1
|
Bobis Camacho J, Nilsson J, Larsson DGJ, Flach CF. Evaluation of culture conditions for sewage-based surveillance of antibiotic resistance in Klebsiella pneumoniae. J Glob Antimicrob Resist 2024; 37:122-128. [PMID: 38552871 DOI: 10.1016/j.jgar.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/24/2024] [Accepted: 03/09/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Recent studies have shown promise in predicting clinical antibiotic resistance rates from sewage data. Few have focused on Klebsiella pneumoniae, despite its virulence and importance as carrier of antibiotic resistance. Several media have been suggested for the isolation of K. pneumoniae from complex samples. However, comprehensive evaluations of culture protocols for isolation of K. pneumoniae from sewage are lacking. METHODS Here, influent samples from a major Swedish sewage treatment plant were used to evaluate ten culture conditions in parallel: cultivation on Brilliant green containing Inositol-Nitrate-Deoxycholate agar (BIND), Bruce agar, Klebsiella ChromoSelect Selective agar®, MacConkey-Inositol-Carbenicillin, or Simmons Citrate Agar with Inositol (SCAI) incubated at either 37°C or 42°C for 44 h. The culture conditions were compared based on colony counts of presumed K. pneumoniae and identification precision assessed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RESULTS The sensitivity was lowest for BIND, whereas it was similar for the other media irrespective of incubation temperature. For four media, a better precision was observed after incubation at 42°C compared to 37°C, to a large extent explained by a lower frequency of captured Klebsiella oxytoca. SCAI incubated at 42°C showed the highest precision (84.4%). By combining this protocol with subsequent antibiotic resistance screening of collected isolates, low resistance rates in sewage K. pneumoniae were revealed, potentially reflecting the local resistance landscape. CONCLUSION When combined with downstream analyses, SCAI incubated at 42°C could be a valuable culture protocol for sewage-based studies on various aspects of K. pneumoniae epidemiology including antibiotic resistance prevalence.
Collapse
Affiliation(s)
- Julián Bobis Camacho
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Johanna Nilsson
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Dan Göran Joakim Larsson
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
2
|
Lindstedt K, Buczek D, Pedersen T, Hjerde E, Raffelsberger N, Suzuki Y, Brisse S, Holt K, Samuelsen Ø, Sundsfjord A. Detection of Klebsiella pneumoniae human gut carriage: a comparison of culture, qPCR, and whole metagenomic sequencing methods. Gut Microbes 2022; 14:2118500. [PMID: 36045603 PMCID: PMC9450895 DOI: 10.1080/19490976.2022.2118500] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Klebsiella pneumoniae is an important opportunistic healthcare-associated pathogen and major contributor to the global spread of antimicrobial resistance. Gastrointestinal colonization with K. pneumoniae is a major predisposing risk factor for infection and forms an important hub for the dispersal of resistance. Current culture-based detection methods are time consuming, give limited intra-sample abundance and strain diversity information, and have uncertain sensitivity. Here we investigated the presence and abundance of K. pneumoniae at the species and strain level within fecal samples from 103 community-based adults by qPCR and whole metagenomic sequencing (WMS) compared to culture-based detection. qPCR demonstrated the highest sensitivity, detecting K. pneumoniae in 61.2% and 75.8% of direct-fecal and culture-enriched sweep samples, respectively, including 52/52 culture-positive samples. WMS displayed lower sensitivity, detecting K. pneumoniae in 71.2% of culture-positive fecal samples at a 0.01% abundance cutoff, and was inclined to false positives in proportion to the relative abundance of other Enterobacterales present. qPCR accurately quantified K. pneumoniae to 16 genome copies/reaction while WMS could estimate relative abundance to at least 0.01%. Quantification by both methods correlated strongly with each other (Spearman's rho = 0.91). WMS also supported accurate intra-sample K. pneumoniae sequence type (ST)-level diversity detection from fecal microbiomes to 0.1% relative abundance, agreeing with the culture-based detected ST in 16/19 samples. Our results show that qPCR and WMS are sensitive and reliable tools for detection, quantification, and strain analysis of K. pneumoniae from fecal samples with potential to support infection control and enhance insights in K. pneumoniae gastrointestinal ecology.
