1
|
Zhang M, Han F, Duan X, Zheng D, Cui Q, Liao W. Advances of biological macromolecules hemostatic materials: A review. Int J Biol Macromol 2024; 269:131772. [PMID: 38670176 DOI: 10.1016/j.ijbiomac.2024.131772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Achieving hemostasis is a necessary intervention to rapidly and effectively control bleeding. Conventional hemostatic materials currently used in clinical practice may aggravate the damage at the bleeding site due to factors such as poor adhesion and poor adaptation. Compared to most traditional hemostatic materials, polymer-based hemostatic materials have better biocompatibility and offer several advantages. They provide a more effective method of stopping bleeding and avoiding additional damage to the body in case of excessive blood loss. Various hemostatic materials with greater functionality have been developed in recent years for different organs using diverse design strategies. This article reviews the latest advances in the development of polymeric hemostatic materials. We introduce the coagulation cascade reaction after bleeding and then discuss the hemostatic mechanisms and advantages and disadvantages of various polymer materials, including natural, synthetic, and composite polymer hemostatic materials. We further focus on the design strategies, properties, and characterization of hemostatic materials, along with their applications in different organs. Finally, challenges and prospects for the application of hemostatic polymeric materials are summarized and discussed. We believe that this review can provide a reference for related research on hemostatic materials, contributing to the further development of polymer hemostatic materials.
Collapse
Affiliation(s)
- Mengyang Zhang
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Feng Han
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Xunxin Duan
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Dongxi Zheng
- School of Mechanical and Intelligent Manufacturing, Jiujiang University, Jiujiang, Jiangxi, China
| | - Qiuyan Cui
- The Second Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Weifang Liao
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China.
| |
Collapse
|
2
|
Feng C, Huang C, Huang J, Yang X, Liu Y, Shuai Z, Dong J, Ren T, Wang B. Preparation of healing-promoting and fibrosis-inhibiting asymmetric poly(ethylene glycol-b-L-phenylalanine)/cRGD-modified hyaluronate sponges and their applications in hemorrhage and nasal mucosa repair. Int J Biol Macromol 2024; 258:128911. [PMID: 38141717 DOI: 10.1016/j.ijbiomac.2023.128911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Acute or chromic bleeding, such as epistaxis, requires hemostatic materials to assist hemostasis. Even in complex cases, hemostatic materials must have other functions, including the promotion of healing and prevention of adhesion. Herein, a series of fibrosis-suppressive functional cRGD-modified crosslinking hyaluronic acid sponges were prepared. The in vitro hemostatic efficiency and mechanism were determined using blood clotting time, blood coagulation index, lactate dehydrogenase (LDH) and thromboxane B2 (TX-B2) ELISA, and proteomics. Among the prepared sponges, both poly(ethylene-b-L-Phe) (PEBP)-and cRGD contained SPN4 and exhibited the highest platelet concentration and activation efficiency as well as the most effective coagulative effect. In addition, no significant cytotoxicity was observed for the sponges in rat airway epithelial cells. The in vivo hemostatic and adhesion-preventive effects of the sponges were evaluated using rat models of liver injury and sidewall defect-cecum abrasion. PEBP-containing sponges effectively prevented postoperative adhesion and cRGD-modified sponges exhibited excellent hemostatic effects. Finally, the comprehensive repair effects of the sponges were evaluated using a rabbit maxillary sinus mucosal injury model, based on CT, MRI examination, and pathological staining. SPN4 exhibited the best comprehensive reparative effects, including the promotion of mucosal repair and infection inhibition. Thus, SPN4 is a promising multifunctional hemostatic material.
Collapse
Affiliation(s)
- Chengmin Feng
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Changlin Huang
- Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Jing Huang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Otolaryngology Head and Neck Surgery, School of Clinical Medicine, North Sichuan Medical College, 637000 Nanchong, China
| | - Xiaomei Yang
- Department of Otolaryngology Head and Neck Surgery, School of Clinical Medicine, North Sichuan Medical College, 637000 Nanchong, China
| | - Yuting Liu
- Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Zheyu Shuai
- Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Jun Dong
- Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Tongyan Ren
- Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Bing Wang
- Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China.
