1
|
Koubová A, Lorenc F, Horváthová T, Chroňáková A, Šustr V. Millipede gut-derived microbes as a potential source of cellulolytic enzymes. World J Microbiol Biotechnol 2023; 39:169. [PMID: 37186294 DOI: 10.1007/s11274-023-03620-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023]
Abstract
Lignocellulose biomass has recently been considered a cost-effective and renewable energy source within circular economy management. Cellulases are important key enzymes for simple, fast, and clean biomass decomposition. The intestinal tract of millipedes is the environment which can provide promising microbial strains with cellulolytic potential. In the present study, we used the tropical millipede Telodeinopus aoutii as an experimental organism. Within a feeding test in which millipedes were fed with oak and maple leaf litter, we focused on isolating culturable cellulolytic microbiota from the millipede gut. Several growth media selecting for actinobacteria, bacteria, and fungi have been used to cultivate microbial strains with cellulolytic activities. Our results showed that oak-fed millipedes provided a higher number of culturable bacteria and a more diversified microbial community than maple-fed ones. The screening for cellulolytic activity using Congo red revealed that about 30% of bacterial and fungal phylotypes isolated from the gut content of T. aoutii, produced active cellulases in vitro. Actinobacteria Streptomyces and Kitasatospora were the most active cellulolytic genera on Congo red test. In contrast, fungi Aspergillus, Penicillium, Cheatomium, Clonostachys, and Trichoderma showed the highest protein-specific cellulase activity quantified by 4-Methylumbelliferyl β-D-cellobioside (4-MUC). Our findings provide a basis for future research on the enzyme activities of microbes isolated from the digestive tracts of invertebrates and their biocatalytic role in biomass degradation.
Collapse
Affiliation(s)
- Anna Koubová
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, Na Sádkách 702/7, 370 05, České Budějovice, Czech Republic
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - František Lorenc
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, Na Sádkách 702/7, 370 05, České Budějovice, Czech Republic
- Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05, České Budějovice, Czech Republic
| | - Terézia Horváthová
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, Na Sádkách 702/7, 370 05, České Budějovice, Czech Republic
- EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Alica Chroňáková
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, Na Sádkách 702/7, 370 05, České Budějovice, Czech Republic
| | - Vladimír Šustr
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, Na Sádkách 702/7, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
2
|
State of Knowledge on the Acquisition, Diversity, Interspecies Attribution and Spread of Antimicrobial Resistance between Humans, Animals and the Environment: A Systematic Review. Antibiotics (Basel) 2022; 12:antibiotics12010073. [PMID: 36671275 PMCID: PMC9854550 DOI: 10.3390/antibiotics12010073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/06/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Resistance to antibiotics is considered one of the most urgent global public health concerns. It has considerable impacts on health and the economy, being responsible for the failure to treat infectious diseases, higher morbidity and mortality rates, and rising health costs. In spite of the joint research efforts between different humans, animals and the environment, the key directions and dynamics of the spread of antimicrobial resistance (AMR) still remain unclear. The aim of this systematic review is to examine the current knowledge of AMR acquisition, diversity and the interspecies spread of disease between humans, animals and the environment. Using a systematic literature review, based on a One Health approach, we examined articles investigating AMR bacteria acquisition, diversity, and the interspecies spread between humans, animals and the environment. Water was the environmental sector most often represented. Samples were derived from 51 defined animal species and/or their products A large majority of studies investigated clinical samples of the human population. A large variety of 15 different bacteria genera in three phyla (Proteobacteria, Firmicutes and Actinobacteria) were investigated. The majority of the publications compared the prevalence of pheno- and/or genotypic antibiotic resistance within the different compartments. There is evidence for a certain host or compartment specificity, regarding the occurrence of ARGs/AMR bacteria. This could indicate the rather limited AMR spread between different compartments. Altogether, there remains a very fragmented and incomplete understanding of AMR acquisition, diversity, and the interspecies spread between humans, animals and the environment. Stringent One Health epidemiological study designs are necessary for elucidating the principal routes and dynamics of the spread of AMR bacteria between humans, animals and the environment. This knowledge is an important prerequisite to develop effective public health measures to tackle the alarming AMR situation.
