1
|
Dai L, Wang Q. Targeting ferroptosis: opportunities and challenges of mesenchymal stem cell therapy for type 1 diabetes mellitus. Stem Cell Res Ther 2025; 16:47. [PMID: 39901210 PMCID: PMC11792594 DOI: 10.1186/s13287-025-04188-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/24/2025] [Indexed: 02/05/2025] Open
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by progressive β-cell death, leading to β-cell loss and insufficient insulin secretion. Mesenchymal stem cells (MSCs) transplantation is currently one of the most promising methods for β-cell replacement therapy. However, recent studies have shown that ferroptosis is not only one of the key mechanisms of β-cell death, but also one of the reasons for extensive cell death within a short period of time after MSCs transplantation. Ferroptosis is a new type of regulated cell death (RCD) characterized by iron-dependent accumulation of lipid peroxides. Due to the weak antioxidant capacity of β-cells, they are susceptible to cytotoxic stimuli such as oxidative stress (OS), and are therefore susceptible to ferroptosis. Transplanted MSCs are also extremely susceptible to perturbations in their microenvironment, especially OS, which can weaken their antioxidant capacity and induce MSCs death through ferroptosis. In the pathophysiological process of T1DM, a large amount of reactive oxygen species (ROS) are produced, causing OS. Therefore, targeting ferroptosis may be a key way to protect β-cells and improve the therapeutic effect of MSCs transplantation. This review reviews the research related to ferroptosis of β-cells and MSCs, and summarizes the currently developed strategies that help inhibit cell ferroptosis. This study aims to help understand the ferroptosis mechanism of β-cell death and MSCs death after transplantation, emphasize the importance of targeting ferroptosis for protecting β-cells and improving the survival and function of transplanted MSCs, and provide a new research direction for stem cells transplantation therapy of T1DM in the future.
Collapse
Affiliation(s)
- Le Dai
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, 126 Xiantai Avenue, Changchun City, Jilin Province, China
| | - Qing Wang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, 126 Xiantai Avenue, Changchun City, Jilin Province, China.
| |
Collapse
|
2
|
Wang Q, Liu Z, Wang R, Li R, Lian X, Yang Y, Yan J, Yin Z, Wang G, Sun J, Peng Y. Effect of Ginkgo biloba extract on pharmacology and pharmacokinetics of atorvastatin in rats with hyperlipidaemia. Food Funct 2023; 14:3051-3066. [PMID: 36916480 DOI: 10.1039/d2fo03238d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Ginkgo biloba extract (GBE) is a common dietary supplement used by people with dyslipidaemia worldwide to reduce the risk of cardiovascular disease. Many studies have found that GBE itself has a variety of pharmacological activities. However, the role of GBE as an adjunct to conventional therapy with chemical drugs remains controversial. Therefore, this study explored the additional benefits of GBE in the treatment of hyperlipidaemia with statins in terms of both pharmacodynamics and pharmacokinetics. A hyperlipidaemia model was established by feeding rats a high-fat diet for a long time. The animals were treated with atorvastatin only, GBE only, or a combination of atorvastatin and GBE. The results showed that statins combined with GBE could significantly improve the blood lipid parameters, reduce the liver fat content, and reduce the size of adipocytes in abdominal fat. The effect was superior to statin therapy alone. In addition, the combination has shown additional liver protection against possible pathological liver injury or statin-induced liver injury. A lipidomic study showed that GBE could regulate the abnormal lipid metabolism of the liver in hyperlipemia. When statins are combined with GBE, this callback effect introduced by GBE on endogenous metabolism has important implications for resistance to disease progression and statin resistance. Finally, in the presence of GBE, there was a significant increase in plasma statin exposure. These results all confirmed that GBE has incremental benefits as a dietary supplement of statin therapy for dyslipidaemia.
