1
|
Xin J, Jiang X, Ben S, Yuan Q, Su L, Zhang Z, Christiani DC, Du M, Wang M. Association between circulating vitamin E and ten common cancers: evidence from large-scale Mendelian randomization analysis and a longitudinal cohort study. BMC Med 2022; 20:168. [PMID: 35538486 PMCID: PMC9092790 DOI: 10.1186/s12916-022-02366-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/05/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The association between vitamin E and cancer risk has been widely investigated by observational studies, but the findings remain inconclusive. Here, we aimed to evaluate the causal effect of circulating vitamin E on the risk of ten common cancers, including bladder, breast, colorectal, esophagus, lung, oral and pharynx, ovarian, pancreatic, prostate, and kidney cancer. METHODS A Mendelian randomization (MR) analytic framework was applied to data from a cancer-specific genome-wide association study (GWAS) comprising a total of 297,699 cancer cases and 304,736 controls of European ancestry. Three genetic instrumental variables associated with circulating vitamin E were selected. Summary statistic-based methods of inverse variance weighting (IVW) and likelihood-based approach, as well as the individual genotyping-based method of genetic risk score (GRS) were used. Multivariable IVW analysis was further performed to control for potential confounding effects. Furthermore, the UK Biobank cohort was used as external validation, supporting 355,543 European participants (incident cases ranged from 437 for ovarian cancer to 4882 for prostate cancer) for GRS-based estimation of circulating vitamin E, accompanied by a one-sample MR analysis of dietary vitamin E intake underlying the time-to-event analytic framework. RESULTS Specific to cancer GWAS, we found that circulating vitamin E was significantly associated with increased bladder cancer risk (odds ratios [OR]IVW = 6.23, PIVW = 3.05×10-3) but decreased breast cancer risk (ORIVW = 0.68, PIVW = 8.19×10-3); however, the significance of breast cancer was dampened (Pmultivariable IVW > 0.05) in the subsequent multivariable MR analysis. In the validation stage of the UK Biobank cohort, we did not replicate convincing causal effects of genetically predicted circulating vitamin E concentrations and dietary vitamin E intake on the risk of ten cancers. CONCLUSIONS This large-scale population study upon data from cancer-specific GWAS and a longitudinal biobank cohort indicates plausible non-causal associations between circulating vitamin E and ten common cancers in the European populations. Further studies regarding ancestral diversity are warranted to validate such causal associations.
Collapse
Affiliation(s)
- Junyi Xin
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Xia Jiang
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Shuai Ben
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Qianyu Yuan
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Li Su
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China. .,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA. .,Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China.
| | - Meilin Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China. .,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China. .,The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
2
|
Xia Z, Su Y, Petersen P, Qi L, Kim AE, Figueiredo JC, Lin Y, Nan H, Sakoda LC, Albanes D, Berndt SI, Bézieau S, Bien S, Buchanan DD, Casey G, Chan AT, Conti DV, Drew DA, Gallinger SJ, Gauderman WJ, Giles GG, Gruber SB, Gunter MJ, Hoffmeister M, Jenkins MA, Joshi AD, Le Marchand L, Lewinger JP, Li L, Lindor NM, Moreno V, Murphy N, Nassir R, Newcomb PA, Ogino S, Rennert G, Song M, Wang X, Wolk A, Woods MO, Brenner H, White E, Slattery ML, Giovannucci EL, Chang‐Claude J, Pharoah PDP, Hsu L, Campbell PT, Peters U. Functional informed genome-wide interaction analysis of body mass index, diabetes and colorectal cancer risk. Cancer Med 2020; 9:3563-3573. [PMID: 32207560 PMCID: PMC7221445 DOI: 10.1002/cam4.2971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/28/2020] [Accepted: 02/21/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Body mass index (BMI) and diabetes are established risk factors for colorectal cancer (CRC), likely through perturbations in metabolic traits (e.g. insulin resistance and glucose homeostasis). Identification of interactions between variation in genes and these metabolic risk factors may identify novel biologic insights into CRC etiology. METHODS To improve statistical power and interpretation for gene-environment interaction (G × E) testing, we tested genetic variants that regulate expression of a gene together for interaction with BMI (kg/m2 ) and diabetes on CRC risk among 26 017 cases and 20 692 controls. Each variant was weighted based on PrediXcan analysis of gene expression data from colon tissue generated in the Genotype-Tissue Expression Project for all genes with heritability ≥1%. We used a mixed-effects model to jointly measure the G × E interaction in a gene by partitioning the interactions into the predicted gene expression levels (fixed effects), and residual G × E effects (random effects). G × BMI analyses were stratified by sex as BMI-CRC associations differ by sex. We used false discovery rates to account for multiple comparisons and reported all results with FDR <0.2. RESULTS Among 4839 genes tested, genetically predicted expressions of FOXA1 (P = 3.15 × 10-5 ), PSMC5 (P = 4.51 × 10-4 ) and CD33 (P = 2.71 × 10-4 ) modified the association of BMI on CRC risk for men; KIAA0753 (P = 2.29 × 10-5 ) and SCN1B (P = 2.76 × 10-4 ) modified the association of BMI on CRC risk for women; and PTPN2 modified the association between diabetes and CRC risk in both sexes (P = 2.31 × 10-5 ). CONCLUSIONS Aggregating G × E interactions and incorporating functional information, we discovered novel genes that may interact with BMI and diabetes on CRC risk.
