1
|
Zhang Y, Savvidou M, Liaudanskaya V, Singh P, Fu Y, Nasreen A, Coe M, Kelly M, Snapper D, Wagner C, Gill J, Symes A, Patra A, Kaplan DL, Beheshti A, Georgakoudi I. Synergistic label-free fluorescence imaging and miRNA studies reveal dynamic human neuron-glial metabolic interactions following injury. SCIENCE ADVANCES 2024; 10:eadp1980. [PMID: 39661671 PMCID: PMC11633737 DOI: 10.1126/sciadv.adp1980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
Neuron-glial cell interactions following traumatic brain injury (TBI) determine the propagation of damage and long-term neurodegeneration. Spatiotemporally heterogeneous cytosolic and mitochondrial metabolic pathways are involved, leading to challenges in developing effective diagnostics and treatments. An engineered three-dimensional brain tissue model comprising human neurons, astrocytes, and microglia is used in combination with label-free, two-photon imaging and microRNA studies to characterize metabolic interactions between glial and neuronal cells over 72 hours following impact injury. We interpret multiparametric, quantitative, optical metabolic assessments in the context of microRNA gene set analysis and identify distinct metabolic changes in neurons and glial cells. Glycolysis, nicotinamide adenine dinucleotide phosphate (reduced form) and glutathione synthesis, fatty acid synthesis, and oxidation are mobilized within glial cells to mitigate the impacts of initial enhancements in oxidative phosphorylation and fatty acid oxidation within neurons, which lack robust antioxidant defenses. This platform enables enhanced understanding of mechanisms that may be targeted to improve TBI diagnosis and treatment.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| | - Maria Savvidou
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| | - Volha Liaudanskaya
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| | - Pramesh Singh
- Data Intensive Studies Center, Tufts University, Medford, MA 02155, USA
| | - Yuhang Fu
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Amreen Nasreen
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| | - Marly Coe
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| | - Marilyn Kelly
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| | - Dustin Snapper
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814, USA
| | - Chelsea Wagner
- School of Nursing, Johns Hopkins University, 525 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Jessica Gill
- School of Nursing, Johns Hopkins University, 525 N. Wolfe Street, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, 525 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Aviva Symes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814, USA
| | - Abani Patra
- Data Intensive Studies Center, Tufts University, Medford, MA 02155, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| | - Afshin Beheshti
- McGowan Institute for Regenerative Medicine - Center for Space Biomedicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
- Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Dartmouth Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon NH 03766, USA
| |
Collapse
|
2
|
Chiani F, Mastrorilli V, Marchetti N, Macioce A, Nappi C, Strimpakos G, Pasquini M, Gambadoro A, Battistini JI, Cutuli D, Petrosini L, Marinelli S, Scardigli R, Farioli Vecchioli S. Essential role of p21 Waf1/Cip1 in the modulation of post-traumatic hippocampal Neural Stem Cells response. Stem Cell Res Ther 2024; 15:197. [PMID: 38971774 PMCID: PMC11227726 DOI: 10.1186/s13287-024-03787-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 06/07/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Traumatic Brain Injury (TBI) represents one of the main causes of brain damage in young people and the elderly population with a very high rate of psycho-physical disability and death. TBI is characterized by extensive cell death, tissue damage and neuro-inflammation with a symptomatology that varies depending on the severity of the trauma from memory loss to a state of irreversible coma and death. Recently, preclinical studies on mouse models have demonstrated that the post-traumatic adult Neural Stem/Progenitor cells response could represent an excellent model to shed light on the neuro-reparative role of adult neurogenesis following damage. The cyclin-dependent kinase inhibitor p21Waf1/Cip1 plays a pivotal role in modulating the quiescence/activation balance of adult Neural Stem Cells (aNSCs) and in restraining the proliferation progression of progenitor cells. Based on these considerations, the aim of this work is to evaluate how the conditional ablation of p21Waf1/Cip1 in the aNSCS can alter the adult hippocampal neurogenesis in physiological and post-traumatic conditions. METHODS We designed a novel conditional p21Waf1/Cip1 knock-out mouse model, in which the deletion of p21Waf1/Cip1 (referred as p21) is temporally controlled and occurs in Nestin-positive aNSCs, following administration of Tamoxifen. This mouse model (referred as p21 cKO mice) was subjected to Controlled Cortical Impact to analyze how the deletion of p21 could influence the post-traumatic neurogenic response within the hippocampal niche. RESULTS The data demonstrates that the conditional deletion of p21 in the aNSCs induces a strong increase in activation of aNSCs as well as proliferation and differentiation of neural progenitors in the adult dentate gyrus of the hippocampus, resulting in an enhancement of neurogenesis and the hippocampal-dependent working memory. However, following traumatic brain injury, the increased neurogenic response of aNSCs in p21 cKO mice leads to a fast depletion of the aNSCs pool, followed by declined neurogenesis and impaired hippocampal functionality. CONCLUSIONS These data demonstrate for the first time a fundamental role of p21 in modulating the post-traumatic hippocampal neurogenic response, by the regulation of the proliferative and differentiative steps of aNSCs/progenitor populations after brain damage.
