1
|
Cui Z, He J, Li A, Wang J, Yang Y, Wang K, Liu Z, Ouyang Q, Su Z, Hu P, Xiao G. Novel insights into non-coding RNAs and their role in hydrocephalus. Neural Regen Res 2026; 21:636-647. [PMID: 39688559 DOI: 10.4103/nrr.nrr-d-24-00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
A large body of evidence has highlighted the role of non-coding RNAs in neurodevelopment and neuroinflammation. This evidence has led to increasing speculation that non-coding RNAs may be involved in the pathophysiological mechanisms underlying hydrocephalus, one of the most common neurological conditions worldwide. In this review, we first outline the basic concepts and incidence of hydrocephalus along with the limitations of existing treatments for this condition. Then, we outline the definition, classification, and biological role of non-coding RNAs. Subsequently, we analyze the roles of non-coding RNAs in the formation of hydrocephalus in detail. Specifically, we have focused on the potential significance of non-coding RNAs in the pathophysiology of hydrocephalus, including glymphatic pathways, neuroinflammatory processes, and neurological dysplasia, on the basis of the existing evidence. Lastly, we review the potential of non-coding RNAs as biomarkers of hydrocephalus and for the creation of innovative treatments.
Collapse
Affiliation(s)
- Zhiyue Cui
- Department of Diagnostic Radiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan Province, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jian He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - An Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Junqiang Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yijian Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Kaiyue Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Zhikun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Qian Ouyang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Department of Neurosurgery, Zhuzhou Hospital, Central South University Xiangya School of Medicine, Zhuzhou, Hunan Province, China
| | - Zhangjie Su
- Department of Neurosurgery, Addenbrooke 's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, UK
| | - Pingsheng Hu
- Department of Diagnostic Radiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan Province, China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
2
|
García-Bonilla M, Ojeda-Pérez B, Shumilov K, Rodríguez-Pérez LM, Domínguez-Pinos D, Vitorica J, Jiménez S, Ramírez-Lorca R, Echevarría M, Cárdenas-García C, Iglesias T, Gutiérrez A, McAllister JP, Limbrick DD, Páez-González P, Jiménez AJ. Generation of Periventricular Reactive Astrocytes Overexpressing Aquaporin 4 Is Stimulated by Mesenchymal Stem Cell Therapy. Int J Mol Sci 2023; 24:5640. [PMID: 36982724 PMCID: PMC10057840 DOI: 10.3390/ijms24065640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Aquaporin-4 (AQP4) plays a crucial role in brain water circulation and is considered a therapeutic target in hydrocephalus. Congenital hydrocephalus is associated with a reaction of astrocytes in the periventricular white matter both in experimental models and human cases. A previous report showed that bone marrow-derived mesenchymal stem cells (BM-MSCs) transplanted into the lateral ventricles of hyh mice exhibiting severe congenital hydrocephalus are attracted by the periventricular astrocyte reaction, and the cerebral tissue displays recovery. The present investigation aimed to test the effect of BM-MSC treatment on astrocyte reaction formation. BM-MSCs were injected into the lateral ventricles of four-day-old hyh mice, and the periventricular reaction was detected two weeks later. A protein expression analysis of the cerebral tissue differentiated the BM-MSC-treated mice from the controls and revealed effects on neural development. In in vivo and in vitro experiments, BM-MSCs stimulated the generation of periventricular reactive astrocytes overexpressing AQP4 and its regulatory protein kinase D-interacting substrate of 220 kDa (Kidins220). In the cerebral tissue, mRNA overexpression of nerve growth factor (NGF), vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1 (HIF1α), and transforming growth factor beta 1 (TGFβ1) could be related to the regulation of the astrocyte reaction and AQP4 expression. In conclusion, BM-MSC treatment in hydrocephalus can stimulate a key developmental process such as the periventricular astrocyte reaction, where AQP4 overexpression could be implicated in tissue recovery.
