1
|
Kohlmeier MG, O'Hara GW, Ramsay JP, Terpolilli JJ. Closed genomes of commercial inoculant rhizobia provide a blueprint for management of legume inoculation. Appl Environ Microbiol 2025; 91:e0221324. [PMID: 39791879 PMCID: PMC11837538 DOI: 10.1128/aem.02213-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025] Open
Abstract
Rhizobia are soil bacteria capable of establishing symbiosis within legume root nodules, where they reduce atmospheric N2 into ammonia and supply it to the plant for growth. Australian soils often lack rhizobia compatible with introduced agricultural legumes, so inoculation with exotic strains has become a common practice for over 50 years. While extensive research has assessed the N2-fixing capabilities of these inoculants, their genomics, taxonomy, and core and accessory gene phylogeny are poorly characterized. Furthermore, in some cases, inoculant strains have been developed from isolations made in Australia. It is unknown whether these strains represent naturalized exotic organisms, native rhizobia with a capacity to nodulate introduced legumes, or recombinant strains arising from horizontal transfer between introduced and native bacteria. Here, we describe the complete, closed genome sequences of 42 Australian commercial rhizobia. These strains span the genera, Bradyrhizobium, Mesorhizobium, Methylobacterium, Rhizobium, and Sinorhizobium, and only 23 strains were identified to species level. Within inoculant strain genomes, replicon structure and location of symbiosis genes were consistent with those of model strains for each genus, except for Rhizobium sp. SRDI969, where the symbiosis genes are chromosomally encoded. Genomic analysis of the strains isolated from Australia showed they were related to exotic strains, suggesting that they may have colonized Australian soils following undocumented introductions. These genome sequences provide the basis for accurate strain identification to manage inoculation and identify the prevalence and impact of horizontal gene transfer (HGT) on legume productivity. IMPORTANCE Inoculation of cultivated legumes with exotic rhizobia is integral to Australian agriculture in soils lacking compatible rhizobia. The Australian inoculant program supplies phenotypically characterized high-performing strains for farmers but in most cases, little is known about the genomes of these rhizobia. Horizontal gene transfer (HGT) of symbiosis genes from inoculant strains to native non-symbiotic rhizobia frequently occurs in Australian soils and can impact the long-term stability and efficacy of legume inoculation. Here, we present the analysis of reference-quality genomes for 42 Australian commercial rhizobial inoculants. We verify and classify the genetics, genome architecture, and taxonomy of these organisms. Importantly, these genome sequences will facilitate the accurate strain identification and monitoring of inoculants in soils and plant nodules, as well as enable detection of horizontal gene transfer to native rhizobia, thus ensuring the efficacy and integrity of Australia's legume inoculation program.
Collapse
Affiliation(s)
- MacLean G. Kohlmeier
- Legume Rhizobium Sciences, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Graham W. O'Hara
- Legume Rhizobium Sciences, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Joshua P. Ramsay
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Jason J. Terpolilli
- Legume Rhizobium Sciences, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
2
|
Alon M, Waitz Y, Finkel OM, Sheffer E. The native distribution of a common legume shrub is limited by the range of its nitrogen-fixing mutualist. THE NEW PHYTOLOGIST 2024; 242:77-92. [PMID: 38339826 DOI: 10.1111/nph.19577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/20/2024] [Indexed: 02/12/2024]
Abstract
Plant-microbe mutualisms, such as the legume-rhizobium symbiosis, are influenced by the geographical distributions of both partners. However, limitations on the native range of legumes, resulting from the absence of a compatible mutualist, have rarely been explored. We used a combination of a large-scale field survey and controlled experiments to determine the realized niche of Calicotome villosa, an abundant and widespread legume shrub. Soil type was a major factor affecting the distribution and abundance of C. villosa. In addition, we found a large region within its range in which neither C. villosa nor Bradyrhizobium, the bacterial genus that associates with it, were present. Seedlings grown in soil from this region failed to nodulate and were deficient in nitrogen. Inoculation of this soil with Bradyrhizobium isolated from root nodules of C. villosa resulted in the formation of nodules and higher growth rate, leaf N and shoot biomass compared with un-inoculated plants. We present evidence for the exclusion of a legume from parts of its native range by the absence of a compatible mutualist. This result highlights the importance of the co-distribution of both the host plant and its mutualist when attempting to understand present and future geographical distributions of legumes.
Collapse
Affiliation(s)
- Moshe Alon
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Yoni Waitz
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Omri M Finkel
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Efrat Sheffer
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| |
Collapse
|
3
|
Joglekar P, Ferrell BD, Jarvis T, Haramoto K, Place N, Dums JT, Polson SW, Wommack KE, Fuhrmann JJ. Spontaneously Produced Lysogenic Phages Are an Important Component of the Soybean Bradyrhizobium Mobilome. mBio 2023; 14:e0029523. [PMID: 37017542 PMCID: PMC10127595 DOI: 10.1128/mbio.00295-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 04/06/2023] Open
Abstract
The ability of Bradyrhizobium spp. to nodulate and fix atmospheric nitrogen in soybean root nodules is critical to meeting humanity's nutritional needs. The intricacies of soybean bradyrhizobia-plant interactions have been studied extensively; however, bradyrhizobial ecology as influenced by phages has received somewhat less attention, even though these interactions may significantly impact soybean yield. In batch culture, four soybean bradyrhizobia strains, Bradyrhizobium japonicum S06B (S06B-Bj), B. japonicum S10J (S10J-Bj), Bradyrhizobium diazoefficiens USDA 122 (USDA 122-Bd), and Bradyrhizobium elkanii USDA 76T (USDA 76-Be), spontaneously (without apparent exogenous chemical or physical induction) produced tailed phages throughout the growth cycle; for three strains, phage concentrations exceeded cell numbers by ~3-fold after 48 h of incubation. Phage terminase large-subunit protein phylogeny revealed possible differences in phage packaging and replication mechanisms. Bioinformatic analyses predicted multiple prophage regions within each soybean bradyrhizobia genome, preventing accurate identification of spontaneously produced prophage (SPP) genomes. A DNA sequencing and mapping approach accurately delineated the boundaries of four SPP genomes within three of the soybean bradyrhizobia chromosomes and suggested that the SPPs were capable of transduction. In addition to the phages, S06B-Bj and USDA 76-Be contained three to four times more insertion sequences (IS) and large, conjugable, broad host range plasmids, both of which are known drivers of horizontal gene transfer (HGT) in soybean bradyrhizobia. These factors indicate that SPP along with IS and plasmids participate in HGT, drive bradyrhizobia evolution, and play an outsized role in bradyrhizobia ecology. IMPORTANCE Previous studies have shown that IS and plasmids mediate HGT of symbiotic nodulation (nod) genes in soybean bradyrhizobia; however, these events require close cell-to-cell contact, which could be limited in soil environments. Bacteriophage-assisted gene transduction through spontaneously produced prophages provides a stable means of HGT not limited by the constraints of proximal cell-to-cell contact. These phage-mediated HGT events may shape soybean bradyrhizobia population ecology, with concomitant impacts on soybean agriculture.
