1
|
Kanno C, Kojima M, Watanabe Y, Honda R, Tezuka Y, Ishida N, Kaneko T. Molecular targeted drugs affect the development of antiresorptive-related osteonecrosis of the jaw in patients with lung and kidney cancers. Int J Cancer 2025. [PMID: 40232173 DOI: 10.1002/ijc.35439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/16/2025]
Abstract
The use of antiresorptive agents in patients with cancer is strongly associated with the development of medication-related osteonecrosis of the jaw, with an incidence of ≥10%. Despite the presence of clinical position papers on this issue, the incidence of medication-related osteonecrosis of the jaw has not decreased. Therefore, we believe there are some unknown underlying factors, so we focused on the use of anticancer agents, especially molecular targeted drugs, in this study. We retrospectively evaluated the data of 366 patients who received antiresorptive agents for metastatic cancer treatment. All patients received proper oral care before antiresorptive agent initiation. Of the 366 patients, 48 (13.1%) developed medication-related osteonecrosis of the jaw. Medication-related osteonecrosis of the jaw developed in 18/55 (32.7%) patients who received molecular targeted drugs and in 30/311 (9.6%) patients who did not (p < 0.001). Among patients with lung cancer, 10/29 (34.5%) patients who received molecular targeted drugs and 5/96 (5.2%) who did not (p < 0.001) developed medication-related osteonecrosis of the jaw. In patients with kidney cancer, medication-related osteonecrosis of the jaw developed in 5/11 patients (45.5%) who received molecular targeted drugs and not in any of the 13 patients who did not (p < 0.01). Molecular targeted drugs significantly affect the development of medication-related osteonecrosis of the jaw. Therefore, in cancer treatment, close attention should be paid to antiresorptive agent use and to the details of anticancer therapies for managing medication-related osteonecrosis of the jaw.
Collapse
Affiliation(s)
- Chihiro Kanno
- Department of Oral and Maxillofacial Surgery, Fukushima Medical University Hospital, Fukushima City, Fukushima, Japan
| | - Momoyo Kojima
- Department of Oral and Maxillofacial Surgery, Fukushima Medical University Hospital, Fukushima City, Fukushima, Japan
| | - Yuki Watanabe
- Department of Oral and Maxillofacial Surgery, Fukushima Medical University Hospital, Fukushima City, Fukushima, Japan
| | - Ryosuke Honda
- Department of Oral and Maxillofacial Surgery, Fukushima Medical University Hospital, Fukushima City, Fukushima, Japan
| | - Yu Tezuka
- Department of Oral and Maxillofacial Surgery, Fukushima Medical University Hospital, Fukushima City, Fukushima, Japan
| | - Natsuko Ishida
- Department of Oral and Maxillofacial Surgery, Fukushima Medical University Hospital, Fukushima City, Fukushima, Japan
| | - Tetsuharu Kaneko
- Department of Oral and Maxillofacial Surgery, Fukushima Medical University Hospital, Fukushima City, Fukushima, Japan
| |
Collapse
|
2
|
Fauzi MSA, Sabri MSA, Halim AAA, Abidin SAIZ. Combinatorial effects of hydroxyapatite and Tualang honey on medication-related osteonecrosis of the jaw (MRONJ): An in vitro study. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2025; 126:101999. [PMID: 39089510 DOI: 10.1016/j.jormas.2024.101999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/01/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Medication-related osteonecrosis of the jaw (MRONJ) is a severe complication associated with prolonged bisphosphonate therapy. Increasing evidence shows that mucosal damage plays an important role in the pathogenesis of MRONJ. This study investigates the combinatorial effects of hydroxyapatite with Tualang honey on cell viability and wound healing in MRONJ. MATERIALS AND METHODS The incorporation of Tualang honey into hydroxyapatite was assessed using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and field emission scanning electron-energy dispersive X-ray analysis microscopy (FESEM-EDX). The effect of hydroxyapatite combined with Tualang honey on cell viability was determined by WST-1 assay and wound healing was assessed by scratch assay. RESULTS The incorporation of Tualang honey into hydroxyapatite altered the functional groups, structure, size, morphology, and components of the crystal as evidenced by FTIR, XRD and FESEM-EDX analysis. High concentrations of pamidronic acid inhibit oral fibroblast viability and wound healing. Low and high concentrations of hydroxyapatite demonstrate non-toxicity towards fibroblast cells. Furthermore, hydroxyapatite reversed the action of pamidronic acid on the cells; it increased fibroblast viability but did not close the wound. Tualang honey promotes fibroblast viability and wound closure. However, the addition of Tualang honey is unable to overcome the inhibitory effects of pamidronic acid on fibroblasts. The addition of Tualang honey and hydroxyapatite improved the cell viability and accelerated wound closure of fibroblast exposed to pamidronic acid. CONCLUSION These findings demonstrated that the combination treatment protects oral fibroblasts by preventing bisphosphonate toxicity.