Collapse
|
3
|
Zhu Q, Wang J, Zhang L, Bian W, Lin M, Xu X, Zhou X. LCK rs10914542-G allele associates with type 1 diabetes in children via T cell hyporesponsiveness. Pediatr Res 2019; 86:311-315. [PMID: 31112992 DOI: 10.1038/s41390-019-0436-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Abnormal lymphocyte-specific protein tyrosine kinase (LCK)-related T cell hyporesponsiveness was discovered in type 1 diabetes (T1D). This study aims to investigate the potential associations between LCK single-nucleotide polymorphisms (SNPs) and the susceptibility of T1D. METHODS DNAs were extracted from blood samples of 589 T1D patients and 596 healthy controls to genotype seven SNPs of the LCK gene using PCR and Sanger sequencing. Associations of these SNPs with the susceptibility of T1D were determined by χ2 test. LCKs were knocked out in peripheral blood mononuclear cells (PBMCs) using CRISPR-Cas9 to investigate the role of LCK SNP in T-lymphocyte activation in T1D. RESULTS SNP rs10914542 but not the other six SNPs of the LCK gene was significantly associated with (C vs. G, odds ratio (OR) = 0.581, 95% confidence interval (CI) = 0.470-0.718, P value = 4.13E - 7) the susceptibility of T1D. Peripheral T-lymphocyte activation in response to T cell receptor (TCR)/CD3 stimulation is significantly lower in the rs10914542-G-allele group than in the C-allele group. In vitro experiments revealed that rs10914542 G allele impaired the TCR/CD3-mediated T-cell activation in PBMCs. CONCLUSIONS This study reveals that the G allele of SNP rs10914542 of LCK impairs the TCR/CD3-mediated T-cell activation and increases the risk of T1D.
Collapse
Affiliation(s)
- Qingwen Zhu
- Prenatal Screening and Diagnosis Center, Nantong Municipal Maternal and Child Health Hospital, 226010, Nantong, China
| | - Jing Wang
- Prenatal Screening and Diagnosis Center, Nantong Municipal Maternal and Child Health Hospital, 226010, Nantong, China
| | - Lingli Zhang
- Prenatal Screening and Diagnosis Center, Nantong Municipal Maternal and Child Health Hospital, 226010, Nantong, China
| | - Wenjun Bian
- Prenatal Screening and Diagnosis Center, Nantong Municipal Maternal and Child Health Hospital, 226010, Nantong, China
| | - Mengsi Lin
- Prenatal Screening and Diagnosis Center, Nantong Municipal Maternal and Child Health Hospital, 226010, Nantong, China
| | - Xiaoning Xu
- Prenatal Screening and Diagnosis Center, Nantong Municipal Maternal and Child Health Hospital, 226010, Nantong, China
| | - Xiang Zhou
- Prenatal Screening and Diagnosis Center, Nantong Municipal Maternal and Child Health Hospital, 226010, Nantong, China.