Collapse
Affiliation(s)
- Prasanna Joglekar
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Barbra D. Ferrell
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Tessa Jarvis
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Kona Haramoto
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
| | - Nicole Place
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
| | - Jacob T. Dums
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Shawn W. Polson
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - K. Eric Wommack
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Jeffry J. Fuhrmann
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
4
|
Hayashi S, Tanaka S, Takao S, Kobayashi S, Suyama K, Itoh K. Multiple Gene Clusters and Their Role in the Degradation of Chlorophenoxyacetic Acids in Bradyrhizobium sp. RD5-C2 Isolated from Non-Contaminated Soil. Microbes Environ 2021; 36:ME21016. [PMID: 34511574 PMCID: PMC8446748 DOI: 10.1264/jsme2.me21016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/10/2021] [Indexed: 11/12/2022] Open
Abstract
Bradyrhizobium sp. RD5-C2, isolated from soil that is not contaminated with 2,4-dichlorophenoxyacetic acid (2,4-D), degrades the herbicides 2,4-D and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T). It possesses tfdAα and cadA (designated as cadA1), which encode 2,4-D dioxygenase and the oxygenase large subunit, respectively. In the present study, the genome of Bradyrhizobium sp. RD5-C2 was sequenced and a second cadA gene (designated as cadA2) was identified. The two cadA genes belonged to distinct clusters comprising the cadR1A1B1K1C1 and cadR2A2B2C2K2S genes. The proteins encoded by the cad1 cluster exhibited high amino acid sequence similarities to those of other 2,4-D degraders, while Cad2 proteins were more similar to those of non-2,4-D degraders. Both cad clusters were capable of degrading 2,4-D and 2,4,5-T when expressed in non-2,4-D-degrading Bradyrhizobium elkanii USDA94. To examine the contribution of each degradation gene cluster to the degradation activity of Bradyrhizobium sp. RD5-C2, cadA1, cadA2, and tfdAα deletion mutants were constructed. The cadA1 deletion resulted in a more significant decrease in the ability to degrade chlorophenoxy compounds than the cadA2 and tfdAα deletions, indicating that degradation activity was primarily governed by the cad1 cluster. The results of a quantitative reverse transcription-PCR analysis suggested that exposure to 2,4-D and 2,4,5-T markedly up-regulated cadA1 expression. Collectively, these results indicate that the cad1 cluster plays an important role in the degradation of Bradyrhizobium sp. RD5-C2 due to its high expression.
Collapse
Affiliation(s)
- Shohei Hayashi
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690–8504, Japan
| | - Sho Tanaka
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690–8504, Japan
| | - Soichiro Takao
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690–8504, Japan
| | - Shinnosuke Kobayashi
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690–8504, Japan
| | - Kousuke Suyama
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690–8504, Japan
| | - Kazuhito Itoh
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690–8504, Japan
| |
Collapse
|
5
|
Provorov NA, Andronov EE, Kimeklis AK, Chirak ER, Karasev ES, Aksenova TS, Kopat VV. Evolutionary Geography of Root Nodule Bacteria: Speciation Directed by the Host Plants. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
6
|
Iturralde ET, Covelli JM, Alvarez F, Pérez-Giménez J, Arrese-Igor C, Lodeiro AR. Soybean-Nodulating Strains With Low Intrinsic Competitiveness for Nodulation, Good Symbiotic Performance, and Stress-Tolerance Isolated From Soybean-Cropped Soils in Argentina. Front Microbiol 2019; 10:1061. [PMID: 31139173 PMCID: PMC6527597 DOI: 10.3389/fmicb.2019.01061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/26/2019] [Indexed: 01/04/2023] Open
Abstract
Soybean is the most important oilseed in the world, cropped in 120–130 million hectares each year. The three most important soybean producers are Argentina, Brazil, and United States, where soybean crops are routinely inoculated with symbiotic N2-fixing Bradyrhizobium spp. This extended inoculation gave rise to soybean-nodulating allochthonous populations (SNAPs) that compete against new inoculant for nodulation, thus impairing yield responses. Competitiveness depends on intrinsic factors contributed by genotype, extrinsic ones determined by growth and environmental conditions, and strain persistence in the soil. To assess these factors in Argentinean SNAPs, we studied 58 isolates from five sites of the main soybean cropping area. BOX-A1R DNA fingerprint distributed these isolates in 10 clades that paralleled the pHs of their original soils. By contrast, reference Bradyrhizobium spp. strains, including those used as soybean-inoculants, were confined to a single clade. More detailed characterization of a subset of 11 SNAP-isolates revealed that five were Bradyrhizobium japonicum, two Bradyrhizobium elkanii, two Rhizobium radiobacter (formerly Agrobacterium tumefaciens), one Bradyrhizobium diazoefficiens, and one Paenibacillus glycanilyticus-which did not nodulate when inoculated alone, and therefore was excluded from further characterization. The remaining subset of 10 SNAP-isolates was used for deeper characterization. All SNAP-isolates were aluminum- and heat-tolerant, and most of them were glyphosate-tolerant. Meanwhile, inoculant strains tested were sensitive to aluminum and glyphosate. In addition, all SNAP-isolates were motile to different degrees. Only three SNAP-isolates were deficient for N2-fixation, and none was intrinsically more competitive than the inoculant strain. These results are in contrast to the general belief that rhizobia from soil populations evolved as intrinsically more competitive for nodulation and less N2-fixing effective than inoculants strains. Shoot:root ratios, both as dry biomass and as total N, were highly correlated with leaf ureide contents, and therefore may be easy indicators of N2-fixing performance, suggesting that highly effective N2-fixing and well-adapted strains may be readily selected from SNAPs. In addition, intrinsic competitiveness of the inoculants strains seems already optimized against SNAP strains, and therefore our efforts to improve nodules occupation by inoculated strains should focus on the optimization of extrinsic competitiveness factors, such as inoculant formulation and inoculation technology.