Collapse
Affiliation(s)
- Qingqing Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Zihou Liu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Rui Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Run Li
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Xiaoru Lian
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Yanquan Yang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Jiao Yan
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Zhiqi Yin
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, China
| | - Guangji Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Jianguo Sun
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Ying Peng
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| |
Collapse
|
3
|
Liao M, Wang F, Huang L, Liu C, Dong W, Zhuang X, Yin X, Liu Y, Wang W. Effects of dietary Ginkgo biloba leaf extract on growth performance, immunity and environmental stress tolerance of Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108500. [PMID: 36572268 DOI: 10.1016/j.fsi.2022.108500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Ginkgo biloba leaf extract (GBE) has been extensively used in the treatment of diseases due to its anti-inflammatory, antioxidant, and immunomodulatory effects. In aquaculture, GBE is widely used as a feed additive, which is important to enhance the immunity of aquatic animals. The current study evaluated the effects of adding GBE to the diet of Penaeus vannamei (P. vannamei) under intensive aquaculture. The GBE0 (control group), GBE1, GBE2, and GBE4 groups were fed a commercial feed supplemented with 0.0, 1.0, 2.0, and 4.0 g/kg GBE for 21 days, respectively. The results showed that dietary GBE could alleviate hepatopancreas tissue damage and improve the survival rate of shrimp, and dietary 2 g/kg GBE could significantly increase the total hemocyte count (THC), the hemocyanin content, the antioxidant gene's expression, and the activity of their encoded enzymes in P. vannamei. Furthermore, transcriptome data revealed that immunity-related genes were upregulated in the GBE2 group compared with the GBE0 group after 21 days of culture. Drug metabolism-cytochrome P450, sphingolipid metabolism, linoleic acid metabolism, glycerolipid metabolism, fat digestion and protein digestion and absorption pathways were significantly enriched, according to KEGG results. Surprisingly, all of the above KEGG-enriched pathways were significantly upregulated. These findings demonstrated that supplementing P. vannamei with 2 g/kg GBE improved its environmental adaptability by improving immunity, lipid metabolism, and detoxification. In this study, a comprehensive evaluation of the effects of dietary GBE on the intensive aquaculture of P. vannamei was conducted to provide a reference for the healthy culture of P. vannamei.
Collapse
Affiliation(s)
- Meiqiu Liao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Feifei Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China; Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Lin Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Can Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Wenna Dong
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Xueqi Zhuang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Xiaoli Yin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Yuan Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| | - Weina Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
4
|
Liu XY, Zhang XB, Zhao YF, Qu K, Yu XY. Research Progress of Chinese Herbal Medicine Intervention in Renal Interstitial Fibrosis. Front Pharmacol 2022; 13:900491. [PMID: 35770077 PMCID: PMC9235922 DOI: 10.3389/fphar.2022.900491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney diseases usually cause renal interstitial fibrosis, the prevention, delay, and treatment of which is a global research hotspot. However, no definite treatment options are available in modern medicine. Chinese herbal medicine has a long history, rich varieties, and accurate treatment effects. Hitherto, many Chinese herbal medicine studies have emerged to improve renal interstitial fibrosis. This paper reviews the mechanisms of renal interstitial fibrosis and recent studies on the disease intervention with Chinese herbal medicine through literature search, intend to reveal the importance of Chinese herbal medicine in renal interstitial fibrosis. The results show that Chinese herbal medicine can improve renal interstitial fibrosis, and the effects of Chinese herbal medicine on specific pathological mechanisms underlying renal interstitial fibrosis have been explored. Additionally, the limitations and advantages of Chinese herbal medicine in the treatment of renal interstitial fibrosis, possible research directions, and new targets of Chinese herbal medicine are discussed to provide a basis for studies of renal interstitial fibrosis.