Collapse
Affiliation(s)
- María García-Bonilla
- Department of Cell Biology, Genetics and Physiology, University of Malaga, 29010 Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
| | - Betsaida Ojeda-Pérez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, 29010 Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
| | - Kirill Shumilov
- Department of Cell Biology, Genetics and Physiology, University of Malaga, 29010 Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Luis-Manuel Rodríguez-Pérez
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, University of Malaga, 29010 Malaga, Spain
| | | | - Javier Vitorica
- Department of Molecular Biology and Biochemistry, University of Seville, 41013 Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, (HUVR)/Spanish National Research Council (CSIC)/University of Seville, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos II, 28029 Madrid, Spain
| | - Sebastián Jiménez
- Department of Molecular Biology and Biochemistry, University of Seville, 41013 Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, (HUVR)/Spanish National Research Council (CSIC)/University of Seville, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos II, 28029 Madrid, Spain
| | - Reposo Ramírez-Lorca
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos II, 28029 Madrid, Spain
- Department of Physiology and Biophysics, University of Seville, 41009 Seville, Spain
| | - Miriam Echevarría
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos II, 28029 Madrid, Spain
- Department of Physiology and Biophysics, University of Seville, 41009 Seville, Spain
| | - Casimiro Cárdenas-García
- Servicios Centrales de Apoyo a la Investigación (SCAI), University of Malaga, 29010 Malaga, Spain
| | - Teresa Iglesias
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos II, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain
| | - Antonia Gutiérrez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, 29010 Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos II, 28029 Madrid, Spain
| | - James P. McAllister
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - David D. Limbrick
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Patricia Páez-González
- Department of Cell Biology, Genetics and Physiology, University of Malaga, 29010 Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
| | - Antonio J. Jiménez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, 29010 Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
| |
Collapse
|
3
|
Altered Expression of AQP1 and AQP4 in Brain Barriers and Cerebrospinal Fluid May Affect Cerebral Water Balance during Chronic Hypertension. Int J Mol Sci 2022; 23:ijms232012277. [PMID: 36293145 PMCID: PMC9603298 DOI: 10.3390/ijms232012277] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Hypertension is the leading cause of cardiovascular affection and premature death worldwide. The spontaneously hypertensive rat (SHR) is the most common animal model of hypertension, which is characterized by secondary ventricular dilation and hydrocephalus. Aquaporin (AQP) 1 and 4 are the main water channels responsible for the brain’s water balance. The present study focuses on defining the expression of AQPs through the time course of the development of spontaneous chronic hypertension. We performed immunofluorescence and ELISA to examine brain AQPs from 10 SHR, and 10 Wistar−Kyoto (WKY) rats studied at 6 and 12 months old. There was a significant decrease in AQP1 in the choroid plexus of the SHR-12-months group compared with the age-matched control (p < 0.05). In the ependyma, AQP4 was significantly decreased only in the SHR-12-months group compared with the control or SHR-6-months groups (p < 0.05). Per contra, AQP4 increased in astrocytes end-feet of 6 months and 12 months SHR rats (p < 0.05). CSF AQP detection was higher in the SHR-12-months group than in the age-matched control group. CSF findings were confirmed by Western blot. In SHR, ependymal and choroidal AQPs decreased over time, while CSF AQPs levels increased. In turn, astrocytes AQP4 increased in SHR rats. These AQP alterations may underlie hypertensive-dependent ventriculomegaly.
Collapse
|
4
|
Gao M, Lu W, Shu Y, Yang Z, Sun S, Xu J, Gan S, Zhu S, Qiu G, Zhuo F, Xu S, Wang Y, Chen J, Wu X, Huang J. Poldip2 mediates blood-brain barrier disruption and cerebral edema by inducing AQP4 polarity loss in mouse bacterial meningitis model. CNS Neurosci Ther 2020; 26:1288-1302. [PMID: 32790044 PMCID: PMC7702237 DOI: 10.1111/cns.13446] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/27/2020] [Accepted: 07/05/2020] [Indexed: 12/20/2022] Open
Abstract
Background Specific highly polarized aquaporin‐4 (AQP4) expression is reported to play a crucial role in blood‐brain barrier (BBB) integrity and brain water transport balance. The upregulation of polymerase δ‐interacting protein 2 (Poldip2) was involved in aggravating BBB disruption following ischemic stroke. This study aimed to investigate whether Poldip2‐mediated BBB disruption and cerebral edema formation in mouse bacterial meningitis (BM) model occur via induction of AQP4 polarity loss. Methods and Results Mouse BM model was induced by injecting mice with group B hemolytic streptococci via posterior cistern. Recombinant human Poldip2 (rh‐Poldip2) was administered intranasally at 1 hour after BM induction. Small interfering ribonucleic acid (siRNA) targeting Poldip2 was administered by intracerebroventricular (i.c.v) injection at 48 hours before BM induction. A specific inhibitor of matrix metalloproteinases (MMPs), UK383367, was administered intravenously at 0.5 hour before BM induction. Western blotting, immunofluorescence staining, quantitative real‐time PCR, neurobehavioral test, brain water content test, Evans blue (EB) permeability assay, transmission electron microscopy (TEM), and gelatin zymography were carried out. The results showed that Poldip2 was upregulated and AQP4 polarity was lost in mouse BM model. Both Poldip2 siRNA and UK383367 improved neurobehavioral outcomes, alleviated brain edema, preserved the integrity of BBB, and relieved the loss of AQP4 polarity in BM model. Rh‐Poldip2 upregulated the expression of MMPs and glial fibrillary acidic protein (GFAP) and downregulated the expression of β‐dystroglycan (β‐DG), zonula occludens‐1 (ZO‐1), occludin, and claudin‐5; whereas Poldip2 siRNA downregulated the expression of MMPs and GFAP, and upregulated β‐DG, ZO‐1, occludin, and claudin‐5. Similarly, UK383367 downregulated the expression of GFAP and upregulated the expression of β‐DG, ZO‐1, occludin, and claudin‐5. Conclusion Poldip2 inhibition alleviated brain edema and preserved the integrity of BBB partially by relieving the loss of AQP4 polarity via MMPs/β‐DG pathway.