Collapse
Affiliation(s)
- Esteban T Iturralde
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM), UNLP y CCT La Plata-CONICET, La Plata, Argentina
| | - Julieta M Covelli
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM), UNLP y CCT La Plata-CONICET, La Plata, Argentina
| | - Florencia Alvarez
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM), UNLP y CCT La Plata-CONICET, La Plata, Argentina
| | - Julieta Pérez-Giménez
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM), UNLP y CCT La Plata-CONICET, La Plata, Argentina
| | - Cesar Arrese-Igor
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Pamplona, Spain
| | - Aníbal R Lodeiro
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM), UNLP y CCT La Plata-CONICET, La Plata, Argentina
| |
Collapse
|
7
|
Ramírez MDA, España M, Aguirre C, Kojima K, Ohkama-Ohtsu N, Sekimoto H, Yokoyama T. Burkholderia and Paraburkholderia are Predominant Soybean Rhizobial Genera in Venezuelan Soils in Different Climatic and Topographical Regions. Microbes Environ 2019; 34:43-58. [PMID: 30773514 PMCID: PMC6440732 DOI: 10.1264/jsme2.me18076] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 10/25/2018] [Indexed: 11/12/2022] Open
Abstract
The climate, topography, fauna, and flora of Venezuela are highly diverse. However, limited information is currently available on the characterization of soybean rhizobia in Venezuela. To clarify the physiological and genetic diversities of soybean rhizobia in Venezuela, soybean root nodules were collected from 11 soil types located in different topographical regions. A total of 395 root nodules were collected and 120 isolates were obtained. All isolates were classified in terms of stress tolerance under different concentrations of NaCl and Al3+. The tolerance levels of isolates to NaCl and Al3+ varied. Based on sampling origins and stress tolerance levels, 44 isolates were selected for further characterization. An inoculation test indicated that all isolates showed the capacity for root nodulation on soybean. Based on multilocus sequence typing (MLST), 20 isolates were classified into the genera Rhizobium and Bradyrhizobium. The remaining 24 isolates were classified into the genus Burkholderia or Paraburkholderia. There is currently no evidence to demonstrate that the genera Burkholderia and Paraburkholderia are the predominant soybean rhizobia in agricultural fields. Of the 24 isolates classified in (Para) Burkholderia, the nodD-nodB intergenic spacer regions of 10 isolates and the nifH gene sequences of 17 isolates were closely related to the genera Rhizobium and Bradyrhizobium, respectively. The root nodulation numbers of five (Para) Burkholderia isolates were higher than those of the 20 α-rhizobia. Furthermore, among the 44 isolates tested, one Paraburkholderia isolate exhibited the highest nitrogen-fixation activity in root nodules.
Collapse
Affiliation(s)
- María Daniela Artigas Ramírez
- United Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT)Saiwai-cho 3–5–8, Fuchu, Tokyo 183–8509Japan
| | | | | | - Katsuhiro Kojima
- Faculty of Agriculture, Tokyo University of Agriculture and Technology183–8509Japan
| | - Naoko Ohkama-Ohtsu
- Institute of Agriculture, Tokyo University of Agriculture and Technology (TUAT)Saiwai-cho 3–5–8, Fuchu, Tokyo 183–8509Japan
| | - Hitoshi Sekimoto
- Faculty of Agriculture, Utsunomiya UniversityUtsunomiya 321–8505Japan
| | - Tadashi Yokoyama
- Institute of Agriculture, Tokyo University of Agriculture and Technology (TUAT)Saiwai-cho 3–5–8, Fuchu, Tokyo 183–8509Japan
| |
Collapse
|
8
|
González AH, Morales Londoño D, Pille da Silva E, Nascimento FXI, de Souza LF, da Silva BG, Canei AD, de Armas RD, Giachini AJ, Soares CRFS. Bradyrhizobium and Pseudomonas strains obtained from coal-mining areas nodulate and promote the growth of Calopogonium muconoides plants used in the reclamation of degraded areas. J Appl Microbiol 2018; 126:523-533. [PMID: 30276936 DOI: 10.1111/jam.14117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 11/28/2022]
Abstract
AIMS The objective of this work was to isolate and characterize indigenous rhizobia from coal-mining areas able to efficiently nodulate and fix nitrogen in association with Calopogonium mucunoides (calopo). METHODS AND RESULTS Isolation, authentication and morphological, biochemical and molecular characterization of the autochthonous rhizobia were performed and their symbiotic efficiency (SE) evaluated. Efficient rhizobial isolates suitable for the inoculation of calopo in coal-mining regions were obtained. A total of 30 isolates were obtained after nodulation authentication, of which five presented high SE with plant-growth promoting traits such as indole-3-acetic acid production, phosphate solubilization and biofilm formation. These isolates were identified as belonging to Bradyrhizobium, Pseudomonas and Rhizobium. CONCLUSIONS Bradyrhizobium sp. A2-10 and Pseudomonas sp. A6-05 were able to promote calopo plant growth using soil obtained from coal-mining degraded areas, thus indicating their potential as inoculants aiming at land reclamation. SIGNIFICANCE AND IMPACT OF THE STUDY To our knowledge, this is the first report of Pseudomonas nodule formation in calopo. Furthermore, the results demonstrated that autochthonous rhizobia obtained from degraded soils presented high SE in calopo and possess a wide range of plant-growth promoting traits. Ultimately, they may all contribute to an increased leguminous plant growth under stress conditions. The selected rhizobia strains may be used as inoculants and present a valuable role in the development of strategies aiming to recover coal-mining degraded areas. Bacterial inoculants would greatly reduce the use of often harmful nitrogen fertilizers vastly employed in revegetation programmes of degraded areas.
