1
|
Chi Y, Ma X, Wu J, Wang R, Zhang X, Chu S, Zhang D, Zhou P. Plant growth promoting endophyte promotes cadmium accumulation in Solanum nigrum L. by regulating plant homeostasis. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131866. [PMID: 37329596 DOI: 10.1016/j.jhazmat.2023.131866] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
The homeostasis regulating mechanism of endophyte enhancing cadmium (Cd) extraction by hyperaccumulator is poorly understood. Here, an endophyte strain E3 that belonged to Pseudomonas was screened from Cd hyperaccumulator Solanum nigrum L., which significantly improved the Cd phytoextraction efficiency of S. nigrum by 40.26%. The content and translocation factor of nutrient elements indicated that endophyte might regulate Cd accumulation by affecting the uptake and transport of magnesium and iron in S. nigrum. Gene transcriptional expression profile further revealed that SnMGT, SnIRT1, and SnIRT2, etc., were the key genes involved in the regulation of S. nigrum elements uptake by endophyte. However, changes in elemental homeostasis did not negatively affect plant growth. Endophyte inoculation promoted plant growth by fortifying photosynthesis as well as recruiting specific bacteria in S. nigrum endosphere, e.g., Pseudonocardiaceae, Halomonas. Notably, PICRUSt2 analysis and biochemical characterization jointly suggested that endophyte regulated starch degradation in S. nigrum leaves to maintain photosynthetic balance. Our results demonstrated that microecological characteristics of hyperaccumulator could be reshaped by endophyte, also the homeostasis regulation in endophyte enhanced hyperaccumulator Cd phytoextraction was significant.
Collapse
Affiliation(s)
- Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianzhong Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianqiang Wu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xia Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Debnath S, Das A, Maheshwari DK, Pandey P. Treatment with atypical rhizobia, Pararhizobium giardinii and Ochrobactrum sp. modulate the rhizospheric bacterial community, and enhances Lens culinaris growth in fallow-soil. Microbiol Res 2022; 267:127255. [PMID: 36434988 DOI: 10.1016/j.micres.2022.127255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/26/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Diazotrophic nodule isolates are acknowledged promoters of plant growth and rhizospheric community. Consequently, in the lentil agroecosystem, inoculation of atypical rhizobial isolates could be a viable alternative to chemical fertilizers for fallow land usage optimization. The aim of this study is to evaluate and select the rhizobial isolates of lentil nodules with plant-growth-promoting (PGP) attributes and to elucidate their application in rice-fallow soil for determining the growth of lentils and its impact on the rhizospheric bacterial community. Lentil's nodule isolates were identified and screened for their PGP attributes, biofilm, exopolysaccharide (EPS) formation, and early plant growth promotion. The pot experiment with the selected atypical rhizobial isolates Pararhizobium giardinii (P1) and Ochrobactrum sp. (42S) significantly enhanced germination, vigour index, nodule formation (P1 60%, 42S 42% increase), nodule fresh weight, shoot length (65% P1 & 35% 42S), and chlorophyll content as compared to the uninoculated control treatment. The genes for nitrogen fixation nifH and nifK were detected in both isolates. Scanning Electron Microscopy (SEM) revealed successful root and nodule colonization by both isolates, while Transmission Electron Microscopy (TEM) displayed nitrogen-fixing zones within root nodules. Proteobacteria predominated in the lentil rhizosphere of all the treatments. Whereas, application of either P1 or 42S increased Rhizobium, Mesorhizobium, and Bradyrhizobium genra, thus positively modulating rhizospheric community structure. The correlation network analysis revealed an abundance of some interdependent bacterial genera with a possible role in overall plant growth. Functional genes for siderophore biosynthesis and ABC transporter were positively modulated by application of either P1 or 42S. This study showed the significant effect of P. giardinii P1 and Ochrobactrum sp. 42S of L. culinaris on lentil growth, improving fallowsoil health for optimum usage, and modulated rhizospheric community structure which strongly manifest prospects of low-cost, eco-friendly and sustainable biofertilizers.