Collapse
Affiliation(s)
- Kenneth Lindstedt
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway,CONTACT Kenneth Lindstedt
| | - Dorota Buczek
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Torunn Pedersen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Erik Hjerde
- Department of Chemistry, UiT the Arctic University of Norway, Tromsø, Norway
| | - Niclas Raffelsberger
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway,Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Sylvain Brisse
- Biodiversity and Epidemiology of Bacterial Pathogens Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Kathryn Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Australia,Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Ørjan Samuelsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway,Department of Pharmacy, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Arnfinn Sundsfjord
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway,Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway,Arnfinn Sundsfjord Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, 9038, Norway
| |
Collapse
|
3
|
Rodrigues C, Hauser K, Cahill N, Ligowska-Marzęta M, Centorotola G, Cornacchia A, Garcia Fierro R, Haenni M, Nielsen EM, Piveteau P, Barbier E, Morris D, Pomilio F, Brisse S. High Prevalence of Klebsiella pneumoniae in European Food Products: a Multicentric Study Comparing Culture and Molecular Detection Methods. Microbiol Spectr 2022; 10:e0237621. [PMID: 35196810 PMCID: PMC8865463 DOI: 10.1128/spectrum.02376-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/20/2022] [Indexed: 12/20/2022] Open
Abstract
The Klebsiella pneumoniae species complex (KpSC) is a leading cause of multidrug-resistant human infections. To better understand the potential contribution of food as a vehicle of KpSC, we conducted a multicentric study to define an optimal culture method for its recovery from food matrices and to characterize food isolates phenotypically and genotypically. Chicken meat (n = 160) and salad (n = 145) samples were collected in five European countries and screened for the presence of KpSC using culture-based and zur-khe intergenic region (ZKIR) quantitative PCR (qPCR) methods. Enrichment using buffered peptone water followed by streaking on Simmons citrate agar with inositol (44°C for 48 h) was defined as the most suitable selective culture method for KpSC recovery. A high prevalence of KpSC was found in chicken meat (60% and 52% by ZKIR qPCR and the culture approach, respectively) and salad (30% and 21%, respectively) samples. Genomic analyses revealed high genetic diversity with the dominance of phylogroups Kp1 (91%) and Kp3 (6%). A total of 82% of isolates presented a natural antimicrobial susceptibility phenotype and genotype, with only four CTX-M-15-producing isolates detected. Notably, identical genotypes were found across samples-same food type and same country (15 cases), different food types and same country (1), and same food type and two countries (1)-suggesting high rates of transmission of KpSC within the food sector. Our study provides a novel isolation strategy for KpSC from food matrices and reinforces the view of food as a potential source of KpSC colonization in humans. IMPORTANCE Bacteria of the Klebsiella pneumoniae species complex (KpSC) are ubiquitous, and K. pneumoniae is a leading cause of antibiotic-resistant infections in humans. Despite the urgent public health threat represented by K. pneumoniae, there is a lack of knowledge of the contribution of food sources to colonization and subsequent infection in humans. This is partly due to the absence of standardized methods for characterizing the presence of KpSC in food matrices. Our multicentric study provides and implements a novel isolation strategy for KpSC from food matrices and shows that KpSC members are highly prevalent in salads and chicken meat, reinforcing the view of food as a potential source of KpSC colonization in humans. Despite the large genetic diversity and the low levels of resistance detected, the occurrence of identical genotypes across samples suggests high rates of transmission of KpSC within the food sector, which need to be further explored to define possible control strategies.