Collapse
Affiliation(s)
- Xiao-Yuan Liu
- Department of Nephrology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Xu-Bin Zhang
- Department of Orthopaedic, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Ya-Feng Zhao
- Department of Nephrology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Kai Qu
- Department of Nephrology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, China
- *Correspondence: Xiao-Yong Yu,
| |
Collapse
|
5
|
Long Y, Li Z, Huang C, Lu Z, Qiu K, He M, Fang Z, Ding B, Yuan X, Zhu W. Mechanism and Protective Effect of Smilax glabra Roxb on the Treatment of Heart Failure via Network Pharmacology Analysis and Vitro Verification. Front Pharmacol 2022; 13:868680. [PMID: 35677443 PMCID: PMC9169610 DOI: 10.3389/fphar.2022.868680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Smilax glabra Roxb (SGR) has been widely applied alone or in combination with other Chinese herbs in heart failure (HF), but its mechanism and protective effect have not been investigated. We aimed to explore the mechanism and protective effect of SGR on the treatment of HF. Network pharmacology analysis predicted that SGR was involved in the regulation of cell proliferation, oxidation–reduction process, apoptotic process, ERK1 and ERK2 cascade, MAPK cascade, etc. Its mechanism was mainly involved in the MAPK signaling pathway, calcium signaling pathway, cardiac muscle contraction, etc. Subsequently, SGR was proved to improve cellular viability, restore cellular morphology, suppress cellular and mitochondrial ROS production, improve H2O2-induced lysosome inhibition, attenuate mitochondrial dysfunction, and protect mitochondrial respiratory and energy metabolism in H9c2 cells. SGR activated the p38MAPK pathway by decreasing the mRNA expression of AKT, PP2A, NF-KB, PP2A, RAC1, and CDC42 and increasing the mRNA expression of Jun, IKK, and Sirt1. SGR also decreased the protein expression of ERK1, ERK2, JNK, Bax, and Caspase3 and increased the protein expression of p38MAPK and Bcl-2. In addition, Istidina at the highest degree was identified in SGR via the UHPLCLTQ-Orbitrap-MSn method, and it was suggested as anti-heart failure agents by targeting SRC with molecular docking analysis. In conclusion, SGR has a protective effect on HF through cellular and mitochondrial protection via multi-compounds and multi-targets, and its mechanism is involved in activating the p38 MAPK pathway. Istidina may be possible anti-HF agents by targeting SRC.
Collapse
Affiliation(s)
- Yingxin Long
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zunjiang Li
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunxia Huang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongyu Lu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kuncheng Qiu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meixing He
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhijian Fang
- Department of Emergency, Panyu Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Banghan Ding
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Xiaohong Yuan
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Wei Zhu
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
6
|
Barbalho SM, Direito R, Laurindo LF, Marton LT, Guiguer EL, Goulart RDA, Tofano RJ, Carvalho ACA, Flato UAP, Capelluppi Tofano VA, Detregiachi CRP, Bueno PCS, Girio RSJ, Araújo AC. Ginkgo biloba in the Aging Process: A Narrative Review. Antioxidants (Basel) 2022; 11:525. [PMID: 35326176 PMCID: PMC8944638 DOI: 10.3390/antiox11030525] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
Neurodegenerative diseases, cardiovascular disease (CVD), hypertension, insulin resistance, cancer, and other degenerative processes commonly appear with aging. Ginkgo biloba (GB) is associated with several health benefits, including memory and cognitive improvement, in Alzheimer's disease (AD), Parkinson's disease (PD), and cancer. Its antiapoptotic, antioxidant, and anti-inflammatory actions have effects on cognition and other conditions associated with aging-related processes, such as insulin resistance, hypertension, and cardiovascular conditions. The aim of this study was to perform a narrative review of the effects of GB in some age-related conditions, such as neurodegenerative diseases, CVD, and cancer. PubMed, Cochrane, and Embase databases were searched, and the PRISMA guidelines were applied. Fourteen clinical trials were selected; the studies showed that GB can improve memory, cognition, memory scores, psychopathology, and the quality of life of patients. Moreover, it can improve cerebral blood flow supply, executive function, attention/concentration, non-verbal memory, and mood, and decrease stress, fasting serum glucose, glycated hemoglobin, insulin levels, body mass index, waist circumference, biomarkers of oxidative stress, the stability and progression of atherosclerotic plaques, and inflammation. Therefore, it is possible to conclude that the use of GB can provide benefits in the prevention and treatment of aging-related conditions.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (L.F.L.); (L.T.M.); (V.A.C.T.)
- School of Food and Technology of Marilia (FATEC), Avenida Castro Alves, Marília 17500-000, SP, Brazil
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (L.F.L.); (L.T.M.); (V.A.C.T.)
| | - Ledyane Taynara Marton
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (L.F.L.); (L.T.M.); (V.A.C.T.)
| | - Elen Landgraf Guiguer
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (L.F.L.); (L.T.M.); (V.A.C.T.)
