - Takehito Kaneko
- Division of Science and Engineering, Graduate School of Arts and Science, Iwate University, Iwate, 020-8551, Japan; Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Iwate, 020-8551, Japan.
| |
Collapse
|
2
|
Ito G, Tatara Y, Itoh K, Yamada M, Yamashita T, Sakamoto K, Nozaki T, Ishida K, Wake Y, Kaneko T, Fukuda T, Sugano E, Tomita H, Ozaki T. Novel dicarbonyl metabolic pathway via mitochondrial ES1 possessing glyoxalase III activity. BBA ADVANCES 2023; 3:100092. [PMID: 37250100 PMCID: PMC10209487 DOI: 10.1016/j.bbadva.2023.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
Glycation, caused by reactive dicarbonyls, plays a role in various diseases by forming advanced glycation end products. In live cells, reactive dicarbonyls such as glyoxal (GO) and methylglyoxal (MGO) are produced during cell metabolism, and these should be removed consistently. However, the dicarbonyl metabolic system in the mitochondria remains unclear. It has been speculated that the mammalian mitochondrial protein ES1 is a homolog of bacterial elbB possessing glyoxalase III (GLO3) activity. Therefore, in this study, to investigate ES1 functions and GLO3 activity, we generated ES1-knockout (KO) mice and recombinant mouse ES1 protein and investigated the biochemical and histological analyses. In the mitochondrial fraction obtained from ES1-KO mouse brains, the GO metabolism and cytochrome c oxidase activity were significantly lower than those in the mitochondrial fraction obtained from wildtype (WT) mouse brains. However, the morphological features of the mitochondria did not change noticeably in the ES1-KO mouse brains compared with those in the WT mouse brains. The mitochondrial proteome analysis showed that the MGO degradation III pathway and oxidative phosphorylation-related proteins were increased. These should be the response to the reduced GO metabolism caused by ES1 deletion to compensate for the dicarbonyl metabolism and damaged cytochrome c oxidase by elevated GO. Recombinant mouse ES1 protein exhibited catalytic activity of converting GO to glycolic acid. These results indicate that ES1 possesses GLO3 activity and modulates the metabolism of GO in the mitochondria. To our knowledge, this is the first study to show a novel metabolic pathway for reactive dicarbonyls in mitochondria.
Collapse
Affiliation(s)
- Ginga Ito
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Yota Tatara
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifuchou, Hirosaki, Aomori 036-8562, Japan
| | - Ken Itoh
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifuchou, Hirosaki, Aomori 036-8562, Japan
| | - Miwa Yamada
- Department of Biological Chemistry, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Tetsuro Yamashita
- Department of Biological Chemistry, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Kimitoshi Sakamoto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Takayuki Nozaki
- Technical Support Center for Life Science Research, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Kinji Ishida
- Technical Support Center for Life Science Research, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Yui Wake
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Takehito Kaneko
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Tomokazu Fukuda
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Eriko Sugano
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Hiroshi Tomita
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Taku Ozaki
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| |
Collapse
|
3
|
Hiramuki Y, Abe S, Uno N, Kazuki K, Takata S, Miyamoto H, Takayama H, Morimoto K, Takehara S, Osaki M, Tanihata J, Takeda S, Tomizuka K, Oshimura M, Kazuki Y. Full-length human dystrophin on human artificial chromosome compensates for mouse dystrophin deficiency in a Duchenne muscular dystrophy mouse model. Sci Rep 2023; 13:4360. [PMID: 36928364 PMCID: PMC10020543 DOI: 10.1038/s41598-023-31481-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Dystrophin maintains membrane integrity as a sarcolemmal protein. Dystrophin mutations lead to Duchenne muscular dystrophy, an X-linked recessive disorder. Since dystrophin is one of the largest genes consisting of 79 exons in the human genome, delivering a full-length dystrophin using virus vectors is challenging for gene therapy. Human artificial chromosome is a vector that can load megabase-sized genome without any interference from the host chromosome. Chimeric mice carrying a 2.4-Mb human dystrophin gene-loaded human artificial chromosome (DYS-HAC) was previously generated, and dystrophin expression from DYS-HAC was confirmed in skeletal muscles. Here we investigated whether human dystrophin expression from DYS-HAC rescues the muscle phenotypes seen in dystrophin-deficient mice. Human dystrophin was normally expressed in the sarcolemma of skeletal muscle and heart at expected molecular weights, and it ameliorated histological and functional alterations in dystrophin-deficient mice. These results indicate that the 2.4-Mb gene is enough for dystrophin to be correctly transcribed and translated, improving muscular dystrophy. Therefore, this technique using HAC gives insight into developing new treatments and novel humanized Duchenne muscular dystrophy mouse models with human dystrophin gene mutations.