Collapse
|
3
|
Algammal AM, Hashem HR, Al-Otaibi AS, Alfifi KJ, El-Dawody EM, Mahrous E, Hetta HF, El-Kholy AW, Ramadan H, El-Tarabili RM. Emerging MDR-Mycobacterium avium subsp. avium in house-reared domestic birds as the first report in Egypt. BMC Microbiol 2021; 21:237. [PMID: 34445951 PMCID: PMC8393820 DOI: 10.1186/s12866-021-02287-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/26/2021] [Indexed: 12/01/2022] Open
Abstract
Background Avian tuberculosis is a chronic and zoonotic disease that affects a wide variety of birds, mammals, and humans. This study aimed to estimate the frequency of Mycobacterium avium subsp. avium in some domestic birds based on molecular diagnosis, antibiogram profile, and PCR-based detection of inhA, rpoB, rpsL, and otrB antibiotic resistance-related genes. Methods A total of 120 fecal samples were collected from small flocks of house-reared domestic birds at Ismailia Governorate, Egypt. The collected samples were processed and subjected to the bacteriological examination. The antimicrobial susceptibility testing of the recovered isolates was performed using the broth microdilution method for the detection of minimum inhibitory concentrations (MICs). The genetic detection of the IS901confirmatory gene, inhA, rpoB, rpsL, and otrB genes was carried out using PCR. Results The frequency of M. avium subsp. avium was 4.1% (5/120); 10% (4/40) in ducks, and 2.5% (1/10) in geese. The identification of the recovered isolates was confirmed using PCR, where all the tested isolates were positive for IS901confirmatory gene. The results of the broth microdilution method revealed that most of the recovered isolates exhibited multidrug resistance (MDR) to isoniazid, rifampicin, streptomycin, oxytetracycline, and doxycycline, and harbored the inhA, rpoB, rpsL, and otrB genes. Conclusion In brief, to the best of our knowledge this is the first report that emphasized the emergence of avian tuberculosis in house-reared domestic birds in Egypt. The emergence of MDR- M. avium subsp. avium is considered a public health threat. Emerging MDR-M. avium subsp. avium in domestic birds are commonly harbored the IS901, inhA, rpoB, rpsL, and otrB genes. Azithromycin and clofazimine revealed a promising in-vitro antibacterial activity against M. avium subsp. avium.
Collapse
Affiliation(s)
- Abdelazeem M Algammal
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Hany R Hashem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum, 63514, Egypt
| | - Amenah S Al-Otaibi
- Biology Department, College of Sciences, Tabuk University, Tabuk, 71491, Saudi Arabia
| | - Khyreyah J Alfifi
- Biology Department, College of Sciences, Tabuk University, Tabuk, 71491, Saudi Arabia
| | | | - Eman Mahrous
- Animal Health Research Institute, Dokki, Giza, 12618, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assuit University, Assuit, 71515, Egypt
| | - Ali W El-Kholy
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Reham M El-Tarabili
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
4
|
Rutgersson C, Ebmeyer S, Lassen SB, Karkman A, Fick J, Kristiansson E, Brandt KK, Flach CF, Larsson DGJ. Long-term application of Swedish sewage sludge on farmland does not cause clear changes in the soil bacterial resistome. ENVIRONMENT INTERNATIONAL 2020; 137:105339. [PMID: 32036119 DOI: 10.1016/j.envint.2019.105339] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
The widespread practice of applying sewage sludge to arable land makes use of nutrients indispensable for crops and reduces the need for inorganic fertilizer, however this application also provides a potential route for human exposure to chemical contaminants and microbial pathogens in the sludge. A recent concern is that such practice could promote environmental selection and dissemination of antibiotic resistant bacteria or resistance genes. Understanding the risks of sludge amendment in relation to antibiotic resistance development is important for sustainable agriculture, waste treatment and infectious disease management. To assess such risks, we took advantage of an agricultural field trial in southern Sweden, where land used for growing different crops has been amended with sludge every four years since 1981. We sampled raw, semi-digested and digested and stored sludge together with soils from the experimental plots before and two weeks after the most recent amendment in 2017. Levels of selected antimicrobials and bioavailable metals were determined and microbial effects were evaluated using both culture-independent metagenome sequencing and conventional culturing. Antimicrobials or bioavailable metals (Cu and Zn) did not accumulate to levels of concern for environmental selection of antibiotic resistance, and no coherent signs, neither on short or long time scales, of enrichment of antibiotic-resistant bacteria or resistance genes were found in soils amended with digested and stored sewage sludge in doses up to 12 metric tons per hectare. Likewise, only very few and slight differences in microbial community composition were observed after sludge amendment. Taken together, the current study does not indicate risks of sludge amendment related to antibiotic resistance development under the given conditions. Extrapolations should however be done with care as sludge quality and application practices vary between regions. Hence, the antibiotic concentrations and resistance load of the sludge are likely to be higher in regions with larger antibiotic consumption and resistance burden than Sweden.