Collapse
Affiliation(s)
- A H González
- Departamento de Microbiologia, Laboratório de Microrganismos e Processos Biotecnológicos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - D Morales Londoño
- Departamento de Microbiologia, Laboratório de Microrganismos e Processos Biotecnológicos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - E Pille da Silva
- Departamento de Microbiologia, Laboratório de Microrganismos e Processos Biotecnológicos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - F X I Nascimento
- Departamento de Microbiologia, Laboratório de Microrganismos e Processos Biotecnológicos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - L F de Souza
- Departamento de Microbiologia, Laboratório de Microrganismos e Processos Biotecnológicos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - B G da Silva
- Departamento de Microbiologia, Laboratório de Microrganismos e Processos Biotecnológicos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - A D Canei
- Departamento de Microbiologia, Laboratório de Microrganismos e Processos Biotecnológicos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - R D de Armas
- Departamento de Microbiologia, Laboratório de Microrganismos e Processos Biotecnológicos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - A J Giachini
- Departamento de Microbiologia, Laboratório de Microrganismos e Processos Biotecnológicos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - C R F S Soares
- Departamento de Microbiologia, Laboratório de Microrganismos e Processos Biotecnológicos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
9
|
Hayashi S, Sano T, Suyama K, Itoh K. 2,4-Dichlorophenoxyacetic acid (2,4-D)- and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading gene cluster in the soybean root-nodulating bacterium Bradyrhizobium elkanii USDA94. Microbiol Res 2016; 188-189:62-71. [PMID: 27296963 DOI: 10.1016/j.micres.2016.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
Abstract
Herbicides 2,4-dichlorophenoxyacetic acid (2,4-D)- and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading Bradyrhizobium strains possess tfdAα and/or cadABC as degrading genes. It has been reported that root-nodulating bacteria belonging to Bradyrhizobium elkanii also have tfdAα and cadA like genes but lack the ability to degrade these herbicides and that the cadA genes in 2,4-D-degrading and non-degrading Bradyrhizobium are phylogenetically different. In this study, we identified cadRABCK in the genome of a type strain of soybean root-nodulating B. elkanii USDA94 and demonstrated that the strain could degrade the herbicides when cadABCK was forcibly expressed. cadABCK-cloned Escherichia coli also showed the degrading ability. Because co-spiked phenoxyacetic acid (PAA) could induce the degradation of 2,4-D in B. elkanii USDA94, the lack of degrading ability in this strain was supposed to be due to the low inducing potential of the herbicides for the degrading gene cluster. On the other hand, tfdAα from B. elkanii USDA94 showed little potential to degrade the herbicides, but it did for 4-chlorophenoxyacetic acid and PAA. The 2,4-D-degrading ability of the cad cluster and the inducing ability of PAA were confirmed by preparing cadA deletion mutant. This is the first study to demonstrate that the cad cluster in the typical root-nodulating bacterium indeed have the potential to degrade the herbicides, suggesting that degrading genes for anthropogenic compounds could be found in ordinary non-degrading bacteria.
Collapse
Affiliation(s)
- Shohei Hayashi
- Faculty of Life and Environmental Science, Shimane University 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Tomoki Sano
- Faculty of Life and Environmental Science, Shimane University 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Kousuke Suyama
- Faculty of Life and Environmental Science, Shimane University 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Kazuhito Itoh
- Faculty of Life and Environmental Science, Shimane University 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan.
| |
Collapse
|
10
|
Iida T, Itakura M, Anda M, Sugawara M, Isawa T, Okubo T, Sato S, Chiba-Kakizaki K, Minamisawa K. Symbiosis island shuffling with abundant insertion sequences in the genomes of extra-slow-growing strains of soybean bradyrhizobia. Appl Environ Microbiol 2015; 81:4143-54. [PMID: 25862225 PMCID: PMC4524158 DOI: 10.1128/aem.00741-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/03/2015] [Indexed: 11/20/2022] Open
Abstract
Extra-slow-growing bradyrhizobia from root nodules of field-grown soybeans harbor abundant insertion sequences (ISs) and are termed highly reiterated sequence-possessing (HRS) strains. We analyzed the genome organization of HRS strains with the focus on IS distribution and symbiosis island structure. Using pulsed-field gel electrophoresis, we consistently detected several plasmids (0.07 to 0.4 Mb) in the HRS strains (NK5, NK6, USDA135, 2281, USDA123, and T2), whereas no plasmids were detected in the non-HRS strain USDA110. The chromosomes of the six HRS strains (9.7 to 10.7 Mb) were larger than that of USDA110 (9.1 Mb). Using MiSeq sequences of 6 HRS and 17 non-HRS strains mapped to the USDA110 genome, we found that the copy numbers of ISRj1, ISRj2, ISFK1, IS1632, ISB27, ISBj8, and IS1631 were markedly higher in HRS strains. Whole-genome sequencing showed that the HRS strain NK6 had four small plasmids (136 to 212 kb) and a large chromosome (9,780 kb). Strong colinearity was found between 7.4-Mb core regions of the NK6 and USDA110 chromosomes. USDA110 symbiosis islands corresponded mainly to five small regions (S1 to S5) within two variable regions, V1 (0.8 Mb) and V2 (1.6 Mb), of the NK6 chromosome. The USDA110 nif gene cluster (nifDKENXSBZHQW-fixBCX) was split into two regions, S2 and S3, where ISRj1-mediated rearrangement occurred between nifS and nifB. ISs were also scattered in NK6 core regions, and ISRj1 insertion often disrupted some genes important for survival and environmental responses. These results suggest that HRS strains of soybean bradyrhizobia were subjected to IS-mediated symbiosis island shuffling and core genome degradation.