Collapse
Affiliation(s)
- Carla Rodrigues
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Kathrin Hauser
- Institute for Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna/Graz, Austria
| | - Niamh Cahill
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland
| | | | - Gabriella Centorotola
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Alessandra Cornacchia
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Raquel Garcia Fierro
- Unité Antibiorésistance et Virulence Bactériennes, Université Claude Bernard Lyon 1 - ANSES, Lyon, France
| | - Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, Université Claude Bernard Lyon 1 - ANSES, Lyon, France
| | | | | | - Elodie Barbier
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Sylvain Brisse
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| |
Collapse
|
4
|
The ZKIR Assay, a Real-Time PCR Method for the Detection of Klebsiella pneumoniae and Closely Related Species in Environmental Samples. Appl Environ Microbiol 2020; 86:AEM.02711-19. [PMID: 32005732 PMCID: PMC7082575 DOI: 10.1128/aem.02711-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/21/2020] [Indexed: 11/20/2022] Open
Abstract
The Klebsiella pneumoniae species complex Kp includes human and animal pathogens, some of which are emerging as hypervirulent and/or antibiotic-resistant strains. These pathogens are diverse and classified into seven phylogroups, which may differ in their reservoirs and epidemiology. Proper management of this public health hazard requires a better understanding of Kp ecology and routes of transmission to humans. So far, detection of these microorganisms in complex matrices such as food or the environment has been difficult due to a lack of accurate and sensitive methods. Here, we describe a novel method based on real-time PCR which enables detection of all Kp phylogroups with high sensitivity and specificity. We used this method to detect Kp isolates from environmental samples, and we show based on genomic sequencing that they differ in antimicrobial resistance and virulence gene content from human clinical Kp isolates. The ZKIR PCR assay will enable rapid screening of multiple samples for Kp presence and will thereby facilitate tracking the dispersal patterns of these pathogenic strains across environmental, food, animal and human sources. Klebsiella pneumoniae is of growing public health concern due to the emergence of strains that are multidrug resistant, virulent, or both. Taxonomically, the K. pneumoniae complex (“Kp”) includes seven phylogroups, with Kp1 (K. pneumoniaesensu stricto) being medically prominent. Kp can be present in environmental sources such as soils and vegetation, which could act as reservoirs of animal and human infections. However, the current lack of screening methods to detect Kp in complex matrices limits research on Kp ecology. Here, we analyzed 1,001 genome sequences and found that existing molecular detection targets lack specificity for Kp. A novel real-time PCR method, the ZKIR (zur-khe intergenic region) assay, was developed and used to detect Kp in 96 environmental samples. The results were compared to a culture-based method using Simmons citrate agar with 1% inositol medium coupled to matrix-assisted laser desorption ionization–time of flight mass spectrometry identification. Whole-genome sequencing of environmental Kp was performed. The ZKIR assay was positive for the 48 tested Kp reference strains, whereas 88 non-Kp strains were negative. The limit of detection of Kp in spiked soil microcosms was 1.5 × 10−1 CFU g−1 after enrichment for 24 h in lysogeny broth supplemented with ampicillin, and it was 1.5 × 103 to 1.5 × 104 CFU g−1 directly after soil DNA extraction. The ZKIR assay was more sensitive than the culture method. Kp was detected in 43% of environmental samples. Genomic analysis of the isolates revealed a predominance of phylogroups Kp1 (65%) and Kp3 (32%), a high genetic diversity (23 multilocus sequence types), a quasi-absence of antibiotic resistance or virulence genes, and a high frequency (50%) of O-antigen type 3. This study shows that the ZKIR assay is an accurate, specific, and sensitive novel method to detect the presence of Kp in complex matrices and indicates that Kp isolates from environmental samples differ from clinical isolates. IMPORTANCE The Klebsiella pneumoniae species complex Kp includes human and animal pathogens, some of which are emerging as hypervirulent and/or antibiotic-resistant strains. These pathogens are diverse and classified into seven phylogroups, which may differ in their reservoirs and epidemiology. Proper management of this public health hazard requires a better understanding of Kp ecology and routes of transmission to humans. So far, detection of these microorganisms in complex matrices such as food or the environment has been difficult due to a lack of accurate and sensitive methods. Here, we describe a novel method based on real-time PCR which enables detection of all Kp phylogroups with high sensitivity and specificity. We used this method to detect Kp isolates from environmental samples, and we show based on genomic sequencing that they differ in antimicrobial resistance and virulence gene content from human clinical Kp isolates. The ZKIR PCR assay will enable rapid screening of multiple samples for Kp presence and will thereby facilitate tracking the dispersal patterns of these pathogenic strains across environmental, food, animal and human sources.