Collapse
Affiliation(s)
- Carolin Rutgersson
- Centre for Antibiotic Resistance Research (CARe) at the University of Gothenburg, Guldhedsgatan 10A, 413 46 Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Guldhedsgatan 10A, 413 46 Gothenburg, Sweden
| | - Stefan Ebmeyer
- Centre for Antibiotic Resistance Research (CARe) at the University of Gothenburg, Guldhedsgatan 10A, 413 46 Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Guldhedsgatan 10A, 413 46 Gothenburg, Sweden
| | - Simon Bo Lassen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing, China
| | - Antti Karkman
- Centre for Antibiotic Resistance Research (CARe) at the University of Gothenburg, Guldhedsgatan 10A, 413 46 Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Guldhedsgatan 10A, 413 46 Gothenburg, Sweden; Department of Microbiology, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Jerker Fick
- Department of Chemistry, Umeå University, Linnaeus väg 6, 901 87 Umeå, Sweden
| | - Erik Kristiansson
- Centre for Antibiotic Resistance Research (CARe) at the University of Gothenburg, Guldhedsgatan 10A, 413 46 Gothenburg, Sweden; Department of Mathematical Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Kristian K Brandt
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research (CARe) at the University of Gothenburg, Guldhedsgatan 10A, 413 46 Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Guldhedsgatan 10A, 413 46 Gothenburg, Sweden
| | - D G Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe) at the University of Gothenburg, Guldhedsgatan 10A, 413 46 Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Guldhedsgatan 10A, 413 46 Gothenburg, Sweden.
| |
Collapse
|
5
|
High diversity and abundance of cultivable tetracycline-resistant bacteria in soil following pig manure application. Sci Rep 2018; 8:1489. [PMID: 29367695 PMCID: PMC5784163 DOI: 10.1038/s41598-018-20050-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022] Open
Abstract
By performing a microcosm experiment mimicking fertilization, we assessed the dynamic distribution of tetracycline-resistant bacteria (TRB) and corresponding tetracycline resistance genes (TRGs) from pig manure (PM) to the fertilized soil, by culture-dependent methods and PCR detection. Cultivable TRB were most abundant in PM, followed by fertilized soil and unfertilized soil. By restriction fragment length polymorphism (RFLP) analysis, TRB were assigned to 29, 20, and 153 operational taxonomic units (OTUs) in PM, unfertilized soil, and fertilized soil, respectively. After identification, they were further grouped into 19, 12, and 62 species, showing an enhanced diversity of cultivable TRB in the soil following PM application. The proportions of potentially pathogenic TRB in fertilized soil decreased by 69.35% and 41.92% compared with PM and unfertilized soil. Bacillus cereus was likely widely distributed TRB under various environments, and Rhodococcus erythropolis and Acinetobacter sp. probably spread from PM to the soil via fertilization. Meanwhile, tetL was the most common efflux pump gene in both unfertilized and fertilized soils relative to PM; tetB(P) and tet36 were common in PM, whereas tetO was predominant in unfertilized and fertilized soil samples. Sequencing indicated that over 65% of randomly selected TRB in fertilized soil with acquired resistance derived from PM.
Collapse
|
6
|
Ecological and Public Health Implications of the Discharge of Multidrug-Resistant Bacteria and Physicochemical Contaminants from Treated Wastewater Effluents in the Eastern Cape, South Africa. WATER 2017. [DOI: 10.3390/w9080562] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Kyselková M, Chrudimský T, Husník F, Chroňáková A, Heuer H, Smalla K, Elhottová D. Characterization of tet(Y)-carrying LowGC plasmids exogenously captured from cow manure at a conventional dairy farm. FEMS Microbiol Ecol 2016; 92:fiw075. [PMID: 27083193 DOI: 10.1093/femsec/fiw075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2016] [Indexed: 12/31/2022] Open
Abstract
Manure from dairy farms has been shown to contain diverse tetracycline resistance genes that are transferable to soil. Here, we focus on conjugative plasmids that may spread tetracycline resistance at a conventional dairy farm. We performed exogenous plasmid isolation from cattle feces using chlortetracycline for transconjugant selection. The transconjugants obtained harbored LowGC-type plasmids and tet(Y). A representative plasmid (pFK2-7) was fully sequenced and this was compared with previously described LowGC plasmids from piggery manure-treated soil and a GenBank record from Acinetobacter nosocomialis that we also identified as a LowGC plasmid. The pFK2-7 plasmid had the conservative backbone typical of LowGC plasmids, though this region was interrupted with an insert containing the tet(Y)-tet(R) tetracycline resistance genes and the strA-strB streptomycin resistance genes. Despite Acinetobacter populations being considered natural hosts of LowGC plasmids, these plasmids were not found in three Acinetobacter isolates from the study farm. The isolates harbored tet(Y)-tet(R) genes in identical genetic surroundings as pFK2-7, however, suggesting genetic exchange between Acinetobacter and LowGC plasmids. Abundance of LowGC plasmids and tet(Y) was correlated in manure and soil samples from the farm, indicating that LowGC plasmids may be involved in the spread of tet(Y) in the environment.