Collapse
Affiliation(s)
| | | | - Adyani Azizah Abd Halim
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Siti Amalina Inche Zainal Abidin
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Wilayah Persekutuan Kuala Lumpur, Malaysia; Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, Universiti Malaya, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Li M, Ding Y, Tuersong T, Chen L, Zhang ML, Li T, Feng SM, Guo Q. Let-7 family regulates HaCaT cell proliferation and apoptosis via the ΔNp63/PI3K/AKT pathway. Open Med (Wars) 2024; 19:20240925. [PMID: 38584846 PMCID: PMC10997002 DOI: 10.1515/med-2024-0925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 04/09/2024] Open
Abstract
We evaluated the expression profiles of differentially expressed miRNAs (DEmiRNAs) involved in human fetal skin development via high-throughput sequencing to explore the expression difference and the regulatory role of miRNA in different stages of fetal skin development. Analysis of expression profiles of miRNAs involved collecting embryo samples via high-throughput sequencing, then bioinformatics analyses were performed to validate DEmiRNAs. A total of 363 miRNAs were differentially expressed during the early and mid-pregnancy of development, and upregulated DEmiRNAs were mainly concentrated in the let-7 family. The transfection of let-7b-5p slowed down HaCaT cell proliferation and promoted apoptosis, as evidenced by the cell counting kit-8 assay, quantitative real-time polymerase chain reaction, and flow cytometry. The double luciferin reporter assay also confirmed let-7b-5p and ΔNp63 downregulation through the combination with the 3'-untranslated region of ΔNp63. Moreover, treatment with a let-7b-5p inhibitor upregulated ΔNp63 and activated the phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway. The let-7b-5p caused a converse effect on HaCaT cells because of Np63 upregulation. Let-7b-5p regulates skin development by targeting ΔNp63 via PI3K-AKT signaling, contributing to future studies on skin development and clinical scar-free healing.
Collapse
Affiliation(s)
- Min Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
- Department of Human Anatomy, School of Basic Medical Sciences, Xinjiang Second Medical College, Karamay, 834000, Xinjiang, China
| | - Yi Ding
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Tayier Tuersong
- Department of Pharmacy, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Long Chen
- Functional Center, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Mei-Lin Zhang
- Xinjiang Urumqi City Center Blood Station, Urumqi, 830000, Xinjiang, China
| | - Tian Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Shu-Mei Feng
- Key Laboratory of Xinjiang Uygur Autonomous Region, Laboratory of Molecular Biology of Endemic Diseases, Urumqi, 830000, Xinjiang, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, No. 567 Suntech North Road, Shuimogou District, Urumqi, 830000, Xinjiang, China
| | - Qiong Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, No. 567 Suntech North Road, Shuimogou District, Urumqi, 830000, Xinjiang, China
| |
Collapse
|
4
|
Carlos ACAM, Lemos JVM, Borges MMF, Albuquerque MCP, Sousa FB, Alves APNN, Dantas TS, Silva PGDB. Interleukin-17 plays a role in dental pulp inflammation mediated by zoledronic acid: a mechanism unrelated to the Th17 immune response? J Appl Oral Sci 2023; 31:e20230230. [PMID: 37820184 PMCID: PMC10567106 DOI: 10.1590/1678-7757-2023-0230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 10/13/2023] Open
Abstract