Collapse
Affiliation(s)
- Francesco Chiani
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
| | | | - Nicole Marchetti
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
- PhD Course in Sciences of Nutrition, Aging, Metabolism and Gender Pathologies, Catholic University of Roma, 00100, Rome, Italy
| | - Andrea Macioce
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
| | - Chiara Nappi
- Instituto de Neurosciencias, Universidad Miguel-Hernandez, Alicante, Spain
| | - Georgios Strimpakos
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
| | - Miriam Pasquini
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
| | - Alessia Gambadoro
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
| | | | - Debora Cutuli
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185, Rome, Italy
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy
| | - Laura Petrosini
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy
| | - Sara Marinelli
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
| | - Raffaella Scardigli
- European Brain Research Institute (EBRI), Viale Regine Elena, 00161, Rome, Italy
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | | |
Collapse
|
3
|
Luo X, Xu M, Guo W. Adult neurogenesis research in China. Dev Growth Differ 2023; 65:534-545. [PMID: 37899611 DOI: 10.1111/dgd.12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 10/31/2023]
Abstract
Neural stem cells are multipotent stem cells that generate functional newborn neurons through a process called neurogenesis. Neurogenesis in the adult brain is tightly regulated and plays a pivotal role in the maintenance of brain function. Disruption of adult neurogenesis impairs cognitive function and is correlated with numerous neurologic disorders. Deciphering the mechanisms underlying adult neurogenesis not only advances our understanding of how the brain functions, but also offers new insight into neurologic diseases and potentially contributes to the development of effective treatments. The field of adult neurogenesis is experiencing significant growth in China. Chinese researchers have demonstrated a multitude of factors governing adult neurogenesis and revealed the underlying mechanisms of and correlations between adult neurogenesis and neurologic disorders. Here, we provide an overview of recent advancements in the field of adult neurogenesis due to Chinese scientists.
Collapse
Affiliation(s)
- Xing Luo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Mingyue Xu
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Rutigliano G, Bertolini A, Grittani N, Frascarelli S, Carnicelli V, Ippolito C, Moscato S, Mattii L, Kusmic C, Saba A, Origlia N, Zucchi R. Effect of Combined Levothyroxine (L-T 4) and 3-Iodothyronamine (T 1AM) Supplementation on Memory and Adult Hippocampal Neurogenesis in a Mouse Model of Hypothyroidism. Int J Mol Sci 2023; 24:13845. [PMID: 37762153 PMCID: PMC10530993 DOI: 10.3390/ijms241813845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Mood alterations, anxiety, and cognitive impairments associated with adult-onset hypothyroidism often persist despite replacement treatment. In rodent models of hypothyroidism, replacement does not bring 3-iodothyronamine (T1AM) brain levels back to normal. T1AM is a thyroid hormone derivative with cognitive effects. Using a pharmacological hypothyroid mouse model, we investigated whether augmenting levothyroxine (L-T4) with T1AM improves behavioural correlates of depression, anxiety, and memory and has an effect on hippocampal neurogenesis. Hypothyroid mice showed impaired performance in the novel object recognition test as compared to euthyroid mice (discrimination index (DI): 0.02 ± 0.09 vs. 0.29 ± 0.06; t = 2.515, p = 0.02). L-T4 and L-T4+T1AM rescued memory (DI: 0.27 ± 0.08 and 0.34 ± 0.08, respectively), while T1AM had no effect (DI: -0.01 ± 0.10). Hypothyroidism reduced the number of neuroprogenitors in hippocampal neurogenic niches by 20%. L-T4 rescued the number of neuroprogenitors (mean diff = 106.9 ± 21.40, t = 4.99, pcorr = 0.003), while L-T4+T1AM produced a 30.61% rebound relative to euthyroid state (mean diff = 141.6 ± 31.91, t = 4.44, pcorr = 0.004). We performed qPCR analysis of 88 genes involved in neurotrophic signalling pathways and found an effect of treatment on the expression of Ngf, Kdr, Kit, L1cam, Ntf3, Mapk3, and Neurog2. Our data confirm that L-T4 is necessary and sufficient for recovering memory and hippocampal neurogenesis deficits associated with hypothyroidism, while we found no evidence to support the role of non-canonical TH signalling.
