1
|
Duan S, Jiang X, Li J, Fu M, Li Z, Cheng Y, Zhuang Y, Yang M, Xiao W, Ping H, Xie Y, Xie X, Zhang X. The RXFP2-PLC/PKC signaling pathway mediates INSL3-induced regulation of the proliferation, migration and apoptosis of mouse gubernacular cells. Cell Mol Biol Lett 2023; 28:16. [PMID: 36849880 PMCID: PMC9972740 DOI: 10.1186/s11658-023-00433-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/20/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Testicular hypoplasia can affect the sexual and reproductive ability in adulthood, and even increase the risk of cancer. Abnormal development of the gubernaculum is one of the important factors of testicular hypoplasia. Therefore, a study of the structure and function of the gubernaculum is an important but neglected new breakthrough point for investigating the normal/abnormal development of the testis. Previous findings showed that Insulin like factor 3 (INSL3) is a key factor regulating the growth of gubernaculum, however, the mechanism by which INSL3 acts on the gubernaculum remains unknown. Therefore, we probed the mechanism associated with INSL3-induced the proliferation, migration, and apoptosis of gubernacular cells in mice. METHODS A culture cell model of neonatal mice gubernaculum is established by INSL3 intervention. We blocked PLC/PKC signaling pathway with U73122 pretreat to investigate the role of the PLC/PKC signaling pathway. The changes of cell proliferation, migration, and apoptosis were detected by molecular biological methods. In addition, the levels of PCNA and F-action were detected by immunofluorescence and western blotting. RESULTS We found that INSL3 can promote the proliferation and migration of gubernacular cells and inhibit their apoptosis, meanwhile, INSL3 significantly up-regulated PLC/PKC protein phosphorylation. However, treatment with the PLC/PKC signaling pathway inhibitor U73122 significantly inhibited these effects of INSL3. Besides, we found that INSL3 could up-regulate the protein expression level of PCNA and F-actin, while the PCNA and F-actin expression was significantly weakened after U73122 pretreatment. CONCLUSIONS This research revealed that INSL3 binding to RXFP2 may up-regulate the expression levels of PCNA and F-actin by activating the PLC/PKC signaling pathway to promote the proliferation and migration of gubernacular cells. It suggests that the RXFP2-PLC/PKC axis may serve as a novel molecular mechanism by which INSL3 regulates growth of the gubernaculum.
Collapse
Affiliation(s)
- Shouxing Duan
- Department of Pediatric Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), No. 89 Taoyuan Road, Shenzhen, 518052, Guangdong, China
- Department of Pediatric Surgery, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Xuewu Jiang
- Department of Pediatric Surgery, Pingshan District Maternal and Child Healthcare Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, No. 6 Longxingnan Road, Shenzhen, 518118, Guangdong, China
| | - Jianhong Li
- Department of Pediatric Surgery, The Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongxiabei Road, Shantou, 515041, Guangdong, China
| | - Maxian Fu
- Department of Pediatric Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), No. 89 Taoyuan Road, Shenzhen, 518052, Guangdong, China
| | - Zhuo Li
- Department of Pediatric Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), No. 89 Taoyuan Road, Shenzhen, 518052, Guangdong, China
| | - Yiyi Cheng
- Department of Pediatric Surgery, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Yangmu Zhuang
- Department of Pediatric Surgery, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Ming Yang
- Department of Pediatric Surgery, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Wenfeng Xiao
- Department of Pediatric Surgery, The Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongxiabei Road, Shantou, 515041, Guangdong, China
| | - Hongyan Ping
- Department of Pediatric Surgery, Pingshan District Maternal and Child Healthcare Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, No. 6 Longxingnan Road, Shenzhen, 518118, Guangdong, China
| | - Yao Xie
- Department of Radiology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515041, Guangdong, China.
| | - Xiaojun Xie
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041, Guangdong, China.
| | - Xuan Zhang
- Department of Pediatric Surgery, Pingshan District Maternal and Child Healthcare Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, No. 6 Longxingnan Road, Shenzhen, 518118, Guangdong, China.