Collapse
Affiliation(s)
- Sourav Debnath
- Department of Microbiology, Assam University, Silchar 788011, India
| | - Ankita Das
- Department of Microbiology, Assam University, Silchar 788011, India
| | - D K Maheshwari
- Department of Botany and Microbiology, Gurukula Kangri University, Haridwar 249404, Uttarakhand, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar 788011, India.
| |
Collapse
|
3
|
Liu W, Qiu K, Xie Y, Wang R, Li H, Meng W, Yang Y, Huang Y, Li Y, He Y. Years of sand fixation with Caragana korshinskii drive the enrichment of its rhizosphere functional microbes by accumulating soil N. PeerJ 2022; 10:e14271. [PMID: 36340191 PMCID: PMC9635361 DOI: 10.7717/peerj.14271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
C. korshinskii is one of the most widely-planted sand-fixing legumes in northwest China and exploring its rhizosphere microbiome is of great ecological importance. However, the effect of long-term sand fixation on the composition, diversity, and underlying functions of microbes in the C. korshinskii rhizosphere in dryland ecosystems remain unclear. Here, we performed high-throughput sequencing using a 16S rRNA (absolute quantification) and bacterial functional annotation of prokaryotic taxa (FAPROTAX) analysis and an ITS (relative quantification) and fungal functional guild (FUNGuild) analysis to investigate the C. korshinskii rhizosphere microbiome and metabolic functional groups at different sand-fixing ages (six years, CK6; twelve years, CK12; and eighteen years, CK18) and determined the physicochemical properties of the rhizosphere soil. Results showed that the key bacterial taxa of the rhizosphere were significantly more abundant in CK18 than in CK12 and CK6 at the phylum-class-genus level, and that fungal Glomeromycota was also significantly more abundant in the CK18 rhizosphere compared to CK12 and CK6. Among these bacterial taxa, the enrichment effect of key, functional, genus-level species of bacteria was the most obvious, including Rhizobium, Ensifer, Neorhizobium, Mesorhizobium, Streptomyces, Sphingomonas, and Flavobacterium, which are N-fixing and/or phosphate-solubilizing groups. The significant improvement seen in the physicochemical properties of the CK18 rhizosphere soil, including the higher total nitrogen (TN), available nitrogen (AN), pH, electrical conductivity (EC), higher N:P ratio, and lower C:N ratio, all demonstrated the relationship between the rhizosphere microbes and soil carbon (C) and nitrogen (N) cycling. A redundancy analysis (RDA) of different taxonomic levels indicated a close positive relationship between rhizosphere microbes and AN. In addition, the functional groups of the C. korshinskii rhizosphere bacteria were closely related to soil AN and were mainly composed of chemoheterotrophy and aerobic chemoheterotrophy. A Spearman correlation analysis revealed that these functional groups were mainly identified from bacterial Actinobacteria, Proteobacteria, Verrucomicrobia, Bacteroidetes, and fungal Glomeromycota. Our study provides evidence that the rhizosphere microbes of C. korshinskii are closely related to the accumulation of N in the restoration of desert ecosystems, and that the ecological functional processes they are involved in mainly involve C and N cycles, which play an important role in desertification reversal.