Collapse
Affiliation(s)
- Grazia Rutigliano
- Institute of Clinical Science, Imperial College London, London SW7 2AZ, UK
- Department of Pathology, University of Pisa, 56126 Pisa, Italy; (A.B.); (N.G.); (S.F.); (V.C.); (A.S.); (R.Z.)
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy;
| | - Andrea Bertolini
- Department of Pathology, University of Pisa, 56126 Pisa, Italy; (A.B.); (N.G.); (S.F.); (V.C.); (A.S.); (R.Z.)
| | - Nicoletta Grittani
- Department of Pathology, University of Pisa, 56126 Pisa, Italy; (A.B.); (N.G.); (S.F.); (V.C.); (A.S.); (R.Z.)
| | - Sabina Frascarelli
- Department of Pathology, University of Pisa, 56126 Pisa, Italy; (A.B.); (N.G.); (S.F.); (V.C.); (A.S.); (R.Z.)
| | - Vittoria Carnicelli
- Department of Pathology, University of Pisa, 56126 Pisa, Italy; (A.B.); (N.G.); (S.F.); (V.C.); (A.S.); (R.Z.)
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.I.); (S.M.); (L.M.)
| | - Stefania Moscato
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.I.); (S.M.); (L.M.)
| | - Letizia Mattii
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.I.); (S.M.); (L.M.)
| | - Claudia Kusmic
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy;
| | - Alessandro Saba
- Department of Pathology, University of Pisa, 56126 Pisa, Italy; (A.B.); (N.G.); (S.F.); (V.C.); (A.S.); (R.Z.)
| | | | - Riccardo Zucchi
- Department of Pathology, University of Pisa, 56126 Pisa, Italy; (A.B.); (N.G.); (S.F.); (V.C.); (A.S.); (R.Z.)
| |
Collapse
|
5
|
Fathi D, Abulsoud AI, Saad MA, Nassar NN, Maksimos MM, Rizk SM, Senousy MA. Agomelatine attenuates alcohol craving and withdrawal symptoms by modulating the Notch1 signaling pathway in rats. Life Sci 2021; 284:119904. [PMID: 34453945 DOI: 10.1016/j.lfs.2021.119904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022]
Abstract
AIM Alcohol abuse is a significant causative factor of death worldwide. The Notch1 signaling pathway is involved in alcohol tolerance, withdrawal and dependence. Agomelatine is a known antidepressant acting as a melatonin receptor (MT1/2) agonist and a 5-hydroxytryptamine receptor-2C antagonist. However, its effects on alcohol cravings and alcohol withdrawal symptoms have not been investigated. In this study, we assessed the possibility of using agomelatine for the treatment of these symptoms in a rat model of alcoholism and the possible role of Notch1 signaling. MAIN METHODS We induced alcoholism in rats using a free-choice drinking model for 60 days. From day 61, free-choice was continued until day 82 for the craving model, whereas only water was offered in the withdrawal model. Meanwhile, the treated groups for both models received agomelatine (50 mg/kg/day) orally from day 61 to 82, followed by behavioral, histopathological and biochemical assessment. KEY FINDINGS Agomelatine treatment caused significant decrease in alcohol consumption with a positive effect on anxiety-like behavior in the open field, memory in the Morris water maze and immobility in the forced swim test. Moreover, agomelatine induced the expression of Notch1 pathway markers, including Notch1, NICD, CREB, CCNE-2, Hes-1, both total and phosphorylated ERK1/2, MMP9, Per2and RGS-2 in the hippocampal formation. By contrast, NMDAR expression was reduced. Furthermore, agomelatine normalized the serum levels of BDNF, cortisol, dopamine and glutamate which were disrupted by alcohol consumption. SIGNIFICANCE Based on these findings, agomelatine reversed alcohol cravings and withdrawal symptoms associated with alcohol dependence by modulating the Notch1 signaling pathway.