Collapse
|
5
|
Tsai YK, Liou CH, Chang FY, Fung CP, Lin JC, Siu LK. Effects of different resistance mechanisms on susceptibility to different classes of antibiotics in Klebsiella pneumoniae strains: a strategic system for the screening and activity testing of new antibiotics. J Antimicrob Chemother 2018; 72:3302-3316. [PMID: 28961715 DOI: 10.1093/jac/dkx285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/13/2017] [Indexed: 11/13/2022] Open
Abstract
Objectives A strategic system for the screening and testing of new antibiotics was created to facilitate the development of antibiotics that are robustly effective against MDR bacteria. Methods In-frame deletion, site-directed mutagenesis and plasmid transformation were used to generate genetically engineered strains with various resistance mechanisms from a fully susceptible clinical isolate of Klebsiella pneumoniae. Antimicrobial susceptibility testing and a mouse infection model were used to test antibiotics against these strains in vitro and in vivo, respectively. Results A total of 193 strains, including 29 strains with chromosome-mediated resistance, 33 strains with plasmid-mediated resistance and 131 strains with a combination of both resistance mechanisms were constructed; these strains covered resistance to β-lactams, quinolones, aminoglycosides, tetracyclines, folate pathway inhibitors and other antibiotics. MICs for all strains were tested, and the effects of genetic modifications on increasing the MICs were assessed. Ceftazidime and cefotaxime were used to assess the correlation between antibacterial activities in vitro and in vivo. Against a K. pneumoniae strain with blaOXA-48, ceftazidime had a lower MIC (0.5 mg/L) than cefotaxime (2 mg/L). Ceftazidime had an ED50 of 30 mg/kg, and no mice survived treatment with the same dose of cefotaxime. A positive correlation was observed between these in vitro and in vivo results. Conclusions The system developed here could reduce the considerable time required to evaluate the effectiveness of new antibiotics against MDR bacteria, particularly in the early stages of drug development. This system could also be expanded as new resistance mechanisms emerge.
Collapse
Affiliation(s)
- Yu-Kuo Tsai
- KeMyth Biotech Company, Innovation and Incubation Center, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Ci-Hong Liou
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Feng-Yee Chang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chang-Phone Fung
- Section of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jung-Chung Lin
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - L Kristopher Siu
- KeMyth Biotech Company, Innovation and Incubation Center, Yuanpei University of Medical Technology, Hsinchu, Taiwan.,Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
6
|
Arafa WAA, Fareed MF, Rabeh SA, Shaker RM. Ultrasound mediated green synthesis of rhodanine derivatives: Synthesis, chemical behavior, and antibacterial activity. PHOSPHORUS SULFUR 2016. [DOI: 10.1080/10426507.2016.1146276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Wael A. A. Arafa
- Chemistry Department, College of Science, Aljouf University, Sakaka, Aljouf, Kingdom of Saudi Arabia
- Chemistry Department, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Mervat F. Fareed
- Department of Home Economic, Faculty of Specific Education, Tanta University, Tanta, Egypt
| | - Saleh A. Rabeh
- Department of Biology, College of Science, Aljouf University, Sakaka, Aljouf, Kingdom of Saudi Arabia
- National Institute of Oceanography and Fisheries (NIOF), Inland Waters and Aquaculture Branch, Greater Cairo, Egypt
| | - Raafat M. Shaker
- Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| |
Collapse
|
7
|
Yeh KM, Chiu SK, Lin CL, Huang LY, Tsai YK, Chang JC, Lin JC, Chang FY, Siu LK. Surface antigens contribute differently to the pathophysiological features in serotype K1 and K2 Klebsiella pneumoniae strains isolated from liver abscesses. Gut Pathog 2016; 8:4. [PMID: 26893615 PMCID: PMC4758166 DOI: 10.1186/s13099-016-0085-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/12/2016] [Indexed: 01/05/2023] Open