Collapse
Affiliation(s)
- Takayuki Iida
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Manabu Itakura
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Mizue Anda
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | - Tsuyoshi Isawa
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takashi Okubo
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | | |
Collapse
|
11
|
Differing courses of genetic evolution of Bradyrhizobium inoculants as revealed by long-term molecular tracing in Acacia mangium plantations. Appl Environ Microbiol 2014; 80:5709-16. [PMID: 25002434 DOI: 10.1128/aem.02007-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Introducing nitrogen-fixing bacteria as an inoculum in association with legume crops is a common practice in agriculture. However, the question of the evolution of these introduced microorganisms remains crucial, both in terms of microbial ecology and agronomy. We explored this question by analyzing the genetic and symbiotic evolution of two Bradyrhizobium strains inoculated on Acacia mangium in Malaysia and Senegal 15 and 5 years, respectively, after their introduction. Based on typing of several loci, we showed that these two strains, although closely related and originally sampled in Australia, evolved differently. One strain was recovered in soil with the same five loci as the original isolate, whereas the symbiotic cluster of the other strain was detected with no trace of the three housekeeping genes of the original inoculum. Moreover, the nitrogen fixation efficiency was variable among these isolates (either recombinant or not), with significantly high, low, or similar efficiencies compared to the two original strains and no significant difference between recombinant and nonrecombinant isolates. These data suggested that 15 years after their introduction, nitrogen-fixing bacteria remain in the soil but that closely related inoculant strains may not evolve in the same way, either genetically or symbiotically. In a context of increasing agronomical use of microbial inoculants (for biological control, nitrogen fixation, or plant growth promotion), this result feeds the debate on the consequences associated with such practices.
Collapse
|
12
|
Genome analysis suggests that the soil oligotrophic bacterium Agromonas oligotrophica (Bradyrhizobium oligotrophicum) is a nitrogen-fixing symbiont of Aeschynomene indica. Appl Environ Microbiol 2013; 79:2542-51. [PMID: 23396330 DOI: 10.1128/aem.00009-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agromonas oligotrophica (Bradyrhizobium oligotrophicum) S58(T) is a nitrogen-fixing oligotrophic bacterium isolated from paddy field soil that is able to grow in extra-low-nutrient environments. Here, the complete genome sequence of S58 was determined. The S58 genome was found to comprise a circular chromosome of 8,264,165 bp with an average GC content of 65.1% lacking nodABC genes and the typical symbiosis island. The genome showed a high level of similarity to the genomes of Bradyrhizobium sp. ORS278 and Bradyrhizobium sp. BTAi1, including nitrogen fixation and photosynthesis gene clusters, which nodulate an aquatic legume plant, Aeschynomene indica, in a Nod factor-independent manner. Although nonsymbiotic (brady)rhizobia are significant components of rhizobial populations in soil, we found that most genes important for nodule development (ndv) and symbiotic nitrogen fixation (nif and fix) with A. indica were well conserved between the ORS278 and S58 genomes. Therefore, we performed inoculation experiments with five A. oligotrophica strains (S58, S42, S55, S72, and S80). Surprisingly, all five strains of A. oligotrophica formed effective nitrogen-fixing nodules on the roots and/or stems of A. indica, with differentiated bacteroids. Nonsymbiotic (brady)rhizobia are known to be significant components of rhizobial populations without a symbiosis island or symbiotic plasmids in soil, but the present results indicate that soil-dwelling A. oligotrophica generally possesses the ability to establish symbiosis with A. indica. Phylogenetic analyses suggest that Nod factor-independent symbiosis with A. indica is a common trait of nodABC- and symbiosis island-lacking strains within the members of the photosynthetic Bradyrhizobium clade, including A. oligotrophica.
Collapse
|
13
|
Inaba S, Ikenishi F, Itakura M, Kikuchi M, Eda S, Chiba N, Katsuyama C, Suwa Y, Mitsui H, Minamisawa K. N(2)O emission from degraded soybean nodules depends on denitrification by Bradyrhizobium japonicum and other microbes in the rhizosphere. Microbes Environ 2012; 27:470-6. [PMID: 23047151 PMCID: PMC4103556 DOI: 10.1264/jsme2.me12100] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 05/30/2012] [Indexed: 11/12/2022] Open
Abstract
A model system developed to produce N(2)O emissions from degrading soybean nodules in the laboratory was used to clarify the mechanism of N(2)O emission from soybean fields. Soybean plants inoculated with nosZ-defective strains of Bradyrhizobium japonicum USDA110 (ΔnosZ, lacking N(2)O reductase) were grown in aseptic jars. After 30 days, shoot decapitation (D, to promote nodule degradation), soil addition (S, to supply soil microbes), or both (DS) were applied. N(2)O was emitted only with DS treatment. Thus, both soil microbes and nodule degradation are required for the emission of N(2)O from the soybean rhizosphere. The N(2)O flux peaked 15 days after DS treatment. Nitrate addition markedly enhanced N(2)O emission. A (15)N tracer experiment indicated that N(2)O was derived from N fixed in the nodules. To evaluate the contribution of bradyrhizobia, N(2)O emission was compared between a nirK mutant (ΔnirKΔnosZ, lacking nitrite reductase) and ΔnosZ. The N(2)O flux from the ΔnirKΔnosZ rhizosphere was significantly lower than that from ΔnosZ, but was still 40% to 60% of that of ΔnosZ, suggesting that N(2)O emission is due to both B. japonicum and other soil microorganisms. Only nosZ-competent B. japonicum (nosZ+ strain) could take up N(2)O. Therefore, during nodule degradation, both B. japonicum and other soil microorganisms release N(2)O from nodule N via their denitrification processes (N(2)O source), whereas nosZ-competent B. japonicum exclusively takes up N(2)O (N(2)O sink). Net N(2)O flux from soybean rhizosphere is likely determined by the balance of N(2)O source and sink.