| |
Collapse
|
2
|
Duan S, Zhang X, Jiang X, Xie Y, Zheng L, Zhang B, Xiao W, Xie X, Xie X, Li J, Ma S. RXFP2 as novel potential biomarker for abnormal differentiation induced by diethylstilbestrol in the gubernaculum of fetal mice. Am J Transl Res 2020; 12:3715-3727. [PMID: 32774729 PMCID: PMC7407749 DOI: pmid/32774729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/02/2020] [Indexed: 02/05/2023]
Abstract
Environmental estrogens (EEs) have been correlated with abnormalities in the male urogenital system. However, the mechanism underlying the effect of these molecules remains unclear. In vitro and in vivo experiments were performed to examine the expression level and mechanism of relaxin family peptide receptor 2 (RXFP2) in the gubernaculum of fetal mice following diethylstilbestrol (DES) treatment. The in vivo results demonstrate that DES treatment increased the stillbirth rate gradually, decreased the gubernacular cone volume significantly, and disrupted the tissue structure, leading to incomplete testicular descent. In vitro experiments reveal that DES administration resulted in abnormal cellular morphology and structural disorder of gubernacular cells, which lost their original morphology in a dose-dependent manner. Moreover, DES-induced F-actin rearrangement and stress fiber formation in cultured cells. Protein quantitative analysis showed that the RXFP2 level in each experimental group was significantly lower than that of the normal group. In conclusion, DES affects the morphology and alters the gubernaculum structure, as well as the expression of RXFP2 protein. These data demonstrate that DES is toxic to gubernaculum in fetal mice, and that RXFP2 is associated with the abnormal gubernaculum morphology induced by DES. Taken together, these data suggest that RXFP2 may be a novel potential biomarker for abnormal differentiation of the gubernaculum.
Collapse
Affiliation(s)
- Shouxing Duan
- Department of Pediatric Surgery, The First Affiliated Hospital of Shantou University Medical CollegeNo. 57 Changping Road, Shantou 515041, Guangdong, China
- Department of Pediatric Surgery, The Second Affiliated Hospital of Shantou University Medical CollegeNo. 69 Dongxiabei Road, Shantou 515041, Guangdong, China
| | - Xuan Zhang
- Department of Pediatric Surgery, Shenzhen Pingshan District Woman’s and Children’s Hospital, Southern Medical UniversityNo. 6 Longxingnan Road, Shenzhen 518122, Guangdong, China
| | - Xuewu Jiang
- Department of Pediatric Surgery, Shenzhen Pingshan District Woman’s and Children’s Hospital, Southern Medical UniversityNo. 6 Longxingnan Road, Shenzhen 518122, Guangdong, China
| | - Yao Xie
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical CollegeNo. 57 Changping Road, Shantou 515041, Guangdong, China
| | - Lian Zheng
- Department of Pediatric Surgery, The First Affiliated Hospital of Shantou University Medical CollegeNo. 57 Changping Road, Shantou 515041, Guangdong, China
| | - Bingna Zhang
- Center for Translational Medicine Research, The Second Affiliated Hospital of Shantou University Medical CollegeNo. 69 Dongxiabei Road, Shantou 515041, Guangdong, China
| | - Wenfeng Xiao
- Department of Pediatric Surgery, The Second Affiliated Hospital of Shantou University Medical CollegeNo. 69 Dongxiabei Road, Shantou 515041, Guangdong, China
| | - Xinquan Xie
- Department of Pediatric Surgery, The Second Affiliated Hospital of Shantou University Medical CollegeNo. 69 Dongxiabei Road, Shantou 515041, Guangdong, China
| | - Xiaojun Xie
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical CollegeNo. 57 Changping Road, Shantou 515041, Guangdong, China
| | - Jianhong Li
- Department of Pediatric Surgery, The Second Affiliated Hospital of Shantou University Medical CollegeNo. 69 Dongxiabei Road, Shantou 515041, Guangdong, China
| | - Shuhua Ma
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical CollegeNo. 57 Changping Road, Shantou 515041, Guangdong, China
| |
Collapse
|