Collapse
Affiliation(s)
- Doaa Fathi
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Muhammed A Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; School of Pharmacy, Newgiza University, Cairo, Egypt
| | - Noha N Nassar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mina M Maksimos
- Department of Microbiology and Immunology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt; Institute for Microbiology, Faculty of Life Sciences, Friedrich Schiller University of Jena, Jena, Germany
| | - Sherine M Rizk
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mahmoud A Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Marzano LAS, de Castro FLM, Machado CA, de Barros JLVM, Macedo E Cordeiro T, Simões E Silva AC, Teixeira AL, Silva de Miranda A. Potential Role of Adult Hippocampal Neurogenesis in Traumatic Brain Injury. Curr Med Chem 2021; 29:3392-3419. [PMID: 34561977 DOI: 10.2174/0929867328666210923143713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/28/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022]
Abstract
Traumatic brain injury (TBI) is a serious cause of disability and death among young and adult individuals, displaying complex pathophysiology including cellular and molecular mechanisms that are not fully elucidated. Many experimental and clinical studies investigated the potential relationship between TBI and the process by which neurons are formed in the brain, known as neurogenesis. Currently, there are no available treatments for TBI's long-term consequences being the search for novel therapeutic targets, a goal of highest scientific and clinical priority. Some studies evaluated the benefits of treatments aimed at improving neurogenesis in TBI. In this scenario, herein, we reviewed current pre-clinical studies that evaluated different approaches to improving neurogenesis after TBI while achieving better cognitive outcomes, which may consist in interesting approaches for future treatments.
Collapse
Affiliation(s)
- Lucas Alexandre Santos Marzano
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | | | - Caroline Amaral Machado
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, UFMG, Brazil
| | | | - Thiago Macedo E Cordeiro
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Ana Cristina Simões E Silva
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, United States
| | - Aline Silva de Miranda
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| |
Collapse
|
7
|
Sargolzaei S, Kaushik A, Soltani S, Amini MH, Khalghani MR, Khoshavi N, Sargolzaei A. Preclinical Western Blot in the Era of Digital Transformation and Reproducible Research, an Eastern Perspective. Interdiscip Sci 2021; 13:490-499. [PMID: 34080131 DOI: 10.1007/s12539-021-00442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022]
Abstract
The current research is an interdisciplinary endeavor to develop a necessary tool in preclinical protein studies of diseases or disorders through western blotting. In the era of digital transformation and open access principles, an interactive cloud-based database called East-West Blot ( https://rancs-lab.shinyapps.io/WesternBlots ) is designed and developed. The online interactive subject-specific database built on the R shiny platform facilitates a systematic literature search on the specific subject matter, here set to western blot studies of protein regulation in the preclinical model of TBI. The tool summarizes the existing publicly available knowledge through a data visualization technique and easy access to the critical data elements and links to the study itself. The application compiled a relational database of PubMed-indexed western blot studies labeled under HHS public access, reporting downstream protein regulations presented by fluid percussion injury model of traumatic brain injury. The promises of the developed tool include progressing toward implementing the principles of 3Rs (replacement, reduction, and refinement) for humane experiments, cultivating the prerequisites of reproducible research in terms of reporting characteristics, paving the ways for a more collaborative experimental design in basic science, and rendering an up-to-date and summarized perspective of current publicly available knowledge.
Collapse
Affiliation(s)
- Saman Sargolzaei
- Department of Engineering, University of Tennessee at Martin, Martin, TN, USA.