| |
Collapse
|
4
|
Chen S, Fan H, Feng Y, Zhang Y, Chen Y, Gu Y, Shi Y, Dai H, Zhang M, Xu X, Chen H, Yang T, Xu K. The association between rs1893217, rs478582 in PTPN2 and T1D risk with different diagnosed age, and related clinical characteristics in Chinese Han population. Autoimmunity 2019; 52:95-101. [PMID: 31030572 DOI: 10.1080/08916934.2019.1608191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To investigate the association between polymorphisms in PTPN2 (rs1893217 and rs478582) and type 1 diabetes (T1D) risk with different diagnosed age, as well as related clinical characteristics in Chinese Han population. METHODS A total of 2270 Chinese Han individuals (1023 T1D patients and 1247 healthy controls) were genotyped for rs1893217 and rs478582. And 306 newly diagnosed T1D patients were measured for C-peptide levels based on a standard mixed-meal tolerance test. In addition, 40 healthy controls were analyzed for different T cell subsets by multi-color flow cytometry. RESULTS Neither rs1893217 nor rs478582 showed any association with T1D risk under an additive model. Stratified analysis for T1D diagnosed age revealed that rs1893217, but not rs478582, was significantly associated with T1D patients diagnosed age ≤18 (OR =0.80, 95% CI: 0.67-0.97, p = 0.02). For those diagnosed age >18, neither of them showed any association. We also found that rs1893217 had a higher positive rate of ZnT8A (CC vs. TT carrier, OR = 2.07, 95% CI: 1.07-4.03, p = 0.026) and IA-2A (CT vs. TT carrier, OR = 1.36, 95% CI: 1.02-1.80, p = 0.038). Furthermore, for rs478582, compared with TT, healthy individuals carrying CC/CT carriers had significantly lower frequency and Helios expression of naive Treg subsets (p = 0.049 and 0.048 respectively), but not secreting or activating Treg subsets. In addition, we did not find any association between these two polymorphisms and residual β-cell function in newly diagnosed T1D patients. CONCLUSIONS Our results suggest that rs1893217 may increase the risk of early-onset T1D and affect humoral immunity, while rs478582 may affect Treg subsets.
Collapse
Affiliation(s)
- Shu Chen
- a Department of Endocrinology , The First Affiliated Hospital of Nanjing Medical University , Nanjing , China
| | - Hongqi Fan
- a Department of Endocrinology , The First Affiliated Hospital of Nanjing Medical University , Nanjing , China
| | - Yingjie Feng
- a Department of Endocrinology , The First Affiliated Hospital of Nanjing Medical University , Nanjing , China
| | - Yuyue Zhang
- a Department of Endocrinology , The First Affiliated Hospital of Nanjing Medical University , Nanjing , China
| | - Yang Chen
- a Department of Endocrinology , The First Affiliated Hospital of Nanjing Medical University , Nanjing , China
| | - Yong Gu
- a Department of Endocrinology , The First Affiliated Hospital of Nanjing Medical University , Nanjing , China
| | - Yun Shi
- a Department of Endocrinology , The First Affiliated Hospital of Nanjing Medical University , Nanjing , China
| | - Hao Dai
- a Department of Endocrinology , The First Affiliated Hospital of Nanjing Medical University , Nanjing , China
| | - Mei Zhang
- a Department of Endocrinology , The First Affiliated Hospital of Nanjing Medical University , Nanjing , China
| | - Xinyu Xu
- a Department of Endocrinology , The First Affiliated Hospital of Nanjing Medical University , Nanjing , China
| | - Heng Chen
- a Department of Endocrinology , The First Affiliated Hospital of Nanjing Medical University , Nanjing , China
| | - Tao Yang
- a Department of Endocrinology , The First Affiliated Hospital of Nanjing Medical University , Nanjing , China
| | - Kuanfeng Xu
- a Department of Endocrinology , The First Affiliated Hospital of Nanjing Medical University , Nanjing , China
| |
Collapse
|
5
|
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disorder that affects an estimated 30 million people worldwide. It is characterized by the destruction of pancreatic β cells by the immune system, which leads to lifelong dependency on exogenous insulin and imposes an enormous burden on patients and health-care resources. T1DM is also associated with an increased risk of comorbidities, such as cardiovascular disease, retinopathy, and diabetic kidney disease (DKD), further contributing to the burden of this disease. Although T cells are largely considered to be responsible for β-cell destruction in T1DM, increasing evidence points towards a role for B cells in disease pathogenesis. B cell-depletion, for example, delays disease progression in patients with newly diagnosed T1DM. Loss of tolerance of islet antigen-reactive B cells occurs early in disease and numbers of pancreatic CD20+ B cells correlate with β-cell loss. Although the importance of B cells in T1DM is increasingly apparent, exactly how these cells contribute to disease and its comorbidities, such as DKD, is not well understood. Here we discuss the role of B cells in the pathogenesis of T1DM and how these cells are activated during disease development. Finally, we speculate on how B cells might contribute to the development of DKD.