- School of Food and Technology of Marilia (FATEC), Avenida Castro Alves, Marília 17500-000, SP, Brazil
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
| | - Ricardo José Tofano
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (L.F.L.); (L.T.M.); (V.A.C.T.)
| | - Antonely C. A. Carvalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
| | - Uri Adrian Prync Flato
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (L.F.L.); (L.T.M.); (V.A.C.T.)
| | - Viviane Alessandra Capelluppi Tofano
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (L.F.L.); (L.T.M.); (V.A.C.T.)
| | - Cláudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
| | - Patrícia C. Santos Bueno
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, SP, Brazil;
| | - Raul S. J. Girio
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, SP, Brazil;
| | - Adriano Cressoni Araújo
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (L.F.L.); (L.T.M.); (V.A.C.T.)
| |
Collapse
|
7
|
Chudhary M, Zhang C, Song S, Ren X, Kong L. Ginkgo biloba delays light-induced photoreceptor degeneration through antioxidant and antiapoptotic properties. Exp Ther Med 2021; 21:576. [PMID: 33850548 DOI: 10.3892/etm.2021.10008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Intense exposure to artificial bright light increases the risk of retinal damage resulting in blurred vision and blindness. Long-term exposure to bright light elevates oxidative stress-induced apoptosis, which results in photoreceptor cell degeneration. However, to the best of our knowledge, the molecular mechanism associated with light-induced retinopathy remains unclear. In the present study, the mechanisms involved in light-induced oxidative stress and apoptosis were investigated along with the protective effects of Ginkgo biloba (EGb 761) in photoreceptor cell degeneration. EGb 761 was administered to mice at a dose of 50 or 100 mg/kg for 7 days prior to exposure to bright light (5,000 lux for 24 h). Furthermore, photoreceptor cell disorders were evaluated using electroretinogram (ERG) and H&E staining analyses. The expression levels of antioxidant genes and proteins ERK, thioredoxin (Trx) and nuclear factor erythroid 2-related factor 2 (Nrf-2) and the induction of apoptosis cytochrome c (Cyc), cleaved caspase-3 and Bax, were determined by reverse transcription-quantitative PCR and western blotting. ERG and histological analysis revealed that exposure to bright light induced functional and morphological changes to the photoreceptor cells. Exposure to bright light increased the levels of Cyc, cleaved caspase-3 and Bax, and decreased the levels of phosphorylated (p-) Erk, Nrf-2 and thioredoxin (Trx). However, treatment of mice with EGb 761 increased the expression levels of antiapoptotic (Bcl-2) and antioxidant (p-Erk, Trx and Nrf-2) proteins and decreased the expression levels of the apoptotic genes (Cyc, cleaved caspase-3 and Bax). Based on these findings, the present study suggested that prolonged exposure to light induces photoreceptor cell degeneration, where EGb 761 treatment may serve a therapeutic effect on the development of photoreceptor cell degeneration.
Collapse
Affiliation(s)
- Maryam Chudhary
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Chenghong Zhang
- Teaching Laboratory of Morphology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Shiyu Song
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Xiang Ren
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Li Kong
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
8
|
Liang T, Wei C, Lu S, Qin M, Qin G, Zhang Y, Zhong X, Zou X, Yang Y. Ginaton injection alleviates cisplatin-induced renal interstitial fibrosis in rats via inhibition of apoptosis through regulation of the p38MAPK/TGF-β1 and p38MAPK/HIF-1α pathways. Biomed Rep 2021; 14:38. [PMID: 33692901 PMCID: PMC7938297 DOI: 10.3892/br.2021.1414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/04/2021] [Indexed: 11/06/2022] Open
Abstract
Ginaton injection (Ginkgo biloba extract; GBE) has been reported to protect against cisplatin-induced acute renal failure in rats. In the present study, the effects and molecular mechanisms of GBE on cisplatin-induced renal interstitial fibrosis were evaluated using a rat model. The rats were intraperitoneally injected with cisplatin once on the first day and a subset of rats were treated with GBE or SB203580 (SB; a specific p38 MAPK inhibitor) daily from days 22 to 40. The levels of N-acetyl-β-D-Glucosaminidase (NAG) in the urine, and of urea nitrogen (BUN) and creatinine (Scr) in the blood were assessed. The damage and fibrosis of renal tissues were evaluated using hematoxylin and eosin staining, as well as Masson's trichrome staining, respectively. Apoptosis in renal tissues was detected using a TUNEL assay. The protein expression levels of α-smooth muscle actin (SMA), collagen 1 (Col I), Bax, Bcl-2, caspase-3/cleaved caspase-3, hypoxia-inducible factor-1α (HIF-1α), TGF-β1 and p38MAPK, as well as the mRNA levels of p38MAPK in renal tissues were investigated. The results showed that GBE markedly reduced the levels of urinary NAG, Scr and BUN, and renal expression of α-SMA and Col I levels were also reduced. Furthermore, GBE significantly reduced renal tissue injury and the relative area of renal interstitial fibrosis induced by cisplatin. GBE effectively reduced the apoptotic rate of renal tissues, the protein expression levels of Bax, cleaved caspase-3, phospho-p38MAPK, TGF-β1 and HIF-1α, as well as the mRNA expression levels of p38MAPK in renal tissues induced by cisplatin, whereas GBE significantly increased Bcl-2 protein expression. SB exhibited similar effects to GBE, although it was not as effective. In summary, the present study is the first to show that GBE significantly alleviated renal interstitial fibrosis following cisplatin-induced acute renal injury. The mechanisms by which GBE exhibited its effects were associated with the inhibition of apoptosis via downregulation of the p38MAPK/TGF-β1 and p38MAPK/HIF-1α signaling pathways.