Abstract
Background The virulence role of surface antigens in a single serotype of Klebsiella pneumoniae strain have been studied, but little is known about whether their contribution will vary with serotype. Method To investigate the role of K and O antigen in hyper-virulent strains, we constructed O and K antigen deficient mutants from serotype K1 STL43 and K2 TSGH strains from patients with liver abscess, and characterized their virulence in according to the abscess formation and resistance to neutrophil phagocytosis, serum, and bacterial clearance in liver. Results Both of K1 and K2-antigen mutants lost their wildtype resistance to neutrophil phagocytosis and hepatic clearance, and failed to cause abscess formation. K2-antigen mutant became serum susceptible while K1-antigen mutant maintained its resistance to serum killing. The amount of glucuronic acid, indicating the amount of capsular polysaccharide (CPS, K antigen), was inversed proportional to the rate of phagocytosis. O-antigen mutant of serotype K1 strains had significantly more amount of CPS, and more resistant to neutrophil phagocytosis than its wildtype counterpart. O-antigen mutants of serotype K1 and K2 strains lost their wildtype serum resistance, and kept resistant to neutrophil phagocytosis. While both mutants lacked the same O1 antigen, O-antigen mutant of serotype K1 became susceptible to liver clearance and cause mild abscess formation, but its serotype K2 counterpart maintained these wildtype virulence. Conclusion We conclude that the contribution of surface antigens to virulence of K. pneumoniae strains varies with serotypes.
Collapse
Affiliation(s)
- Kuo-Ming Yeh
- Department of Internal Medicine, Division of Infectious Diseases and Tropical Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Cheng-Kung Road, Neihu, 114 Taipei City Taiwan ; Infection Control Office, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Cheng-Kung Road, Neihu, 114 Taipei City Taiwan
| | - Sheng-Kung Chiu
- Department of Internal Medicine, Division of Infectious Diseases and Tropical Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Cheng-Kung Road, Neihu, 114 Taipei City Taiwan
| | - Chii-Lan Lin
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan ; Department of Internal Medicine, Division of Pulmonary Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Li-Yueh Huang
- Institute of Infectious Diseases and Vaccine Research, National Health Research Institutes, 35 Keyan Road, Zhunan, 35053 Miaoli, Taiwan
| | - Yu-Kuo Tsai
- Institute of Infectious Diseases and Vaccine Research, National Health Research Institutes, 35 Keyan Road, Zhunan, 35053 Miaoli, Taiwan
| | - Jen-Chang Chang
- Institute of Infectious Diseases and Vaccine Research, National Health Research Institutes, 35 Keyan Road, Zhunan, 35053 Miaoli, Taiwan
| | - Jung-Chung Lin
- Department of Internal Medicine, Division of Infectious Diseases and Tropical Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Cheng-Kung Road, Neihu, 114 Taipei City Taiwan
| | - Feng-Yee Chang
- Department of Internal Medicine, Division of Infectious Diseases and Tropical Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Cheng-Kung Road, Neihu, 114 Taipei City Taiwan
| | - Leung-Kei Siu
- Department of Internal Medicine, Division of Infectious Diseases and Tropical Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Cheng-Kung Road, Neihu, 114 Taipei City Taiwan ; Institute of Infectious Diseases and Vaccine Research, National Health Research Institutes, 35 Keyan Road, Zhunan, 35053 Miaoli, Taiwan ; Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
8
|
Tsai YK, Liou CH, Lin JC, Ma L, Fung CP, Chang FY, Siu LK. A suitable streptomycin-resistant mutant for constructing unmarked in-frame gene deletions using rpsL as a counter-selection marker. PLoS One 2014; 9:e109258. [PMID: 25268958 PMCID: PMC4182516 DOI: 10.1371/journal.pone.0109258] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/08/2014] [Indexed: 01/14/2023] Open
Abstract