Collapse
Affiliation(s)
- Wangsuo Liu
- School of Agriculture, Ningxia University, Yinchuan, China,Department of Desertification Prevention, Ningxia Grape Wine and Desertification Prevention Technical College, Yinchuan, Ningxia, China
| | - Kaiyang Qiu
- School of Agriculture, Ningxia University, Yinchuan, China,Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of Northwest China, Yinchuan, China,Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, China
| | - Yingzhong Xie
- School of Agriculture, Ningxia University, Yinchuan, China,Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of Northwest China, Yinchuan, China,Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, China
| | - Ruixia Wang
- Ningxia Administration of Baijitan National Nature Reserve, Yinchuan, China
| | - Haichao Li
- Ningxia Administration of Baijitan National Nature Reserve, Yinchuan, China
| | - Wenfen Meng
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Yi Yang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Yeyun Huang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Yayuan Li
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Yi He
- School of Agriculture, Ningxia University, Yinchuan, China
| |
Collapse
|
4
|
Ou T, Gao H, Jiang K, Yu J, Zhao R, Liu X, Zhou Z, Xiang Z, Xie J. Endophytic Klebsiella aerogenes HGG15 stimulates mulberry growth in hydro-fluctuation belt and the potential mechanisms as revealed by microbiome and metabolomics. Front Microbiol 2022; 13:978550. [PMID: 36033884 PMCID: PMC9417544 DOI: 10.3389/fmicb.2022.978550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022] Open
Abstract
Growth promotion and stress tolerance induced by endophytes have been observed in various plants, but their effects on mulberry regularly suffering flood in the hydro-fluctuation belt are less understood. In the present study, endophytic Klebsiella aerogenes HGG15 was screened out from 28 plant growth promotion (PGP) bacteria as having superior PGP traits in vitro and in planta as well as biosafety for silkworms. K. aerogenes HGG15 could actively colonize into roots of mulberry and subsequently transferred to stems and leaves. The 16S ribosomal RNA (V3–V4 variable regions) amplicon sequencing revealed that exogenous application of K. aerogenes HGG15 altered the bacterial community structures of mulberry roots and stems. Moreover, the genus of Klebsiella was particularly enriched in inoculated mulberry roots and was positively correlated with mulberry development and soil potassium content. Untargeted metabolic profiles uncovered 201 differentially abundant metabolites (DEMs) between inoculated and control mulberry, with lipids and organo-heterocyclic compounds being particularly abundant DEMs. In addition, a high abundance of abiotic stress response factors and promotion growth stimulators such as glycerolipid, sphingolipid, indole, pyridine, and coumarin were observed in inoculated mulberry. Collectively, the knowledge gained from this study sheds light on potential strategies to enhance mulberry growth in hydro-fluctuation belt, and microbiome and metabolite analyses provide new insights into the growth promotion mechanisms used by plant-associated bacteria.
Collapse
Affiliation(s)
- Ting Ou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Haiying Gao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Kun Jiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Jing Yu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Ruolin Zhao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Xiaojiao Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
- College of Life Science, Chongqing Normal University, Chongqing, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Jie Xie
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
- *Correspondence: Jie Xie,
| |
Collapse
|
5
|
Yurgel SN, Ajeethan N, Smertenko A. Response of Plant-Associated Microbiome to Plant Root Colonization by Exogenous Bacterial Endophyte in Perennial Crops. Front Microbiol 2022; 13:863946. [PMID: 35479645 PMCID: PMC9037143 DOI: 10.3389/fmicb.2022.863946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
The application of bacterial inoculums for improving plant growth and production is an important component of sustainable agriculture. However, the efficiency of perennial crop inoculums depends on the ability of the introduced endophytes to exert an impact on the host-plant over an extended period of time. This impact might be evaluated by the response of plant-associated microbiome to the inoculation. In this study, we monitored the effect of a single bacterial strain inoculation on the diversity, structure, and cooperation in plant-associated microbiome over 1-year period. An endophyte (RF67) isolated from Vaccinium angustifolium (wild blueberry) roots and annotated as Rhizobium was used for the inoculation of 1-year-old Lonicera caerulea (Haskap) plants. A significant level of bacterial community perturbation was detected in plant roots after 3 months post-inoculation. About 23% of root-associated community variation was correlated with an application of the inoculant, which was accompanied by increased cooperation between taxa belonging to Proteobacteria and Actinobacteriota phyla and decreased cooperation between Firmicutes in plant roots. Additionally, a decrease in bacterial Shannon diversity and an increase in the relative abundances of Rhizobiaceae and Enterobacteriaceae were detected in the roots of inoculated plants relative to the non-inoculated control. A strong effect of the inoculation on the bacterial cooperation was also detected after 1 year of plant field growth, whereas no differences in bacterial community composition and also alpha and beta diversities were detected between bacterial communities from inoculated and non-inoculated roots. These findings suggest that while exogenous endophytes might have a short-term effect on the root microbiome structure and composition, they can boost cooperation between plant-growth-promoting endophytes, which can exist for the extended period of time providing the host-plant with long-lasting beneficial effects.
Collapse
Affiliation(s)
- Svetlana N. Yurgel
- Grain Legume Genetics and Physiology Research Unit, U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), Prosser, WA, United States
| | - Nivethika Ajeethan
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
- Department of Biosystems Technology, Faculty of Technology, University of Jaffna, Kilinochchi, Sri Lanka
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| |
Collapse
|