Collapse
Affiliation(s)
- Taolin Liang
- Postgraduate Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chongying Wei
- Postgraduate Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Sisi Lu
- Postgraduate Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Mengyuan Qin
- Postgraduate Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Guiming Qin
- Postgraduate Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yansong Zhang
- Postgraduate Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaobin Zhong
- Regenerative Medicine Research Center of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaoqin Zou
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yufang Yang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
9
|
Wu TC, Chen JS, Wang CH, Huang PH, Lin FY, Lin LY, Lin SJ, Chen JW. Activation of heme oxygenase-1 by Ginkgo biloba extract differentially modulates endothelial and smooth muscle-like progenitor cells for vascular repair. Sci Rep 2019; 9:17316. [PMID: 31754254 PMCID: PMC6872755 DOI: 10.1038/s41598-019-53818-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 10/17/2019] [Indexed: 01/09/2023] Open
Abstract
Vascular progenitors such as endothelial progenitor cells (EPCs) and smooth muscle-like progenitor cells (SMPCs) may play different roles in vascular repair. Ginkgo biloba extract (GBE) is an exogenous activator of heme oxygenase (HO)-1, which has been suggested to improve vascular repair; however, the detailed mechanisms have yet to be elucidated. This study aimed to investigate whether GBE can modulate different vascular progenitor cells by activating HO-1 for vascular repair. A bone marrow transplantation mouse model was used to evaluate the in vivo effects of GBE treatment on wire-injury induced neointimal hyperplasia, which is representative of impaired vascular repair. On day 14 of GBE treatment, the mice were subjected to wire injury of the femoral artery to identify vascular reendothelialization. Compared to the mice without treatment, neointimal hyperplasia was reduced in the mice that received GBE treatment for 28 days in a dose-dependent manner. Furthermore, GBE treatment increased bone marrow-derived EPCs, accelerated endothelial recovery, and reduced the number of SMPCs attached to vascular injury sites. The effects of GBE treatment on neointimal hyperplasia could be abolished by co-treatment with zinc protoporphyrin IX, an HO-1 inhibitor, suggesting the in vivo role of HO-1. In this in vitro study, treatment with GBE activated human early and late EPCs and suppressed SMPC migration. These effects were abolished by HO-1 siRNA and an HO-1 inhibitor. Furthermore, GBE induced the expression of HO-1 by activating PI3K/Akt/eNOS signaling in human late EPCs and via p38 pathways in SMPCs, suggesting that GBE can induce HO-1 in vitro through different molecular mechanisms in different vascular progenitor cells. Accordingly, GBE could activate early and late EPCs, suppress the migration of SMPCs, and improve in vivo vascular repair after mechanical injury by activating HO-1, suggesting the potential role of pharmacological HO-1 activators, such as GBE, for vascular protection in atherosclerotic diseases.