| | - Ajeet Kaushik
- Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL, USA
| | - Seyed Soltani
- Mechanical Engineering Department, Florida Polytechnic University, Lakeland, FL, USA
| | - M Hadi Amini
- School of Computing and Information Sciences, Florida International University, Miami, FL, USA
| | - Mohammad Reza Khalghani
- Electrical and Computer Engineering Department, Florida Polytechnic University, Lakeland, FL, USA
| | - Navid Khoshavi
- Computer Science Department, Florida Polytechnic University, Lakeland, FL, USA
| | - Arman Sargolzaei
- Department of Mechanical Engineering, Tennessee Technological University, Cookeville, TN, USA
| |
Collapse
|
8
|
Lee J, Yoon K, Park P, Lee C, Kim MJ, Han DH, Kim J, Kim S, Lee H, Lee Y, Jang E, Ko H, Kong Y, Kaang B. Neur1
and
Neur2
are required for hippocampus‐dependent spatial memory and synaptic plasticity. Hippocampus 2020; 30:1158-1166. [DOI: 10.1002/hipo.23247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Jaehyun Lee
- Interdisciplinary Program in Neuroscience Seoul National University Seoul South Korea
| | - Ki‐Jun Yoon
- Department of Biological Sciences Korea Advanced Institute of Science and Technology (KAIST) Daejeon South Korea
| | - Pojeong Park
- Neurobiology Laboratory School of Biological Sciences, College of Natural Sciences, Seoul National University Seoul South Korea
| | - Chaery Lee
- Neurobiology Laboratory School of Biological Sciences, College of Natural Sciences, Seoul National University Seoul South Korea
| | - Min Jung Kim
- Interdisciplinary Program in Neuroscience Seoul National University Seoul South Korea
| | - Dae Hee Han
- Interdisciplinary Program in Neuroscience Seoul National University Seoul South Korea
| | - Ji‐il Kim
- Neurobiology Laboratory School of Biological Sciences, College of Natural Sciences, Seoul National University Seoul South Korea
| | - Somi Kim
- Neurobiology Laboratory School of Biological Sciences, College of Natural Sciences, Seoul National University Seoul South Korea
| | - Hye‐Ryeon Lee
- Neurobiology Laboratory School of Biological Sciences, College of Natural Sciences, Seoul National University Seoul South Korea
| | - Yeseul Lee
- Neurobiology Laboratory School of Biological Sciences, College of Natural Sciences, Seoul National University Seoul South Korea
| | - Eun‐Hae Jang
- Neurobiology Laboratory School of Biological Sciences, College of Natural Sciences, Seoul National University Seoul South Korea
| | - Hyoung‐Gon Ko
- Department of Anatomy and Neurobiology School of Dentistry, Kyungpook National University Daegu South Korea
| | - Young‐Yun Kong
- School of Biological Sciences, College of Natural Sciences Seoul National University Seoul South Korea
| | - Bong‐Kiun Kaang
- Interdisciplinary Program in Neuroscience Seoul National University Seoul South Korea
- Neurobiology Laboratory School of Biological Sciences, College of Natural Sciences, Seoul National University Seoul South Korea
| |
Collapse
|
9
|
Anderson J, Patel M, Forenzo D, Ai X, Cai C, Wade Q, Risman R, Cai L. A novel mouse model for the study of endogenous neural stem and progenitor cells after traumatic brain injury. Exp Neurol 2020; 325:113119. [PMID: 31751572 PMCID: PMC10885014 DOI: 10.1016/j.expneurol.2019.113119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/23/2019] [Accepted: 11/16/2019] [Indexed: 11/29/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in the US. Neural stem/progenitor cells (NSPCs) persist in the adult brain and represent a potential cell source for tissue regeneration and wound healing after injury. The Notch signaling pathway is critical for embryonic development and adult brain injury response. However, the specific role of Notch signaling in the injured brain is not well characterized. Our previous study has established a Notch1CR2-GFP reporter mouse line in which the Notch1CR2 enhancer directs GFP expression in NSPCs and their progeny. In this study, we performed closed head injury (CHI) in the Notch1CR2-GFP mice to study the response of injury-activated NSPCs. We show that CHI induces neuroinflammation, cell death, and the expression of typical TBI markers (e.g., ApoE, Il1b, and Tau), validating the animal model. In addition, CHI induces cell proliferation in GFP+ cells expressing NSPC markers, e.g., Notch1 and Nestin. A significant higher percentage of GFP+ astrocytes and GABAergic neurons was observed in the injured brain, with no significant change in oligodendrocyte lineage between the CHI and sham animal groups. Since injury is known to activate astrogliosis, our results suggest that injury-induced GFP+ NSPCs preferentially differentiate into GABAergic neurons. Our study establishes that Notch1CR2-GFP transgenic mouse is a useful tool for the study of NSPC behavior in vivo after TBI. Unveiling the potential of NSPCs response to TBI (e.g., proliferation and differentiation) will identify new therapeutic strategy for the treatment of brain trauma.