Collapse
|
6
|
Yan L, Sun S, Qu L. Insulin-like growth factor-1 promotes the proliferation and odontoblastic differentiation of human dental pulp cells under high glucose conditions. Int J Mol Med 2017; 40:1253-1260. [PMID: 28902344 DOI: 10.3892/ijmm.2017.3117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/07/2017] [Indexed: 12/24/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) promotes human dental pulp stem cell proliferation and osteogenic differentiation. However, the effects of IGF-1 on the proliferation, apoptosis and odontoblastic differentiation (mineralization) of dental pulp cells (DPCs) under high glucose (GLU) conditions remain unclear. In this study, isolated primary human DPCs were treated with various concentrations of high GLU. Cell proliferation and apoptosis were determined by Cell Counting Kit-8 and Annexin V-FITC/PI assays, respectively. The cells were cultured in odontoblastic induction medium containing various concentrations of high GLU. Odontoblastic differentiation was determined by alkaline phosphatase (ALP) activity assay. Mineralization formation was evaluated by von Kossa staining. The expression levels of IGF family members were measured by western blot analysis and RT-qPCR during proliferation and differentiation. The cells were then exposed to 25 mM GLU and various concentrations of IGF-1. Cell proliferation, apoptosis, ALP activity, mineralization formation and the levels of mineralization-related proteins were then evaluated. Our results revealed that high GLU significantly inhibited cell proliferation and promoted cell apoptosis. GLU (25 and 50 mM) markedly reduced ALP activity and mineralization on days 7 and 14 after differentiation. The levels of IGF family members were markedly decreased by high GLU during proliferation and differentiation. However, IGF-1 significantly reversed the effects of high GLU on cell proliferation and apoptosis. Additionally, IGF-1 markedly restored the reduction of ALP activity and mineralization induced by high GLU. Our findings thus indicate that IGF-1 attenuates the high GLU-induced inhibition of DPC proliferation, differentiation and mineralization.
Collapse
Affiliation(s)
- Lu Yan
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Shangmin Sun
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Liu Qu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| |
Collapse
|
7
|
The association between dietary vitamin A intake and pancreatic cancer risk: a meta-analysis of 11 studies. Biosci Rep 2016; 36:BSR20160341. [PMID: 27756825 PMCID: PMC5293573 DOI: 10.1042/bsr20160341] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/13/2016] [Accepted: 10/18/2016] [Indexed: 12/16/2022] Open
Abstract
Whether dietary vitamin A intake could reduce pancreatic cancer risk is still conflicting. We therefore conducted a meta-analysis to summarize the evidence from epidemiological studies. We searched the databases of PubMed and Web of Knowledge up to July 2016. Random model was used to combine study-specific relative risks (RR) and 95% confidence interval (CI). Publication bias was assessed by Egger regression asymmetry test and Begg's funnel plot. Eleven studies (10 case-control studies and 1 cohort study) involving 2705 pancreatic cancer cases were included in the present study. The RR (95% CI) of pancreatic cancer for highest category of vitamin A intake compared with lowest category was 0.839 (95% CI=0.712–0.988) with low heterogeneity detected (I2=17.8%, Pheterogeneity=0.274). The relationships were also significant for studies designed by case-control [RR=0.808, 95% CI=0.690–0.947], as well as in European population [RR=0.821, 95% CI=0.693–0.972]. No evidence of publication bias was found. This meta-analysis demonstrated that dietary vitamin A intake might inversely associated with the risk of pancreatic cancer.
Collapse
|