Collapse
Affiliation(s)
- Shoko Inaba
- Graduate School of Life Sciences, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai 980–8577,
Japan
| | - Fumio Ikenishi
- Graduate School of Life Sciences, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai 980–8577,
Japan
| | - Manabu Itakura
- Graduate School of Life Sciences, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai 980–8577,
Japan
| | - Masakazu Kikuchi
- Graduate School of Life Sciences, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai 980–8577,
Japan
| | - Shima Eda
- Graduate School of Life Sciences, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai 980–8577,
Japan
| | - Naohiko Chiba
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, 1–13–27 Kasuga, Bunkyo-ku, Tokyo 112–8551,
Japan
| | - Chie Katsuyama
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, 1–13–27 Kasuga, Bunkyo-ku, Tokyo 112–8551,
Japan
| | - Yuichi Suwa
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, 1–13–27 Kasuga, Bunkyo-ku, Tokyo 112–8551,
Japan
| | - Hisayuki Mitsui
- Graduate School of Life Sciences, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai 980–8577,
Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai 980–8577,
Japan
| |
Collapse
|
14
|
Risal CP, Djedidi S, Dhakal D, Ohkama-Ohtsu N, Sekimoto H, Yokoyama T. Phylogenetic diversity and symbiotic functioning in mungbean (Vigna radiata L. Wilczek) bradyrhizobia from contrast agro-ecological regions of Nepal. Syst Appl Microbiol 2011; 35:45-53. [PMID: 22178390 DOI: 10.1016/j.syapm.2011.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/13/2011] [Accepted: 06/15/2011] [Indexed: 11/16/2022]
Abstract
Nepal consists wide range of climatic and topographical variations. Here, we explored the phylogeny of native mungbean bradyrhizobia isolated from different agro-ecological regions of Nepal and accessed their nodulation and nitrogen fixation characteristics. Soil samples were collected from three agro-ecological regions with contrasting climate and topography. A local mungbean cultivar, Kalyan, was used as a trap plant. We characterized isolates based on the full nucleotide sequence of the 16S rRNA, ITS region, and nodA genes; and partial sequences of nodD1 and nifD genes. We found 50% of isolates phylogenetically related to B. yuanmingense, 13% to B. japonicum, 8% to B. elkanii, and 29% to novel phylogenetic origin. Results of the inoculation test suggested that expression of different symbiotic genes in isolates resulted in different degrees of symbiotic functioning. Our results indicate B. yuanmingense and novel strains are more efficient symbiotic partners than B. elkanii for the local mungbean cv. Kalyan. We also found most mungbean rhizobial genotypes were conserved across agro-ecological regions. All the strains from tropical Terai region belonged to B. yuanmingense or a novel lineage of B. yuanmingense, and dominance of B. japonicum related strains was observed in the Hill region. Higher genetic diversity of Bradyrhizobium strains was observed in temperate and sub-tropical region than in the tropical region.
Collapse
Affiliation(s)
- Chandra Prasad Risal
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 183-8509, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Djedidi S, Yokoyama T, Ohkama-Ohtsu N, Risal CP, Abdelly C, Sekimoto H. Stress tolerance and symbiotic and phylogenic features of root nodule bacteria associated with Medicago species in different bioclimatic regions of Tunisia. Microbes Environ 2011; 26:36-45. [PMID: 21487201 DOI: 10.1264/jsme2.me10138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Thirty two rhizobial isolates were obtained from different bioclimatic regions of Tunisia using as trap plants, Medicago sativa, Medicago ciliaris, Medicago polymorpha and Medicago minima. To study their diversity and characterize them in relation to Mediterranean conditions, abiotic stress resistance, symbiotic properties and genetic diversity in terms of 16S rRNA and nodA sequences were assessed. Five isolates from M. sativa, three from M. ciliaris and three from M. minima could grow at 45°C. Only two isolates from M. sativa grew at 4% NaCl. The most stress tolerant isolates were obtained from arid soils. A phylogenetic analysis of 16S rRNA genes revealed 29 isolates to be closely related to Ensifer including one (Pl.3-9) that showed a 16S rRNA sequence similar to that of Ensifer meliloti and nodA sequence similar to that of Ensifer medicae. However, three isolates were categorized into Agrobacterium containing the nodA of Ensifer. Furthermore, these isolates developed nodules on original hosts. The results for the four isolates suggest horizontal gene transfer between the species.
Collapse
Affiliation(s)
- Salem Djedidi
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3–5–8 Saiwai-cho, Fuchu, Tokyo 183–8509, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Perrineau MM, Le Roux C, de Faria SM, de Carvalho Balieiro F, Galiana A, Prin Y, Béna G. Genetic diversity of symbiotic Bradyrhizobium elkanii populations recovered from inoculated and non-inoculated Acacia mangium field trials in Brazil. Syst Appl Microbiol 2011; 34:376-84. [PMID: 21531520 DOI: 10.1016/j.syapm.2011.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/10/2011] [Accepted: 03/11/2011] [Indexed: 10/18/2022]
Abstract
Acacia mangium is a legume tree native to Australasia. Since the eighties, it has been introduced into many tropical countries, especially in a context of industrial plantations. Many field trials have been set up to test the effects of controlled inoculation with selected symbiotic bacteria versus natural colonization with indigenous strains. In the introduction areas, A. mangium trees spontaneously nodulate with local and often ineffective bacteria. When inoculated, the persistence of inoculants and possible genetic recombination with local strains remain to be explored. The aim of this study was to describe the genetic diversity of bacteria spontaneously nodulating A. mangium in Brazil and to evaluate the persistence of selected strains used as inoculants. Three different sites, several hundred kilometers apart, were studied, with inoculated and non-inoculated plots in two of them. Seventy-nine strains were isolated from nodules and sequenced on three housekeeping genes (glnII, dnaK and recA) and one symbiotic gene (nodA). All but one of the strains belonged to the Bradyrhizobium elkanii species. A single case of housekeeping gene transfer was detected among the 79 strains, suggesting an extremely low rate of recombination within B. elkanii, whereas the nodulation gene nodA was found to be frequently transferred. The fate of the inoculant strains varied depending on the site, with a complete disappearance in one case, and persistence in another. We compared our results with the sister species Bradyrhizobium japonicum, both in terms of population genetics and inoculant strain destiny.
