1
|
Zhao L, Gao Q, Hu K, Lu S. Matrine Alleviates Atherosclerosis by Targeting REG1A and Activating the PI3K/AKT/mTOR Pathway to Inhibit Endothelial Cell Ferroptosis. Biochem Genet 2025:10.1007/s10528-025-11117-z. [PMID: 40281246 DOI: 10.1007/s10528-025-11117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Matrine, a natural alkaloid, has a wide range of pharmacological effects, such as antibacterial, anti-inflammatory, anti-oxidation, and anti-tumor. However, the molecular mechanism of matrine in the treatment of atherosclerosis (AS) is not fully understood. Human umbilical vein endothelial cells (HUVECs) were treated with 100 μg/mL ox-LDL to construct an AS cell model in vitro, and the cells were treated with matrine at different concentrations. Our results showed that matrine alleviated the decrease of HUVEC viability and the increase of ferroptosis induced by ox-LDL treatment. Subsequently, we found that matrine targeted regenerating family member 1 alpha (REG1A) and inhibited the expression level of REG1A in ox-LDL treated HUVECs. Overexpression of REG1A attenuated the improvement of matrine on activation of the PI3K/Akt/mTOR pathway and ferroptosis in ox-LDL treated HUVECs. In addition, both LY294002 (an inhibitor of the PI3K signaling) and Erastin (an inducer of ferroptosis) reversed the alleviation of matrine treatment on ferroptosis in ox-LDL treated HUVECs. The results in vivo showed that matrine treatment inhibited high-fat diet-induced aortic ferroptosis in ApoE-/- mice and alleviated arterial tissue lesions. In summary, matrine inhibits ferroptosis by targeting REG1A to activate PI3K/Akt/mTOR pathway, thereby alleviating aortic endothelial injury and lipid plaque formation in AS mice, suggesting that matrine has potential value for the treatment of AS.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Qing Gao
- Department of Nursing, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Kaifeng Hu
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Shaoying Lu
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
2
|
Pereira J, Melo S, Ferreira RM, Carneiro P, Yang V, Maia AF, Carvalho J, Figueiredo C, Machado JC, Morais-de-Sá E, Seruca R, Figueiredo J. E-cadherin variants associated with oral facial clefts trigger aberrant cell motility in a REG1A-dependent manner. Cell Commun Signal 2024; 22:152. [PMID: 38414029 PMCID: PMC10898076 DOI: 10.1186/s12964-024-01532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Germline mutations of E-cadherin contribute to hereditary diffuse gastric cancer (HDGC) and congenital malformations, such as oral facial clefts (OFC). However, the molecular mechanisms through which E-cadherin loss-of-function triggers distinct clinical outcomes remain unknown. We postulate that E-cadherin-mediated disorders result from abnormal interactions with the extracellular matrix and consequent aberrant intracellular signalling, affecting the coordination of cell migration. METHODS Herein, we developed in vivo and in vitro models of E-cadherin mutants associated with either OFC or HDGC. Using a Drosophila approach, we addressed the impact of the different variants in cell morphology and migration ability. By combining gap closure migration assays and time-lapse microscopy, we further investigated the migration pattern of cells expressing OFC or HDGC variants. The adhesion profile of the variants was evaluated using high-throughput ECM arrays, whereas RNA sequencing technology was explored for identification of genes involved in aberrant cell motility. RESULTS We have demonstrated that cells expressing OFC variants exhibit an excessive motility performance and irregular leading edges, which prevent the coordinated movement of the epithelial monolayer. Importantly, we found that OFC variants promote cell adhesion to a wider variety of extracellular matrices than HDGC variants, suggesting higher plasticity in response to different microenvironments. We unveiled a distinct transcriptomic profile in the OFC setting and pinpointed REG1A as a putative regulator of this outcome. Consistent with this, specific RNAi-mediated inhibition of REG1A shifted the migration pattern of OFC expressing cells, leading to slower wound closure with coordinated leading edges. CONCLUSIONS We provide evidence that E-cadherin variants associated with OFC activate aberrant signalling pathways that support dynamic rearrangements of cells towards improved adaptability to the microenvironment. This proficiency results in abnormal tissue shaping and movement, possibly underlying the development of orofacial malformations.