Collapse
Affiliation(s)
- Jeremy Anderson
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, United States of America
| | - Misaal Patel
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, United States of America
| | - Dylan Forenzo
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, United States of America
| | - Xin Ai
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, United States of America
| | - Catherine Cai
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, United States of America
| | - Quinn Wade
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, United States of America
| | - Rebecca Risman
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, United States of America
| | - Li Cai
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, United States of America.
| |
Collapse
|
10
|
Yuan P, Han W, Xie L, Cheng L, Chen H, Chen J, Jiang L. The implications of hippocampal neurogenesis in adolescent rats after status epilepticus: a novel role of notch signaling pathway in regulating epileptogenesis. Cell Tissue Res 2020; 380:425-433. [PMID: 31900663 DOI: 10.1007/s00441-019-03146-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022]
Abstract
Seizure-induced neurogenesis has a widely recognized pro-epileptogenic function. Given the critical role of Notch signaling during the maintenance and neurogenesis of neural stem cells, we hypothesized that Notch may affect epileptogenesis and its progression through its role in neurogenesis in the adolescent rat brain. We used the lithium-pilocarpine-induced epilepsy model in adolescent Sprague-Dawley rats in order to evaluate hippocampal neurogenesis and epileptogenesis following the onset of status epilepticus (SE). We used western blotting analyses and qPCR to measure levels of Notch signaling at different phases after seizures and immunofluorescence to detect the proliferation and differentiation of neural stem cells after seizure. Following the administration of DAPT, a Notch γ-secretase inhibitor, into the lateral ventricles, we observed a suppression of abnormal neurogenesis in the acute phase and a reduction of gliosis in the chronic phase after SE. Accordingly, the frequency and duration of spontaneous seizures in chronic phase were decreased. Our results clarify the basic concept regarding the involvement of Notch signaling in the regulation of hippocampal neurogenesis and epileptogenesis, thereby potentially offering a novel and alternative treatment for epilepsy.
Collapse
Affiliation(s)
- Ping Yuan
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical UniSversity, Chongqing, People's Republic of China
- Department of Neurology, Children's Hospital of Chongqing Medical University, 136# Zhongshan 2nd Road, YuZhong District, Chongqing, 400014, People's Republic of China
| | - Wei Han
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical UniSversity, Chongqing, People's Republic of China
- Department of Neurology, Children's Hospital of Chongqing Medical University, 136# Zhongshan 2nd Road, YuZhong District, Chongqing, 400014, People's Republic of China
| | - Lingling Xie
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical UniSversity, Chongqing, People's Republic of China
- Department of Neurology, Children's Hospital of Chongqing Medical University, 136# Zhongshan 2nd Road, YuZhong District, Chongqing, 400014, People's Republic of China
| | - Li Cheng
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical UniSversity, Chongqing, People's Republic of China
| | - Hengsheng Chen
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical UniSversity, Chongqing, People's Republic of China
| | - Jin Chen
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical UniSversity, Chongqing, People's Republic of China.
- Department of Neurology, Children's Hospital of Chongqing Medical University, 136# Zhongshan 2nd Road, YuZhong District, Chongqing, 400014, People's Republic of China.
| | - Li Jiang
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical UniSversity, Chongqing, People's Republic of China.
- Department of Neurology, Children's Hospital of Chongqing Medical University, 136# Zhongshan 2nd Road, YuZhong District, Chongqing, 400014, People's Republic of China.
| |
Collapse
|
11
|
Lee YJ, Ch'ng TH. RIP at the Synapse and the Role of Intracellular Domains in Neurons. Neuromolecular Med 2019; 22:1-24. [PMID: 31346933 DOI: 10.1007/s12017-019-08556-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022]
Abstract
Regulated intramembrane proteolysis (RIP) occurs in a cell when transmembrane proteins are cleaved by intramembrane proteases such as secretases to generate soluble protein fragments in the extracellular environment and the cytosol. In the cytosol, these soluble intracellular domains (ICDs) have local functions near the site of cleavage or in many cases, translocate to the nucleus to modulate gene expression. While the mechanism of RIP is relatively well studied, the fate and function of ICDs for most substrate proteins remain poorly characterized. In neurons, RIP occurs in various subcellular compartments including at the synapse. In this review, we summarize current research on RIP in neurons, focusing specifically on synaptic proteins where the presence and function of the ICDs have been reported. We also briefly discuss activity-driven processing of RIP substrates at the synapse and the cellular machinery that support long-distance transport of ICDs from the synapse to the nucleus. Finally, we describe future challenges in this field of research in the context of understanding the contribution of ICDs in neuronal function.