The streptomycin counter-selection system is a useful tool for constructing unmarked in-frame gene deletions, which is a fundamental approach to study bacteria and their pathogenicity at the molecular level. A prerequisite for this system is acquiring a streptomycin-resistant strain due to rpsL mutations, which encodes the ribosomal protein S12. However, in this study no streptomycin resistance was found to be caused by rpsL mutations in all 127 clinical strains of Klebsiella pneumoniae isolated from liver abscess patients. By screening 107 spontaneous mutants of streptomycin resistance from a clinical strain of K. pneumoniae, nucleotide substitution or insertion located within the rpsL was detected in each of these strains. Thirteen different mutants with varied S12 proteins were obtained, including nine streptomycin-dependent mutants. The virulence of all four streptomycin-resistant mutants was further evaluated. Compared with the parental strain, the K42N, K42T and K87R mutants showed a reduction in growth rate, and the K42N and K42T mutants became susceptible to normal human serum. In the mice LD50 (the bacterial dose that caused 50% death) assay, the K42N and K42T mutants were ∼ 1,000-fold less lethal (∼ 2 × 10(5) CFU) and the K87R mutant was ∼ 50-fold less lethal (∼ 1 × 10(4) CFU) than the parental strain (∼ 2 × 10(2) CFU). A K42R mutant showed non-observable effects on the above assays, while this mutant exhibited a small cost (P < 0.01) in an in vitro growth competition experiment. In summary, most of the K. pneumoniae strains with streptomycin resistance caused by rpsL mutations are less virulent than their parental strain in the absence of streptomycin. The K42R mutant showed similar pathogenicity to its parental strain and should be one of the best choices when using rpsL as a counter-selection marker.
Collapse
Affiliation(s)
- Yu-Kuo Tsai
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Ci-Hong Liou
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jung-Chung Lin
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ling Ma
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chang-Phone Fung
- Section of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan
| | - Feng-Yee Chang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Taiwan Centres for Disease Control, Taipei, Taiwan
| | - L. Kristopher Siu
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
9
|
Tsai YK, Liou CH, Fung CP, Lin JC, Siu LK. Single or in combination antimicrobial resistance mechanisms of Klebsiella pneumoniae contribute to varied susceptibility to different carbapenems. PLoS One 2013; 8:e79640. [PMID: 24265784 PMCID: PMC3827147 DOI: 10.1371/journal.pone.0079640] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 10/04/2013] [Indexed: 11/19/2022] Open
Abstract
Resistance to carbapenems has been documented by the production of carbapenemase or the loss of porins combined with extended-spectrum β-lactamases or AmpC β-lactamases. However, no complete comparisons have been made regarding the contributions of each resistance mechanism towards carbapenem resistance. In this study, we genetically engineered mutants of Klebsiella pneumoniae with individual and combined resistance mechanisms, and then compared each resistance mechanism in response to ertapenem, imipenem, meropenem, doripenem and other antibiotics. Among the four studied carbapenems, ertapenem was the least active against the loss of porins, cephalosporinases and carbapenemases. In addition to the production of KPC-2 or NDM-1 alone, resistance to all four carbapenems could also be conferred by the loss of two major porins, OmpK35 and OmpK36, combined with CTX-M-15 or DHA-1 with its regulator AmpR. Because the loss of OmpK35/36 alone or the loss of a single porin combined with bla CTX-M-15 or bla DHA-1-ampR expression was only sufficient for ertapenem resistance, our results suggest that carbapenems other than ertapenem should still be effective against these strains and laboratory testing for non-susceptibility to other carbapenems should improve the accurate identification of these isolates.