Collapse
Affiliation(s)
- Joana Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of Porto University, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Soraia Melo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of Porto University, Porto, Portugal
| | - Rui M Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of Porto University, Porto, Portugal
| | - Patrícia Carneiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of Porto University, Porto, Portugal
| | - Vítor Yang
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
- IBMC - Institute for Molecular and Cell Biology, University of Porto, Porto, Portugal
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - André F Maia
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
- IBMC - Institute for Molecular and Cell Biology, University of Porto, Porto, Portugal
| | - João Carvalho
- CFisUC, Department of Physics, University of Coimbra, Coimbra, Portugal
| | - Ceu Figueiredo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of Porto University, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - José Carlos Machado
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of Porto University, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Eurico Morais-de-Sá
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
- IBMC - Institute for Molecular and Cell Biology, University of Porto, Porto, Portugal
| | - Raquel Seruca
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of Porto University, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Joana Figueiredo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal.
- IPATIMUP - Institute of Molecular Pathology and Immunology of Porto University, Porto, Portugal.
- Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
3
|
Dungan WC, Garrett MR, Welch BA, Lawson WJ, Himel AR, Dungey A, Vick KD, Grayson BE. Whole genome transcriptome analysis of the stomach resected in human vertical sleeve gastrectomy: cutting more than calories. Physiol Genomics 2021; 53:193-205. [PMID: 33870723 DOI: 10.1152/physiolgenomics.00082.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vertical sleeve gastrectomy (VSG) is a surgical weight loss procedure that resects 80% of the stomach, creating a tube linking the esophagus to the duodenum. Because of the efficacy and relative simplicity of VSG, it is preferred in the United States, with VSG currently at >61% of bariatric surgeries performed. Surprisingly, there has never been a complete molecular characterization of the human stomach greater curvature's fundus and corpus. Here we compare and contrast the molecular makeup of these regions. We performed a prospective cohort study to obtain gastric tissue samples from patients undergoing elective VSG. Paired fundus and corpus samples were obtained. Whole genome transcriptome analysis was performed by RNA sequencing (N = 10), with key findings validated by qPCR (N = 24). Participants were primarily female (95.8%) and White (79.15%). Mean body mass index, body weight, and age were 46.1 kg/m2, 121.6 kg, and 43.29 yr, respectively. Overall, 432 gene transcripts were significantly different between the fundus and the corpus (P < 0.05). A significant correlation was found between the RNA sequencing dataset and qPCR validation, demonstrating robust gene expression differences between the fundus and the corpus. Significant genes included progastricsin, acidic chitinase, and gastokine 1 and 2 in both the fundus and the corpus. Of the very highly expressed genes in both regions, 87% were present in both the stomach's fundus and corpus, indicating substantial overlap. Despite significant overlap in the greater curvature gene signature, regional differences exist within the fundus and the corpus. Given that the mechanism of VSG is partly unresolved, the potential that the resected tissue may express genes that influence long-term body weight regulation is unknown and could influence VSG outcomes.
Collapse
Affiliation(s)
- William C Dungan
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael R Garrett
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Bradley A Welch
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - William J Lawson
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Alexandra R Himel
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Adam Dungey
- Department of Surgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kenneth D Vick
- Department of Surgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - Bernadette E Grayson
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
4
|
Zhu J, Deng L, Chen B, Huang W, Lin X, Chen G, Tzeng CM, Ying M, Lu Z. Magnesium-dependent Phosphatase (MDP) 1 is a Potential Suppressor of Gastric Cancer. Curr Cancer Drug Targets 2020; 19:817-827. [PMID: 31218958 DOI: 10.2174/1568009619666190620112546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/19/2019] [Accepted: 04/15/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Recurrence is the leading cause of treatment failure and death in patients with gastric cancer (GC). However, the mechanism underlying GC recurrence remains unclear, and prognostic markers are still lacking. METHODS We analyzed DNA methylation profiles in gastric cancer cases with shorter survival (<1 year) or longer survival (> 3 years), and identified candidate genes associated with GC recurrence. Then, the biological effects of these genes on gastric cancer were studied. RESULTS A novel gene, magnesium-dependent phosphatase 1 (mdp1), was identified as a candidate gene whose DNA methylation was higher in GC samples from patients with shorter survival and lower in patients with longer survival. MDP1 protein was highly expressed in GC tissues with longer survival time, and also had a tendency to be expressed in highly differentiated GC samples. Forced expression of MDP1 in GC cell line BGC-823 inhibited cell proliferation, whereas the knockdown of MDP1 protein promoted cell growth. Overexpression of MDP1 in BGC-823 cells also enhanced cell senescence and apoptosis. Cytoplasmic kinase protein c-Jun N-terminal kinase (JNK) and signal transducer and activator of transcription 3 (Stat3) were found to mediate the biological function of MDP1. CONCLUSION These results suggest that MDP1 protein suppresses the survival of gastric cancer cells and loss of MDP expression may benefit the recurrence of gastric cancer.