Collapse
Affiliation(s)
- Yosuke Hiramuki
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Satoshi Abe
- Trans Chromosomics Inc., 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Narumi Uno
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
- Laboratory of Bioengineering, Faculty of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Kanako Kazuki
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Shuta Takata
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Hitomaru Miyamoto
- Department of Chromosome Biomedical Engineering, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Haruka Takayama
- Trans Chromosomics Inc., 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Kayoko Morimoto
- Trans Chromosomics Inc., 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Shoko Takehara
- Trans Chromosomics Inc., 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Mitsuhiko Osaki
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
- Division of Experimental Pathology, Department of Functional Morphology, Faculty of Medicine, Tottori University, Yonago, Tottori, 683‑8503, Japan
| | - Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8, Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Kazuma Tomizuka
- Laboratory of Bioengineering, Faculty of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Mitsuo Oshimura
- Trans Chromosomics Inc., 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
- Department of Chromosome Biomedical Engineering, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
- Department of Chromosome Biomedical Engineering, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
- Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
4
|
Kaneko T. Genome Editing of Rat. Methods Mol Biol 2023; 2637:223-231. [PMID: 36773150 DOI: 10.1007/978-1-0716-3016-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Many genetically engineered rat strains have been produced by the development of genome editing technology, although it used to be technical difficulty and low production efficiency. Knockout and knock-in strains can be simple and quick produced using zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), or clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9. Presently, genome edited strains have been produced by microinjection and a new electroporation method named technique for animal knockout system by electroporation (TAKE). This chapter presents the latest protocols for producing genome edited rats.
Collapse
Affiliation(s)
- Takehito Kaneko
- Division of Fundamental and Applied Sciences, Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan.
| |
Collapse
|
5
|
Abstract
Many genome-edited mouse and rat strains have been produced using engineered endonucleases, including zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), or clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9. Especially, CRISPR-Cas9 is powerful tool that can be easy, rapid, and high-efficiency-produced new genome-edited strains. Furthermore, new technique, Technique for Animal Knockout system by Electroporation (TAKE), efficiently accelerate production of new strains by direct nuclease introduction into intact embryos using electroporation. This chapter presents a latest technical information in the production of genome-edited mouse and rat by TAKE method.
Collapse
Affiliation(s)
- Takehito Kaneko
- Division of Fundamental and Applied Sciences, Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan.
| |
Collapse
|
6
|
Yamaguchi N, Suzuki A, Yoshida A, Tanaka T, Aoyama K, Oishi H, Hara Y, Ogi T, Amano I, Kameo S, Koibuchi N, Shibata Y, Ugawa S, Mizuno H, Saitoh S. The iodide transporter Slc26a7 impacts thyroid function more strongly than Slc26a4 in mice. Sci Rep 2022; 12:11259. [PMID: 35788623 PMCID: PMC9253019 DOI: 10.1038/s41598-022-15151-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/20/2022] [Indexed: 11/09/2022] Open
Abstract
SLC26A4 is a known iodide transporter, and is localized at the apical membrane of thyrocytes. Previously, we reported that SLC26A7 is also involved in iodide transport and that Slc26a7 is a novel causative gene for congenital hypothyroidism. However, its detailed role in vivo remains to be elucidated. We generated mice that were deficient in Slc26a7 and Slc26a4 to delineate differences and associations in their roles in iodide transport. Slc26a7-/- mice showed goitrous congenital hypothyroidism and mild growth failure on a normal diet. Slc26a7-/- mice with a low iodine environment showed marked growth failure. In contrast, Slc26a4-/- mice showed no growth failure and hypothyroidism in the same low iodine environment. Double-deficient mice showed more severe growth failure than Slc26a7-/- mice. RNA-seq analysis revealed that the number of differentially expressed genes (DEGs) in Slc26a7-/- mice was significantly higher than that in Slc26a4-/- mice. These indicate that SLC26A7 is more strongly involved in iodide transport and the maintenance of thyroid function than SLC26A4.