Collapse
Affiliation(s)
- M M Perrineau
- CIRAD, Laboratoire des Symbioses Tropicales & Méditerranéennes, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Risal CP, Yokoyama T, Ohkama-Ohtsu N, Djedidi S, Sekimoto H. Genetic diversity of native soybean bradyrhizobia from different topographical regions along the southern slopes of the Himalayan Mountains in Nepal. Syst Appl Microbiol 2010; 33:416-25. [PMID: 20851547 DOI: 10.1016/j.syapm.2010.06.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 06/11/2010] [Accepted: 06/17/2010] [Indexed: 11/29/2022]
Abstract
Soybean-nodulating bradyrhizobia are genetically diverse and are classified into different species. In this study, the genetic diversity of native soybean bradyrhizobia isolated from different topographical regions along the southern slopes of the Himalayan Mountains in Nepal was explored. Soil samples were collected from three different topographical regions with contrasting climates. A local soybean cultivar, Cobb, was used as a trap plant to isolate bradyrhizobia. A total of 24 isolates selected on the basis of their colony morphology were genetically characterized. For each isolate, the full nucleotide sequence of the 16S rRNA gene and ITS region, and partial sequences of the nifD and nodD1 genes were determined. Two lineages were evident in the conserved gene phylogeny; one representing Bradyrhizobium elkanii (71% of isolates), and the other representing Bradyrhizobium japonicum (21%) and Bradyrhizobium yuanmingense (8%). Phylogenetic analyses revealed three novel lineages in the Bradyrhizobium elkanii clade, indicating high levels of genetic diversity among Bradyrhizobium isolates in Nepal. B. japonicum and B. yuanmingense strains were distributed in areas from 2420 to 2660 m above sea level (asl), which were mountain regions with a temperate climate. The B. elkanii clade was distributed in two regions; hill regions ranging from 1512 to 1935 m asl, and mountain regions ranging from 2420 to 2660 m asl. Ten multi-locus genotypes were detected; seven among B. elkanii, two among B. japonicum, and one among B. yuanmingense-related isolates. The results indicated that there was higher species-level diversity of Bradyrhizobium in the temperate region than in the sub-tropical region along the southern slopes of the Himalayan Mountains in Nepal.
Collapse
Affiliation(s)
- Chandra Prasad Risal
- United Graduate School of Agri. Science, Tokyo Univ. of Agri. and Tech., Tokyo 183-8509, Japan
| | | | | | | | | |
Collapse
|
18
|
Shiraishi A, Matsushita N, Hougetsu T. Nodulation in black locust by the Gammaproteobacteria Pseudomonas sp. and the Betaproteobacteria Burkholderia sp. Syst Appl Microbiol 2010; 33:269-74. [DOI: 10.1016/j.syapm.2010.04.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Revised: 04/17/2010] [Accepted: 04/20/2010] [Indexed: 10/19/2022]
|
19
|
Itakura M, Saeki K, Omori H, Yokoyama T, Kaneko T, Tabata S, Ohwada T, Tajima S, Uchiumi T, Honnma K, Fujita K, Iwata H, Saeki Y, Hara Y, Ikeda S, Eda S, Mitsui H, Minamisawa K. Genomic comparison of Bradyrhizobium japonicum strains with different symbiotic nitrogen-fixing capabilities and other Bradyrhizobiaceae members. THE ISME JOURNAL 2009; 3:326-39. [PMID: 18971963 DOI: 10.1038/ismej.2008.88] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Comparative genomic hybridization (CGH) was performed with nine strains of Bradyrhizobium japonicum (a symbiotic nitrogen-fixing bacterium associated with soybean) and eight other members of the Bradyrhizobiaceae by DNA macroarray of B. japonicum USDA110. CGH clearly discriminated genomic variations in B. japonicum strains, but similar CGH patterns were observed in other members of the Bradyrhizobiaceae. The most variable regions were 14 genomic islands (4-97 kb) and low G+C regions on the USDA110 genome, some of which were missing in several strains of B. japonicum and other members of the Bradyrhizobiaceae. The CGH profiles of B. japonicum were classified into three genome types: 110, 122 and 6. Analysis of DNA sequences around the boundary regions showed that at least seven genomic islands were missing in genome type 122 as compared with type 110. Phylogenetic analysis for internal transcribed sequences revealed that strains belonging to genome types 110 and 122 formed separate clades. Thus genomic islands were horizontally inserted into the ancestor genome of type 110 after divergence of the type 110 and 122 strains. To search for functional relationships of variable genomic islands, we conducted linear models of the correlation between the existence of genomic regions and the parameters associated with symbiotic nitrogen fixation in soybean. Variable genomic regions including genomic islands were associated with the enhancement of symbiotic nitrogen fixation in B. japonicum USDA110.
Collapse
Affiliation(s)
- Manabu Itakura
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Generation of Bradyrhizobium japonicum mutants with increased N2O reductase activity by selection after introduction of a mutated dnaQ gene. Appl Environ Microbiol 2008; 74:7258-64. [PMID: 18849448 DOI: 10.1128/aem.01850-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We obtained two beneficial mutants of Bradyrhizobium japonicum USDA110 with increased nitrous oxide (N(2)O) reductase (N(2)OR) activity by introducing a plasmid containing a mutated B. japonicum dnaQ gene (pKQ2) and performing enrichment culture under selection pressure for N(2)O respiration. Mutation of dnaQ, which encodes the epsilon subunit of DNA polymerase III, gives a strong mutator phenotype in Escherichia coli. pKQ2 introduction into B. japonicum USDA110 increased the frequency of occurrence of colonies spontaneously resistant to kanamycin. A series of repeated cultivations of USDA110 with and without pKQ2 was conducted in anaerobic conditions under 5% (vol/vol) or 20% (vol/vol) N(2)O atmosphere. At the 10th cultivation cycle, cell populations of USDA110(pKQ2) showed higher N(2)OR activity than the wild-type strains. Four bacterial mutants lacking pKQ2 obtained by plant passage showed 7 to 12 times the N(2)OR activity of the wild-type USDA110. Although two mutants had a weak or null fix phenotype for symbiotic nitrogen fixation, the remaining two (5M09 and 5M14) had the same symbiotic nitrogen fixation ability and heterotrophic growth in culture as wild-type USDA110.