Collapse
Affiliation(s)
- Jianbo Zhu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Lijuan Deng
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Baozhen Chen
- Department of Pathology, Fujian Provincial Tumor Hospital, 420 Fuma Road, Fuzhou, Fujian 350014, China
| | - Wenqing Huang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiandong Lin
- Department of Pathology, Fujian Provincial Tumor Hospital, 420 Fuma Road, Fuzhou, Fujian 350014, China
| | - Gang Chen
- Department of Pathology, Fujian Provincial Tumor Hospital, 420 Fuma Road, Fuzhou, Fujian 350014, China
| | - Chi-Meng Tzeng
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361005, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen, Fujian 361005, China
| | - Mingang Ying
- Department of Pathology, Fujian Provincial Tumor Hospital, 420 Fuma Road, Fuzhou, Fujian 350014, China
| | - Zhongxian Lu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361005, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen, Fujian 361005, China
| |
Collapse
|
5
|
Wang R, Song S, Harada K, Ghazanfari Amlashi F, Badgwell B, Pizzi MP, Xu Y, Zhao W, Dong X, Jin J, Wang Y, Scott A, Ma L, Huo L, Vicente D, Blum Murphy M, Shanbhag N, Tatlonghari G, Thomas I, Rogers J, Kobayashi M, Vykoukal J, Estrella JS, Roy-Chowdhuri S, Han G, Zhang S, Mao X, Song X, Zhang J, Gu J, Johnson RL, Calin GA, Peng G, Lee JS, Hanash SM, Futreal A, Wang Z, Wang L, Ajani JA. Multiplex profiling of peritoneal metastases from gastric adenocarcinoma identified novel targets and molecular subtypes that predict treatment response. Gut 2020; 69:18-31. [PMID: 31171626 PMCID: PMC6943252 DOI: 10.1136/gutjnl-2018-318070] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/14/2019] [Accepted: 04/04/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Peritoneal carcinomatosis (PC) occurs frequently in patients with gastric adenocarcinoma (GAC) and confers a poor prognosis. Multiplex profiling of primary GACs has been insightful but the underpinnings of PC's development/progression remain largely unknown. We characterised exome/transcriptome/immune landscapes of PC cells from patients with GAC aiming to identify novel therapeutic targets. DESIGN We performed whole-exome sequencing (WES) and whole transcriptome sequencing (RNA-seq) on 44 PC specimens (43 patients with PC) including an integrative analysis of WES, RNA-seq, immune profile, clinical and pathological phenotypes to dissect the molecular pathogenesis, identifying actionable targets and/or biomarkers and comparison with TCGA primary GACs. RESULTS We identified distinct alterations in PC versus primary GACs, such as more frequent CDH1 and TAF1 mutations, 6q loss and chr19 gain. Alterations associated with aggressive PC phenotypes emerged with increased mutations in TP53, CDH1, TAF1 and KMT2C, higher level of 'clock-like' mutational signature, increase in whole-genome doublings, chromosomal instability (particularly, copy number losses), reprogrammed microenvironment, enriched cell cycle pathways, MYC activation and impaired immune response. Integrated analysis identified two main molecular subtypes: 'mesenchymal-like' and 'epithelial-like' with discriminating response to chemotherapy (31% vs 71%). Patients with the less responsive 'mesenchymal-like' subtype had high expression of immune checkpoint T-Cell Immunoglobulin And Mucin Domain-Containing Protein 3 (TIM-3), its ligand galectin-9, V-domain Ig suppressor of T cell activation (VISTA) and transforming growth factor-β as potential therapeutic immune targets. CONCLUSIONS We have uncovered the unique mutational landscape, copy number alteration and gene expression profile of PC cells and defined PC molecular subtypes, which correlated with PC therapy resistance/response. Novel targets and immune checkpoint proteins have been identified with a potential to be translated into clinics.