Collapse
Affiliation(s)
- Martina Kyselková
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Tomáš Chrudimský
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Filip Husník
- Biology Centre of the Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Alica Chroňáková
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Holger Heuer
- Department of Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Messeweg 11/12, 38104 Braunschweig, Germany
| | - Kornelia Smalla
- Department of Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Messeweg 11/12, 38104 Braunschweig, Germany
| | - Dana Elhottová
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
8
|
|
9
|
Petříčková K, Chroňáková A, Zelenka T, Chrudimský T, Pospíšil S, Petříček M, Krištůfek V. Evolution of cyclizing 5-aminolevulinate synthases in the biosynthesis of actinomycete secondary metabolites: outcomes for genetic screening techniques. Front Microbiol 2015; 6:814. [PMID: 26300877 PMCID: PMC4525017 DOI: 10.3389/fmicb.2015.00814] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/23/2015] [Indexed: 11/13/2022] Open
Abstract
A combined approach, comprising PCR screening and genome mining, was used to unravel the diversity and phylogeny of genes encoding 5-aminolevulinic acid synthases (ALASs, hemA gene products) in streptomycetes-related strains. In actinomycetes, these genes were believed to be directly connected with the production of secondary metabolites carrying the C5N unit, 2-amino-3-hydroxycyclopent-2-enone, with biological activities making them attractive for future use in medicine and agriculture. Unlike "classical" primary metabolism ALAS, the C5N unit-forming cyclizing ALAS (cALAS) catalyses intramolecular cyclization of nascent 5-aminolevulinate. Specific amino acid sequence changes can be traced by comparison of "classical" ALASs against cALASs. PCR screening revealed 226 hemA gene-carrying strains from 1,500 tested, with 87% putatively encoding cALAS. Phylogenetic analysis of the hemA homologs revealed strain clustering according to putative type of metabolic product, which could be used to select producers of specific C5N compound classes. Supporting information was acquired through analysis of actinomycete genomic sequence data available in GenBank and further genetic or metabolic characterization of selected strains. Comparison of 16S rRNA taxonomic identification and BOX-PCR profiles provided evidence for numerous horizontal gene transfers of biosynthetic genes or gene clusters within actinomycete populations and even from non-actinomycete organisms. Our results underline the importance of environmental and evolutionary data in the design of efficient techniques for identification of novel producers.
Collapse
Affiliation(s)
- Kateřina Petříčková
- Institute of Microbiology, Czech Academy of Sciences, v. v. i. Prague, Czech Republic
| | - Alica Chroňáková
- Institute of Soil Biology, Biology Centre, Czech Academy of Sciences, v. v. i. České Budějovice, Czech Republic
| | - Tomáš Zelenka
- Institute of Microbiology, Czech Academy of Sciences, v. v. i. Prague, Czech Republic
| | - Tomáš Chrudimský
- Institute of Soil Biology, Biology Centre, Czech Academy of Sciences, v. v. i. České Budějovice, Czech Republic
| | - Stanislav Pospíšil
- Institute of Microbiology, Czech Academy of Sciences, v. v. i. Prague, Czech Republic
| | - Miroslav Petříček
- Institute of Microbiology, Czech Academy of Sciences, v. v. i. Prague, Czech Republic
| | - Václav Krištůfek
- Institute of Soil Biology, Biology Centre, Czech Academy of Sciences, v. v. i. České Budějovice, Czech Republic
| |
Collapse
|
10
|
Abundant rifampin resistance genes and significant correlations of antibiotic resistance genes and plasmids in various environments revealed by metagenomic analysis. Appl Microbiol Biotechnol 2014; 98:5195-204. [PMID: 24615381 DOI: 10.1007/s00253-014-5511-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/27/2013] [Accepted: 12/28/2013] [Indexed: 01/14/2023]
Abstract
In the present study, a newly developed metagenomic analysis approach was applied to investigate the abundance and diversity of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in aquaculture farm sediments, activated sludge, biofilm, anaerobic digestion sludge, and river water. BLASTX analysis against the Comprehensive Antibiotic Resistance Database was conducted for the metagenomic sequence data of each sample and then the ARG-like sequences were sorted based on structured sub-database using customized scripts. The results showed that freshwater fishpond sediment had the highest abundance (196 ppm), and anaerobic digestion sludge possessed the highest diversity (133 subtypes) of ARGs among the samples in this study. Significantly, rifampin resistance genes were universal in all the diverse samples and consistently accounted for 26.9~38.6 % of the total annotated ARG sequences. Furthermore, a significant linear correlation (R (2) = 0.924) was found between diversities (number of subtypes) of ARGs and diversities of plasmids in diverse samples. This work provided a wide spectrum scan of ARGs and MGEs in different environments and revealed the prevalence of rifampin resistance genes and the strong correlation between ARG diversity and plasmid diversity for the first time.
