Orhan F, Senturk M, Genisel M. A new carbonic anhydrase identified in the Gram-negative bacterium (Chromohalobacter sp.) and the interaction of anions with the enzyme.
Comp Biochem Physiol C Toxicol Pharmacol 2022;
254:109290. [PMID:
35114393 DOI:
10.1016/j.cbpc.2022.109290]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 11/19/2022]
Abstract
In this study, the characterization and inhibition characteristic of α-class carbonic anhydrase from Chromohalobacter (ChCA) was documented for the first time. The carbonic anhydrase enzyme had 47.77% yield and 54.45-fold purity. The specific activity of the enzyme was determined as 318.52 U/mg proteins. Alternative substrate (4-nitrophenyl trifluoroacetate, 4-nitrophenyl phosphate, 4-nitrophenyl sulphate and 4-nitrophenyl acetate) were tested for the enzyme. KM and Vmax values for 4-nitrophenyl acetate were 4.57 mM and 4.29 EU/mL and for 4-nitrophenyl trifluoroacetate were 2.39 mM and 2.41 EU/mL. The anions, Cl-, NO2-, NO3-, Br-, ClO3-, ClO4-, I-, CO32- and SO42-, inhibited the ChCA hydratase activity. Among nine anions, the strongest inhibitor activities were obtained with micro molar concentrations of NO2-, NO3-, Br-, I-, CO32- (KI values of 160-255 μM). Other four anions tested (Cl-, ClO3-, ClO4- and SO42-) showed moderate inhibitory activities (KI values of 680-813.5 μM). The results obtained demonstrate that the anions we tested inhibit the Chromohalobacter CA (ChCA) enzyme as in other α-CAs in mammals; however, the susceptibility of ChCA resulted from anions differed significantly from that of other organism CAs.
Collapse