Collapse
Affiliation(s)
- Yan Jun Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, 10-01-01 M, Singapore, 308232, Singapore.,Interdisciplinary Graduate School (IGS), Nanyang Technological University, Singapore, Singapore
| | - Toh Hean Ch'ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, 10-01-01 M, Singapore, 308232, Singapore. .,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
12
|
Li Y, Shen M, Stockton ME, Zhao X. Hippocampal deficits in neurodevelopmental disorders. Neurobiol Learn Mem 2018; 165:106945. [PMID: 30321651 DOI: 10.1016/j.nlm.2018.10.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022]
Abstract
Neurodevelopmental disorders result from impaired development or maturation of the central nervous system. Both genetic and environmental factors can contribute to the pathogenesis of these disorders; however, the exact causes are frequently complex and unclear. Individuals with neurodevelopmental disorders may have deficits with diverse manifestations, including challenges with sensory function, motor function, learning, memory, executive function, emotion, anxiety, and social ability. Although these functions are mediated by multiple brain regions, many of them are dependent on the hippocampus. Extensive research supports important roles of the mammalian hippocampus in learning and cognition. In addition, with its high levels of activity-dependent synaptic plasticity and lifelong neurogenesis, the hippocampus is sensitive to experience and exposure and susceptible to disease and injury. In this review, we first summarize hippocampal deficits seen in several human neurodevelopmental disorders, and then discuss hippocampal impairment including hippocampus-dependent behavioral deficits found in animal models of these neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yue Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Minjie Shen
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Michael E Stockton
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
13
|
Zhou H, Zhao W, Ye L, Chen Z, Cui Y. Postnatal low-concentration arsenic exposure induces autism-like behavior and affects frontal cortex neurogenesis in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 62:188-198. [PMID: 30064059 DOI: 10.1016/j.etap.2018.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to explore the effects of postnatal low-concentration arsenic exposure on learning, social skills and frontal cortex neurogenesis in rats. Water-based arsenic exposure rat models were established on postnatal days 4-10 (P4-P10). The experimental animals were divided into four groups: the control group, a 15 μg/L As2O3 water group, a 30 μg/L As2O3 water group, and a 45 μg/L As2O3 water group. Cognitive function was examined with the Morris water maze, anxiety-like behavior with the open field test and light-dark box test, and social skills with a social interaction test. The frontal cortices of pups from each experimental group were sectioned at various time points after arsenic exposure. The morphologies and neurogenesis of the neurons in the frontal cortices were observed by hematoxylin-eosin staining, Nissl staining, and doublecortin (DCX) immunostaining. Significant positive correlations between arsenic concentration and deficits in learning and social skills were found, and the arsenic exposure groups showed significant increases in anxiety-like behavior compared with the control group (all Ps<0.05). Abnormal morphologic changes in the external granular layer and external pyramidal layer were positively correlated with the water arsenic concentration in the acute phase of arsenic exposure. However, at five weeks after arsenic exposure, the frontal cortex morphology was restored. Moreover, immunohistochemistry revealed that compared to the control group, the groups that were exposed to arsenic exhibited significantly higher levels of DCX expression in the external granular and external pyramidal layers (all Ps<0.001). Furthermore, the 30 μg/L and 45 μg/L arsenic exposure groups still showed some DCX expression at five weeks after exposure. In conclusion, postnatal low-concentration arsenic exposure impaired learning and social skills and increased anxiety-like behaviors, and abnormal frontal cortex neurogenesis may be the mechanism underlying these effects.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Pediatrics, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, 550002, China.
| | | | - Liu Ye
- Otolaryngological Department, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, 550002, China
| | - Zhihe Chen
- Department of Pediatrics, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, 550002, China
| | - Yuxia Cui
- Department of Pediatrics, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, 550002, China; Guizhou Medical University, 550004, China.
| |
Collapse
|