Collapse
Affiliation(s)
- Yu-Kuo Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Ci-Hong Liou
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chang-Phone Fung
- Section of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan
| | - Jung-Chung Lin
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- * E-mail:
| | - L. Kristopher Siu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
10
|
Klebsiella pneumoniae outer membrane porins OmpK35 and OmpK36 play roles in both antimicrobial resistance and virulence. Antimicrob Agents Chemother 2011; 55:1485-93. [PMID: 21282452 DOI: 10.1128/aac.01275-10] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OmpK35 and OmpK36 are the major outer membrane porins of Klebsiella pneumoniae. In this study, a virulent clinical isolate was selected to study the role of these two porins in antimicrobial resistance and virulence. The single deletion of ompK36 (ΔompK36) resulted in MIC shifts of cefazolin, cephalothin, and cefoxitin from susceptible to resistant, while the single deletion of ompK35 (ΔompK35) had no significant effect. A double deletion of ompK35 and ompK36 (ΔompK35/36) further increased these MICs to high-level resistance and led to 8- and 16-fold increases in the MICs of meropenem and cefepime, respectively. In contrast to the routine testing medium, which is of high osmolarity, susceptibility tests using low-osmolarity medium showed that the ΔompK35 mutation resulted in a significant (≥ 4-fold) increase in the MICs of cefazolin and ceftazidime, whereas a ΔompK36 deletion conferred a significantly (4-fold) lower increase in the MIC of cefazolin. In the virulence assays, a significant (P < 0.05) defect in the growth rate was found only in the ΔompK35/36 mutant, indicating the effect on metabolic fitness. A significant (P < 0.05) increase in susceptibility to neutrophil phagocytosis was observed in both ΔompK36 and ΔompK35/36 mutants. In a mouse peritonitis model, the ΔompK35 mutant showed no change in virulence, and the ΔompK36 mutant exhibited significantly (P < 0.01) lower virulence, whereas the ΔompK35/36 mutant presented the highest 50% lethal dose of these strains. In conclusion, porin deficiency in K. pneumoniae could increase antimicrobial resistance but decrease virulence at the same time.
Collapse
|
11
|
GAO HONG, GAO QILI, ZHANG XIA, GUAN CHUN, LUO MAOHUANG, ZHANG HAIBIN, LIU PEI, ZHANG HAIYING, LI JING. IMPROVED MEDIUM FOR DETECTION OFKLEBSIELLAIN POWDERED MILK. J Food Saf 2010. [DOI: 10.1111/j.1745-4565.2009.00186.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Tanaka K, Shimizu T, Zakria M, Njoloma J, Saeki Y, Sakai M, Yamakawa T, Minamisawa K, Akao S. Incorporation of a DNA Sequence Encoding Green Fluorescent Protein (GFP) into Endophytic Diazotroph from Sugarcane and Sweet Potato and the Colonizing Ability of these Bacteria in Brassica oleracea. Microbes Environ 2006. [DOI: 10.1264/jsme2.21.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Kazunori Tanaka
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, Miyazaki University
| | - Tasuku Shimizu
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, Miyazaki University
| | - Muhammad Zakria
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, Miyazaki University
| | - Joyce Njoloma
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, Miyazaki University
| | - Yuichi Saeki
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, Miyazaki University
| | - Masao Sakai
- Department of Plant Resources, Faculty of Agriculture, Kyushu University
| | - Takeo Yamakawa
- Department of Plant Resources, Faculty of Agriculture, Kyushu University
| | | | - Shoichiro Akao
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, Miyazaki University
| |
Collapse
|