Collapse
|
11
|
Microbial environment affects innate immunity in two closely related earthworm species Eisenia andrei and Eisenia fetida. PLoS One 2013; 8:e79257. [PMID: 24223917 PMCID: PMC3815151 DOI: 10.1371/journal.pone.0079257] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/19/2013] [Indexed: 11/19/2022] Open
Abstract
Survival of earthworms in the environment depends on their ability to recognize and eliminate potential pathogens. This work is aimed to compare the innate defense mechanisms of two closely related earthworm species, Eisenia andrei and Eisenia fetida, that inhabit substantially different ecological niches. While E. andrei lives in a compost and manure, E. fetida can be found in the litter layer in forests. Therefore, the influence of environment-specific microbiota on the immune response of both species was followed. Firstly, a reliable method to discern between E. andrei and E. fetida based on species-specific primers for cytochrome c oxidase I (COI) and stringent PCR conditions was developed. Secondly, to analyze the immunological profile in both earthworm species, the activity and expression of lysozyme, pattern recognition protein CCF, and antimicrobial proteins with hemolytic function, fetidin and lysenins, have been assessed. Whereas, CCF and lysozyme showed only slight differences in the expression and activity, fetidin/lysenins expression as well as the hemolytic activity was considerably higher in E. andrei as compared to E. fetida. The expression of fetidin/lysenins in E. fetida was not affected upon the challenge with compost microbiota, suggesting more substantial changes in the regulation of the gene expression. Genomic DNA analyses revealed significantly higher level of fetidin/lysenins (determined using universal primer pairs) in E. andrei compared to E. fetida. It can be hypothesized that E. andrei colonizing compost as a new habitat acquired an evolutionary selection advantage resulting in a higher expression of antimicrobial proteins.
Collapse
|
12
|
Kyselková M, Jirout J, Chroňáková A, Vrchotová N, Bradley R, Schmitt H, Elhottová D. Cow excrements enhance the occurrence of tetracycline resistance genes in soil regardless of their oxytetracycline content. CHEMOSPHERE 2013; 93:2413-2418. [PMID: 24053942 DOI: 10.1016/j.chemosphere.2013.08.058] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 07/22/2013] [Accepted: 08/19/2013] [Indexed: 06/02/2023]
Abstract
Fertilizing soils with animal excrements from farms with common antibiotic use represents a risk of disseminating antibiotic resistance genes into the environment. In the case of tetracycline antibiotics, it is not clear, however, whether the presence of antibiotic residues further enhances the gene occurrence in manured soils. We established a microcosm experiment in which 3 farm soils that had no recent history of fertilization with animal excrements were amended on a weekly basis (9 times) with excrements from either an oxytetracycline-treated or an untreated cow. Throughout the study, the concentration of oxytetracycline in excrements from the treated cow was above 500 μg g(-1)dw, whereas no oxytetracycline was detected in excrements from the healthy cow. Both excrements contained tetracycline resistance (TC-r) genes tet(L), tet(M), tet(V), tet(Z), tet(Q) and tet(W). The excrements from the treated cow also contained the tet(B) gene, and a higher abundance of tet(Z), tet(Q) and tet(W). Three weeks after the last excrement addition, the individual TC-r genes differed in their persistence in soil: tet(Q) and tet(B) were not detectable while tet(L), tet(M), tet(Z) and tet(W) were found in all 3 soils. There were, however, no significant differences in the total number, nor in the abundance, of TC-r genes between soil samples amended with each excrement type. The oxytetracycline-rich and the oxytetracycline-free excrement therefore contributed equally to the increase of tetracycline resistome in soil. Our results indicate that other mechanisms than OTC-selection pressure may be involved in the maintenance of TC-r genes in manured soils.
Collapse
Affiliation(s)
- Martina Kyselková
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Soil Biology, 370 05 České Budějovice, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|