Collapse
Affiliation(s)
- Meng Gao
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Weitian Lu
- Department of Anatomy, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Yue Shu
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Zhengyu Yang
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Shanquan Sun
- Department of Anatomy, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Jin Xu
- Department of Anatomy, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Shengwei Gan
- Department of Anatomy, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Shujuan Zhu
- Department of Anatomy, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Guoping Qiu
- Department of Anatomy, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Fei Zhuo
- Department of Anatomy, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Shiye Xu
- Department of Anatomy, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Yiying Wang
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Junhong Chen
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Xuan Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Juan Huang
- Department of Anatomy, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
de Laurentis C, Cristaldi P, Arighi A, Cavandoli C, Trezza A, Sganzerla EP, Giussani CG, Di Cristofori A. Role of aquaporins in hydrocephalus: what do we know and where do we stand? A systematic review. J Neurol 2020; 268:4078-4094. [PMID: 32747978 DOI: 10.1007/s00415-020-10122-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Glymphatic fluid circulation may be considered the lymphatic system of the brain and the main role of such system seems to be played by aquaporins (AQPs), a family of proteins which regulates water exchange, in particular AQP4 and 1. Alterations of glymphatic fluid circulation through AQPs variations are now emerging as central elements in the pathophysiology of different brain conditions, like hydrocephalus. This systematic review provides an insight about the role of AQPs in hydrocephalus establishment and compensation, investigating their possible role as diagnostic tools or therapeutic targets. METHODS PubMed database was screened searching for the relevant existing literature in English language published until February 29th 2020, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement. RESULTS A total of 40 articles met the inclusion criteria for our systematic analysis. AQP4 resulted the most studied water channel, followed by AQP1. The changes in cerebrospinal fluid (CSF), brain parenchyma and choroid plexus (CP) in different hydrocephalus type were analyzed. Moreover, important pharmacological interactions regarding AQP and molecules or conditions were discussed. A very interesting result is the general consensus on increase of AQP4 in hydrocephalic patients, unless in patients suffering from idiopathic normal pressure hydrocephalus, where AQP4 shows a tendency in reduction. CONCLUSION AQP seem to play a central role in the pathophysiology of hydrocephalus and in its compensation mechanisms. Further studies are required to definitively establish their precise roles and their quantitative changes to allow their utilization as diagnostic tools or therapeutic targets.
Collapse
Affiliation(s)
- Camilla de Laurentis
- Unit of Neurosurgery, Ospedale San Gerardo, Azienda Socio Sanitaria Territoriale Monza, Via G. B. Pergolesi 33, 20900, Monza, MB, Italy.,Department of Surgery and Medicine, Università degli Studi Milano-Bicocca, Milan, MI, Italy
| | - Paola Cristaldi
- Unit of Neurosurgery, Ospedale San Gerardo, Azienda Socio Sanitaria Territoriale Monza, Via G. B. Pergolesi 33, 20900, Monza, MB, Italy.,Department of Surgery and Medicine, Università degli Studi Milano-Bicocca, Milan, MI, Italy
| | - Andrea Arighi
- Unit of Neurology - UOSD Malattie Neurodegenerative, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, MI, Italy.,Dino Ferrari Center - Università degli Studi di Milano, Milan, MI, Italy
| | - Clarissa Cavandoli
- Unit of Neurosurgery, Ospedale San Gerardo, Azienda Socio Sanitaria Territoriale Monza, Via G. B. Pergolesi 33, 20900, Monza, MB, Italy.,Università degli Studi di Milano, Milan, MI, Italy
| | - Andrea Trezza
- Unit of Neurosurgery, Ospedale San Gerardo, Azienda Socio Sanitaria Territoriale Monza, Via G. B. Pergolesi 33, 20900, Monza, MB, Italy
| | - Erik P Sganzerla
- Unit of Neurosurgery, Ospedale San Gerardo, Azienda Socio Sanitaria Territoriale Monza, Via G. B. Pergolesi 33, 20900, Monza, MB, Italy.,Department of Surgery and Medicine, Università degli Studi Milano-Bicocca, Milan, MI, Italy
| | - Carlo G Giussani
- Unit of Neurosurgery, Ospedale San Gerardo, Azienda Socio Sanitaria Territoriale Monza, Via G. B. Pergolesi 33, 20900, Monza, MB, Italy.,Department of Surgery and Medicine, Università degli Studi Milano-Bicocca, Milan, MI, Italy
| | - Andrea Di Cristofori
- Unit of Neurosurgery, Ospedale San Gerardo, Azienda Socio Sanitaria Territoriale Monza, Via G. B. Pergolesi 33, 20900, Monza, MB, Italy.
| |
Collapse
|