| |
Collapse
|
3
|
Garabet W, Shabes P, Wolters KH, Rembe JD, Ibing W, Wagenhäuser MU, Simon F, Schelzig H, Oberhuber A. Effect of Gelatin-Based Hemostats on Fibroblasts and Relevant Growth Factors in Wound Healing. Gels 2023; 9:504. [PMID: 37367174 DOI: 10.3390/gels9060504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023] Open
Abstract
Gelatin-based hemostats have been used in various surgical fields and showed advantageous effects on central aspects of wound healing when compared to cellulose-based hemostats. Nevertheless, the influence of gelatin-based hemostats on wound healing has not been fully explored yet. Hemostats were applied to fibroblast cell cultures for 5, 30, 60 min, 24 h, 7 and 14 days and measurements were taken at 3, 6, 12, 24 h and 7 or 14 days, respectively. Cell proliferation was quantified after different exposure times and a contraction assay was conducted to measure the extent of the extracellular matrix over time. We further assessed quantitative levels of vascular endothelial growth factor and basic fibroblast growth factor using enzyme-linked immunosorbent assay. Fibroblast counts decreased significantly at 7 and 14 days independent of the application duration (p < 0.001 for 5 min application). The gelatin-based hemostat did not have a negative impact on cell matrix contraction. After application of gelatin-based hemostat, the basic fibroblast growth factor did not change; yet, the vascular endothelial growth factor significantly increased after a prolonged 24 h application time when compared to controls or to a 6 h exposure (p < 0.05). Gelatin-based hemostats did not impair contraction of the extracellular matrix or growth factor production (vascular endothelial growth factor and basic fibroblast growth factor), while cell proliferation diminished at late time points. In conclusion, the gelatin-based material seems to be compatible with central aspects of wound healing. For further clinical assessment, future animal and human studies are necessary.
Collapse
Affiliation(s)
- Waseem Garabet
- Department of Vascular and Endovascular Surgery, University Hospital of Düsseldorf, 40225 Düsseldorf, Germany
| | - Polina Shabes
- Department of Vascular and Endovascular Surgery, University Hospital of Düsseldorf, 40225 Düsseldorf, Germany
| | - Katharina Henrika Wolters
- Department of Vascular and Endovascular Surgery, University Hospital of Düsseldorf, 40225 Düsseldorf, Germany
| | - Julian-Dario Rembe
- Department of Vascular and Endovascular Surgery, University Hospital of Düsseldorf, 40225 Düsseldorf, Germany
| | - Wiebke Ibing
- Department of Vascular and Endovascular Surgery, University Hospital of Düsseldorf, 40225 Düsseldorf, Germany
| | - Markus Udo Wagenhäuser
- Department of Vascular and Endovascular Surgery, University Hospital of Düsseldorf, 40225 Düsseldorf, Germany
| | - Florian Simon
- Department of Vascular and Endovascular Surgery, University Hospital of Düsseldorf, 40225 Düsseldorf, Germany
| | - Hubert Schelzig
- Department of Vascular and Endovascular Surgery, University Hospital of Düsseldorf, 40225 Düsseldorf, Germany
| | - Alexander Oberhuber
- Department of Vascular and Endovascular Surgery, University Hospital of Münster, 48149 Münster, Germany
| |
Collapse
|
4
|
Mecwan M, Li J, Falcone N, Ermis M, Torres E, Morales R, Hassani A, Haghniaz R, Mandal K, Sharma S, Maity S, Zehtabi F, Zamanian B, Herculano R, Akbari M, V. John J, Khademhosseini A. Recent advances in biopolymer-based hemostatic materials. Regen Biomater 2022; 9:rbac063. [PMID: 36196294 PMCID: PMC9522468 DOI: 10.1093/rb/rbac063] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/09/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Hemorrhage is the leading cause of trauma-related deaths, in hospital and prehospital settings. Hemostasis is a complex mechanism that involves a cascade of clotting factors and proteins that result in the formation of a strong clot. In certain surgical and emergency situations, hemostatic agents are needed to achieve faster blood coagulation to prevent the patient from experiencing a severe hemorrhagic shock. Therefore, it is critical to consider appropriate materials and designs for hemostatic agents. Many materials have been fabricated as hemostatic agents, including synthetic and naturally derived polymers. Compared to synthetic polymers, natural polymers or biopolymers, which include polysaccharides and polypeptides, have greater biocompatibility, biodegradability and processibility. Thus, in this review, we focus on biopolymer-based hemostatic agents of different forms, such as powder, particles, sponges and hydrogels. Finally, we discuss biopolymer-based hemostatic materials currently in clinical trials and offer insight into next-generation hemostats for clinical translation.
Collapse
Affiliation(s)
- Marvin Mecwan
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Jinghang Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Emily Torres
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Ramon Morales
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Alireza Hassani
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Saurabh Sharma
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Surjendu Maity
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Fatemeh Zehtabi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Behnam Zamanian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Rondinelli Herculano
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
- Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP 14800-903, Brazil
| | - Mohsen Akbari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
- Biotechnology Center, Silesian University of Technology, Gliwice 44-100, Poland
| | - Johnson V. John
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| |
Collapse
|
5
|
Gelatin sponge to close a tract after large-bore transhepatic access: tips for success. Cardiol Young 2022; 33:803-805. [PMID: 36046984 DOI: 10.1017/s104795112200275x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Percutaneous transhepatic venous access has been utilised for numerous transcatheter cardiac procedures. Traditionally, a large transhepatic tract requires the placement of permanent occlusion devices or coils. We describe a successful closure using a simple technique (Surgifoam) without the need for metal hardware placement. Immediate hemostasis was achieved. No complications were encountered.