Collapse
Affiliation(s)
| | - Shumei Song
- GI Medical Oncology, UT MDACC, Houston, Texas, USA
| | - Kazuto Harada
- GI Medical Oncology, UT MDACC, Houston, Texas, USA,Gastroenterological Surgery, Kumamoto University, Kumamoto, Japan
| | | | | | | | - Yan Xu
- GI Medical Oncology, UT MDACC, Houston, Texas, USA
| | - Wei Zhao
- GI Medical Oncology, UT MDACC, Houston, Texas, USA
| | | | | | - Ying Wang
- GI Medical Oncology, UT MDACC, Houston, Texas, USA
| | - Ailing Scott
- GI Medical Oncology, UT MDACC, Houston, Texas, USA
| | - Lang Ma
- GI Medical Oncology, UT MDACC, Houston, Texas, USA
| | - Longfei Huo
- GI Medical Oncology, UT MDACC, Houston, Texas, USA
| | | | | | | | | | - Irene Thomas
- GI Medical Oncology, UT MDACC, Houston, Texas, USA
| | - Jane Rogers
- Pharmacy Clinical Programs, UT MDACC, Houston, TX, USA
| | | | - Jody Vykoukal
- Clinical Cancer Prevention, UT MDACC, Houston, Texas, USA
| | | | | | | | | | - Xizeng Mao
- Genomic Medicine, UT MDACC, Houston, Texas, USA
| | | | | | - Jian Gu
- Epidemiology, UT MDACC, Houston, Texas, USA
| | | | | | - Guang Peng
- Clinical Cancer Prevention, UT MDACC, Houston, Texas, USA
| | - Ju-Seog Lee
- Systems Biology, UT MDACC, Houston, Texas, USA
| | - Samir M Hanash
- Clinical Cancer Prevention, UT MDACC, Houston, Texas, USA
| | | | - Zhenning Wang
- Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, China
| | | | | |
Collapse
|
6
|
Chen Z, Downing S, Tzanakakis ES. Four Decades After the Discovery of Regenerating Islet-Derived (Reg) Proteins: Current Understanding and Challenges. Front Cell Dev Biol 2019; 7:235. [PMID: 31696115 PMCID: PMC6817481 DOI: 10.3389/fcell.2019.00235] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022] Open
Abstract
Regenerating islet-derived (Reg) proteins have emerged as multifunctional agents with pro-proliferative, anti-apoptotic, differentiation-inducing and bactericidal properties. Over the last 40 years since first discovered, Reg proteins have been implicated in a gamut of maladies including diabetes, various types of cancer of the digestive tract, and Alzheimer disease. Surprisingly though, a consensus is still absent on the regulation of their expression, and molecular underpinning of their function. Here, we provide a critical appraisal of recent findings in the field of Reg protein biology. Specifically, the structural characteristics are reviewed particularly in connection with established or purported functions of different members of the Reg family. Moreover, Reg expression patterns in different tissues both under normal and pathophysiological conditions are summarized. Putative receptors and cascades reported to relay Reg signaling inciting cellular responses are presented aiming at a better appreciation of the biological activities of the distinct Reg moieties. Challenges are also discussed that have hampered thus far the rapid progress in this field such as the use of non-standard nomenclature for Reg molecules among various research groups, the existence of multiple Reg members with significant degree of homology and possibly compensatory modes of action, and the need for common assays with robust readouts of Reg activity. Coordinated research is warranted going forward, given that several research groups have independently linked Reg proteins to diseased states and raised the possibility that these biomolecules can serve as therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Zijing Chen
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, United States
| | - Shawna Downing
- Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA, United States
| | - Emmanuel S Tzanakakis
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, United States.,Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA, United States
| |
Collapse
|
7
|
Fluctuations of epigenetic regulations in human gastric Adenocarcinoma: How does it affect? Biomed Pharmacother 2019; 109:144-156. [DOI: 10.1016/j.biopha.2018.10.094] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
|