Collapse
Affiliation(s)
- Naoya Yamaguchi
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Atsushi Suzuki
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Aya Yoshida
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Tatsushi Tanaka
- Department of Pediatrics, Toyohashi Municipal Hospital, Toyohashi, Japan
| | - Kohei Aoyama
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuichiro Hara
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Izuki Amano
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Satomi Kameo
- Department of Nutrition, Koshien University, Takarazuka, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yasuhiro Shibata
- Department of Anatomy and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinya Ugawa
- Department of Anatomy and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Haruo Mizuno
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| |
Collapse
|
7
|
Taketsuru H, Tsukada YI, Kaneko T. Survivability and subsequent development of vitrified early-stage mouse embryos after warming at different temperatures. Biochem Biophys Res Commun 2022; 591:50-53. [PMID: 34999253 DOI: 10.1016/j.bbrc.2021.12.092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/24/2021] [Indexed: 11/15/2022]
Abstract
Cryopreservation of embryos is a useful method for stably preserving various strains for a long time, and the cryopreserved embryos can be used at any time by simple warming. However, the viability of cryopreserved embryos, particularly vitrification at an early stage, is low compared to that of fresh embryos. As the warming process during vitrification is known to affect the survivability and subsequent development of embryos, the present study aimed to examine the viability and subsequent development of vitrified early-stage mouse embryos after warming at different temperatures. The survival rate of pronuclear and 2-cell stage embryos warmed at 60 °C (97% and 88%, respectively) was significantly higher than that of the embryos warmed at 37 °C (46% and 48%, respectively). The pronuclear and 2-cell stage embryos warmed at 60 °C (86% and 100%) showed better development to the blastocyst stage than the embryos warmed at 37 °C (72% and 84%, respectively). The development of offspring of the surviving embryos was similar at both the warming temperatures. These results showed that the survivability and subsequent development of vitrified early-stage mouse embryos were obviously increased upon rapid warming. This improved warming process could be helpful for the maintenance and reproduction of genetic resources.
Collapse
Affiliation(s)
- Hiroaki Taketsuru
- Advanced Biological Information Research Division, INAMORI Frontier Research Center, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yu-Ichi Tsukada
- Advanced Biological Information Research Division, INAMORI Frontier Research Center, Kyushu University, Fukuoka, 819-0395, Japan
| | - Takehito Kaneko
- Division of Science and Engineering Graduate School of Arts and Science, Iwate University, Iwate, 020-8551, Japan; Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Iwate, 020-8551, Japan.
| |
Collapse
|
8
|
Successful pseudopregnancy of rats by short period artificial stimulation using sonic vibration. Sci Rep 2022; 12:1187. [PMID: 35075219 PMCID: PMC8786822 DOI: 10.1038/s41598-022-05293-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/04/2022] [Indexed: 11/09/2022] Open
Abstract
Psuedopregnancy for embryo transfer (ET) is usually induced in rats by mating with vasectomized males. Previously, we successfully induced pseudopregnancy using sonic vibration instead (Easy-ET method). The transferred embryos developed normally. Conventionally, stimulation is performed 7 × 30 s with 5 min intervals at the day before ET. However, this protocol is time-consuming because it imitates natural mating behavior. Here, we investigated pseudopregnancy induction with shorter stimulation times. Stimulation was performed 2 × 30 s, with 30 s intervals at the proestrus stage at the day before ET. Of the transferred pronuclear or two-cell embryos, 43% or 62% developed normally, respectively. Furthermore, 67% or 68% of transferred pronuclear or two-cell embryos in rats at estrus stage stimulated on the day of ET developed normally, respectively. Pseudopregnancy was successfully induced with shorter stimulation. Furthermore, this protocol may be used to perform a single-day stimulation and ET operation at the estrus stage.
Collapse
|