Collapse
|
6
|
Singh Chandel AK, Ohta S, Taniguchi M, Yoshida H, Tanaka D, Omichi K, Shimizu A, Isaji M, Hasegawa K, Ito T. Balance of antiperitoneal adhesion, hemostasis, and operability of compressed bilayer ultrapure alginate sponges. BIOMATERIALS ADVANCES 2022; 137:212825. [PMID: 35929240 DOI: 10.1016/j.bioadv.2022.212825] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
In surgery, both antiperitoneal adhesion barriers and hemostats with high efficiency and excellent handling are necessary. However, antiadhesion and hemostasis have been examined separately. In this study, six different ultrapure alginate bilayer sponges with thicknesses of 10, 50, 100, 200, 300, and 500 μm were fabricated via lyophilization and subsequent mechanical compression. Compression significantly enhanced mechanical strength and improved handling. Furthermore, it had a complex effect on dissolution time and contact angle. Therefore, the 100 μm compressed sponge showed the highest hemostatic activity in the liver bleeding model in mice, whereas the 200 μm sponge demonstrated the highest antiadhesion efficacy among the compressed sponges in a Pean crush hepatectomy-induced adhesion model in rats. For the first time, we systematically evaluated the effect of sponge compression on foldability, fluid absorption, mechanical strength, hemostatic effect, and antiadhesion properties. The optimum thickness of an alginate bilayer sponge by compression balances antiperitoneal adhesion and hemostasis simultaneously.
Collapse
Affiliation(s)
- Arvind K Singh Chandel
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Seiichi Ohta
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Machiko Taniguchi
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiromi Yoshida
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daichi Tanaka
- Mochida Pharmaceutical Co. Ltd., 1-1 Ichigaya honmuracho, Shinjuku-ku, Tokyo 162-0845, Japan
| | - Kiyohiko Omichi
- Department of Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Atsushi Shimizu
- Department of Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuko Isaji
- Mochida Pharmaceutical Co. Ltd., 1-1 Ichigaya honmuracho, Shinjuku-ku, Tokyo 162-0845, Japan
| | - Kiyoshi Hasegawa
- Department of Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taichi Ito
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
7
|
Erenberg M, Rotem R, Segal D, Yohay Z, Idan I, Yohay D, Weintraub AY. Adhesion barriers and topical hemostatic agents are risk factors for post-cesarean section infections. Surgery 2021; 170:1120-1124. [PMID: 33933281 DOI: 10.1016/j.surg.2021.03.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Cesarean sections are the most common surgery worldwide, and post-cesarean section infections and hemorrhage are a major cause for morbidity and mortality. In recent years, many surgeons use adhesion barriers as well as hemostatic agents during primary and repeated cesarean section. The data regarding the safety of these agents is relatively limited. The objective of this study was to investigate whether the use of adhesion barriers and topical hemostatic agents pose a risk for post-cesarean section infections. METHOD A case-control study composed of women who were admitted to the Soroka University Medical Center between the years 2012 and 2016 was conducted. The study group was composed of women admitted owing to post-cesarean section infections (cases) and those who underwent cesarean sections without post-cesarean section infection (control subjects). Matching was done according to date and surgery setting (elective versus emergency). A univariate analysis was followed by a multiple regression model in order to examine the association between adhesion barriers/hemostatic agents and post-cesarean section infections. RESULTS During the study period, 113 patients developed postoperative infection (cases); 71.7% were diagnosed with surgical site infection, 7.1% with endometritis, and 21.2% with other infections. These were compared with 226 control subjects. In the univariate analysis, the use of adhesion barriers/hemostatic agents were found to be associated with post-cesarean section infection. Using a multivariable analysis controlling for previous cesarean section, skin closer technique, preterm delivery, and duration of surgery >60 minutes, the use of adhesion barriers as well as hemostatic agents was found to be independently associated with post-cesarean section infection (adjusted odds ratio = 2.11, 95% confidence interval = 1.17-3.84; adjusted odds ratio = 2.29, 95% confidence interval = 1.37-3.8, respectively) CONCLUSION: Adhesion barriers and hemostatic agents were found to be independently associated with post-cesarean section infections. Further larger studies are needed to reinforce our findings. The use of these materials should be carefully considered, and their cost-effectiveness re-examined.
Collapse
Affiliation(s)
- Miriam Erenberg
- Obstetrics and Gynecology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Reut Rotem
- Obstetric and Gynecology, Shaare Zedek Medical Center, affiliated with the Hebrew University Medical School of Jerusalem, Israel
| | - David Segal
- Obstetrics and Gynecology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Zehava Yohay
- Obstetrics and Gynecology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Inbal Idan
- Obstetrics and Gynecology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - David Yohay
- Obstetrics and Gynecology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Adi Y Weintraub
- Obstetrics and Gynecology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|