Collapse
|
21
|
Batista JSS, Hungria M, Barcellos FG, Ferreira MC, Mendes IC. Variability in Bradyrhizobium japonicum and B. elkanii seven years after introduction of both the exotic microsymbiont and the soybean host in a cerrados soil. MICROBIAL ECOLOGY 2007; 53:270-84. [PMID: 17265000 DOI: 10.1007/s00248-006-9149-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 07/04/2006] [Accepted: 07/24/2006] [Indexed: 05/06/2023]
Abstract
The plasticity of rhizobial genomes is far greater than previously thought, with complex genomic recombination events that may be accelerated by the often stressful environmental conditions of the tropics. This study aimed at evaluating changes in soybean rhizobia due to adaptation to inhospitable environmental conditions (high temperatures, drought, and acid soils) in the Brazilian Cerrados. Both the host plant and combinations of four strains of soybean Bradyrhizobium were introduced in an uncropped soil devoid of rhizobia capable of nodulating soybean. After the third year, seeds were not reinoculated. Two hundred and sixty-three isolates were obtained from nodules of field-grown soybean after the seventh year, and their morphological, physiological, serological, and symbiotic properties determined, followed by genetic analysis of conserved and symbiotic genes. B. japonicum strain CPAC 15 (same serogroup as USDA 123) was characterized as having high saprophytic capacity and competitiveness and by the seventh year represented up to 70% of the cultivable population, in contrast to the poor survival and competitiveness of B. japonicum strain CPAC 7 (same serogroup as CB 1809). In general, adapted strains had increased mucoidy, and up to 43% of the isolates showed no serological reaction. High variability, presumably resulting from the adaptation to the harsh environmental conditions, was verified in rep-PCR (polymerase chain reaction) profiles, being lower in strain CPAC 15, intermediate in B. elkanii, and higher in CPAC 7. Restriction fragment length polymorphism (RFLP)-PCR types of the 16S rDNA corresponded to the following: one type for B. elkanii species, two for B. japonicum, associated to CPAC 15 and CPAC 7, and unknown combinations of profiles. However, when nodC sequences and RFLP-PCR of the nifH region data were considered, only two clusters were observed having full congruence with B. japonicum and B. elkanii species. Combining the results, variability was such that even within a genetically more stable group (such as that of CPAC 15), only 6.4% of the isolates showed high similarity to the inoculant strain, whereas none was similar to CPAC 7. The genetic variability in our study seems to result from a variety and combination of events including strain dispersion, genomic recombination, and horizontal gene transfer. Furthermore, the genetic variability appears to be mainly associated with adaptation, saprophytic capacity, and competitiveness, and not with symbiotic effectiveness, as the similarity of symbiotic genes was higher than that of conserved regions of the DNA.
Collapse
|
22
|
Sameshima-Saito R, Chiba K, Hirayama J, Itakura M, Mitsui H, Eda S, Minamisawa K. Symbiotic Bradyrhizobium japonicum reduces N2O surrounding the soybean root system via nitrous oxide reductase. Appl Environ Microbiol 2006; 72:2526-32. [PMID: 16597953 PMCID: PMC1449076 DOI: 10.1128/aem.72.4.2526-2532.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2005] [Accepted: 01/25/2006] [Indexed: 11/20/2022] Open
Abstract
N(2)O reductase activity in soybean nodules formed with Bradyrhizobium japonicum was evaluated from N(2)O uptake and conversion of (15)N-N(2)O into (15)N-N(2). Free-living cells of USDA110 showed N(2)O reductase activity, whereas a nosZ mutant did not. Complementation of the nosZ mutant with two cosmids containing the nosRZDFYLX genes of B. japonicum USDA110 restored the N(2)O reductase activity. When detached soybean nodules formed with USDA110 were fed with (15)N-N(2)O, they rapidly emitted (15)N-N(2) outside the nodules at a ratio of 98.5% of (15)N-N(2)O uptake, but nodules inoculated with the nosZ mutant did not. Surprisingly, N(2)O uptake by soybean roots nodulated with USDA110 was observed even in ambient air containing a low concentration of N(2)O (0.34 ppm). These results indicate that the conversion of N(2)O to N(2) depends exclusively on the respiratory N(2)O reductase and that soybean roots nodulated with B. japonicum carrying the nos genes are able to remove very low concentrations of N(2)O.
Collapse
Affiliation(s)
- Reiko Sameshima-Saito
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Itoh K, Tashiro Y, Uobe K, Kamagata Y, Suyama K, Yamamoto H. Root nodule Bradyrhizobium spp. harbor tfdAalpha and cadA, homologous with genes encoding 2,4-dichlorophenoxyacetic acid-degrading proteins. Appl Environ Microbiol 2004; 70:2110-8. [PMID: 15066803 PMCID: PMC383140 DOI: 10.1128/aem.70.4.2110-2118.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The distribution of tfdAalpha and cadA, genes encoding 2,4-dichlorophenoxyacetate (2,4-D)-degrading proteins which are characteristic of the 2,4-D-degrading Bradyrhizobium sp. isolated from pristine environments, was examined by PCR and Southern hybridization in several Bradyrhizobium strains including type strains of Bradyrhizobium japonicum USDA110 and Bradyrhizobium elkanii USDA94, in phylogenetically closely related Agromonas oligotrophica and Rhodopseudomonas palustris, and in 2,4-D-degrading Sphingomonas strains. All strains showed positive signals for tfdAalpha, and its phylogenetic tree was congruent with that of 16S rRNA genes in alpha-Proteobacteria, indicating evolution of tfdAalpha without horizontal gene transfer. The nucleotide sequence identities between tfdAalpha and canonical tfdA in beta- and gamma-Proteobacteria were 46 to 57%, and the deduced amino acid sequence of TfdAalpha revealed conserved residues characteristic of the active site of alpha-ketoglutarate-dependent dioxygenases. On the other hand, cadA showed limited distribution in 2,4-D-degrading Bradyrhizobium sp. and Sphingomonas sp. and some strains of non-2,4-D-degrading B. elkanii. The cadA genes were phylogenetically separated between 2,4-D-degrading and nondegrading strains, and the cadA genes of 2,4-D degrading strains were further separated between Bradyrhizobium sp. and Sphingomonas sp., indicating the incongruency of cadA with 16S rRNA genes. The nucleotide sequence identities between cadA and tftA of 2,4,5-trichlorophenoxyacetate-degrading Burkholderia cepacia AC1100 were 46 to 53%. Although all root nodule Bradyrhizobium strains were unable to degrade 2,4-D, three strains carrying cadA homologs degraded 4-chlorophenoxyacetate with the accumulation of 4-chlorophenol as an intermediate, suggesting the involvement of cadA homologs in the cleavage of the aryl ether linkage. Based on codon usage patterns and GC content, it was suggested that the cadA genes of 2,4-D-degrading and nondegrading Bradyrhizobium spp. have different origins and that the genes would be obtained in the former through horizontal gene transfer.
Collapse
Affiliation(s)
- Kazuhito Itoh
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Phylogeny and distribution of extra-slow-growing Bradyrhizobium japonicum harboring high copy numbers of RSα, RSβ and IS1631. FEMS Microbiol Ecol 2003; 44:191-202. [DOI: 10.1016/s0168-6496(03)00009-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|