Collapse
Affiliation(s)
- Tao-Cheng Wu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Jia-Shiong Chen
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chao-Hung Wang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Po-Hsun Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Feng-Yen Lin
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Liang-Yu Lin
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shing-Jong Lin
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jaw-Wen Chen
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan. .,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan. .,Precision Medicine Research Center, Taipei Veterans General Hospital, Taipei, Taiwan. .,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
10
|
Deng X, Jing D, Liang H, Zheng D, Shao Z. H₂O₂ Damages the Stemness of Rat Bone Marrow-Derived Mesenchymal Stem Cells: Developing a "Stemness Loss" Model. Med Sci Monit 2019; 25:5613-5620. [PMID: 31353362 PMCID: PMC6683726 DOI: 10.12659/msm.914011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background The number of patients with spinal cord injury caused by motor vehicle accidents, violent injuries, and other types of trauma increases year by year, and bone marrow mesenchymal stem cell (BMSC) transplants are being widely investigated to treat this condition. However, the success rate of BMSCs transplants is relatively low due to the presence of oxidative stress in the new microenvironment. Our main goals in the present study were to evaluate the damaging effects of H2O2 on BMSCs and to develop a model of “stemness loss” using rat BMSCs. Material/Methods Bone marrow-derived mesenchymal stem cells were obtained from the bone marrow of young rats reared under sterile conditions. The stem cells were used after 2 passages following phenotypic identification. BMSCs were divided into 4 groups to evaluate the damaging effects of H2O2: A. blank control; B. 100 uM H2O2; C. 200 uM H2O2 and D. 300 uM H2O2. The ability of the BMSCs to differentiate into 3 cell lineages and their colony formation and migration capacities were analyzed by gene expression, colony formation, and scratch assays. Results The cells we obtained complied with international stem cell standards demonstrated by their ability to differentiate into 3 cell lineages. We found that 200–300 uM H2O2 had a significant effect on the biological behavior of BMSCs, including their ability to differentiate into 3 cell lineages, the expression of stemness-related proteins, and their migration and colony formation capacities. Conclusions H2O2 can damage the stemness ability of BMSCs at a concentration of 200–300 uM.
Collapse
Affiliation(s)
- Xiangyu Deng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Doudou Jing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Hang Liang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Dong Zheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
11
|
Ren C, Ji YQ, Liu H, Wang Z, Wang JH, Zhang CY, Guan LN, Yin PY. Effects of Ginkgo biloba extract EGb761 on neural differentiation of stem cells offer new hope for neurological disease treatment. Neural Regen Res 2019; 14:1152-1157. [PMID: 30804240 PMCID: PMC6425836 DOI: 10.4103/1673-5374.251191] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023] Open
Abstract
Stem cell transplantation has brought new hope for the treatment of neurological diseases. The key to stem cell therapy lies in inducing the specific differentiation of stem cells into nerve cells. Because the differentiation of stem cells in vitro and in vivo is affected by multiple factors, the final differentiation outcome is strongly associated with the microenvironment in which the stem cells are located. Accordingly, the optimal microenvironment for inducing stem cell differentiation is a hot topic. EGb761 is extracted from the leaves of the Ginkgo biloba tree. It is used worldwide and is becoming one of the focuses of stem cell research. Studies have shown that EGb761 can antagonize oxygen free radicals, stabilize cell membranes, promote neurogenesis and synaptogenesis, increase the level of brain-derived neurotrophic factors, and replicate the environment required during the differentiation of stem cells into nerve cells. This offers the possibility of using EGb761 to induce the differentiation of stem cells, facilitating stem cell transplantation. To provide a comprehensive reference for the future application of EGb761 in stem cell therapy, we reviewed studies investigating the influence of EGb761 on stem cells. These started with the composition and neuropharmacology of EGb761, and eventually led to the finding that EGb761 and some of its important components play important roles in the differentiation of stem cells and the protection of a beneficial microenvironment for stem cell transplantation.
Collapse
Affiliation(s)
- Chao Ren
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Department of Neurology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong Province, China
| | - Yong-Qiang Ji
- Department of Nephrology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong Province, China
| | - Hong Liu
- Department of Neurology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong Province, China
| | - Zhe Wang
- Department of Clinical Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong Province, China
| | - Jia-Hui Wang
- Department of Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong Province, China
| | - Cai-Yi Zhang
- Department of Emergency and Rescue Medicine, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Li-Na Guan
- Department of Neurosurgical Intensive Care Unit, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong Province, China
| | - Pei-Yuan Yin
- Department of Blood Supply, Yantai Center Blood Station, Yantai, Shandong Province, China
| |
Collapse
|