OBJECTIVE To evaluate the influence of RORγT inhibition by digoxin on inflammatory changes related to interleukin-17 (IL-17) in the pulp of rats treated with zoledronate (ZOL). METHODOLOGY Forty male Wistar rats were divided into a negative control group (NCG) treated with saline solution, a positive control group (PCG) treated with ZOL (0.20 mg/kg), and three groups treated with ZOL and co-treated with digoxin 1, 2, or 4 mg/kg (DG1, 2, and 4). After four intravenous administrations of ZOL or saline solution in a 70-day protocol, the right molars were evaluated by histomorphometry (number of blood vessels, blood vessels/µm2, cells/µm2, total blood vessel area, and average blood vessel area) and immunohistochemistry (IL-17, TNF-α, IL-6, and TGF-β). The Kruskal-Wallis/Dunn test was used for statistical analysis. RESULTS PCG showed an increase in total blood vessel area (p=0.008) and average blood vessel area (p=0.014), and digoxin treatment reversed these changes. DG4 showed a reduction in blood vessels/µm2 (p<0.001). In PCG odontoblasts, there was an increase in IL-17 (p=0.002) and TNF-α (p=0.002) immunostaining, and in DG4, these changes were reversed. Odontoblasts in the digoxin-treated groups also showed an increase in IL-6 immunostaining (p<0.001) and a reduction in TGF-β immunostaining (p=0.002), and all ZOL-treated groups showed an increase in IL-17 (p=0.011) and TNF-α (p=0.017) in non-odontoblasts cells. CONCLUSION ZOL induces TNF-α- and IL-17-dependent vasodilation and ectasia, and the classical Th17 response activation pathway does not seem to participate in this process.
Collapse
Affiliation(s)
| | - José Vitor Mota Lemos
- Universidade Federal do Ceará, Departmento de Patologia Oral, Fortaleza, Ceará, Brasil
| | | | | | - Fabrício Bitu Sousa
- Universidade Federal do Ceará, Departmento de Patologia Oral, Fortaleza, Ceará, Brasil
- Centro Universitário Christus, Departamento de Patologia, Fortaleza, Ceará, Brasil
| | | | - Thinali Sousa Dantas
- Centro Universitário Christus, Departamento de Patologia, Fortaleza, Ceará, Brasil
| | - Paulo Goberlânio de Barros Silva
- Universidade Federal do Ceará, Departmento de Patologia Oral, Fortaleza, Ceará, Brasil
- Centro Universitário Christus, Departamento de Patologia, Fortaleza, Ceará, Brasil
| |
Collapse
|
5
|
Jambon-Barbara C, Bernardeau C, Bezin J, Roustit M, Blaise S, Cracowski JL, Khouri C. Use of Bisphosphonates and the Risk of Skin Ulcer: A National Cohort Study Using Data from the French Health Care Claims Database. Drug Saf 2023; 46:905-916. [PMID: 37531074 DOI: 10.1007/s40264-023-01336-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 08/03/2023]
Abstract
INTRODUCTION Previous pre-clinical and pharmacovigilance disproportionality analyses highlighted a safety signal of cutaneous ulcer with bisphosphonate use. Therefore, our objective is to evaluate this risk and assess whether unmeasured confounding factors could explain this association. METHODS This study is a population-based cohort study from a representative sample (1/97th) of the French health insurance claims database: Echantillon Généraliste des Bénéficiaires (EGB) from 2006 to 2019. To limit the impact of our study design and methodological choices on any association between skin ulceration and exposure to bisphosphonates, we used several methods: a Cox proportional hazards analysis and a prior event rate ratio (PERR) analysis, using two propensity matched control groups, and either the first episode of incident ulceration or multiple event-time outcomes. RESULTS There were 7402 individuals newly exposed to bisphosphonates matched to 29,605 unexposed individuals on propensity score. The primary outcome was skin ulcer occurrence assessed by at least 2 deliveries of wound dressing during the period of one month. Among 6911 individuals newly exposed to bisphosphonates and 28,072 unexposed individuals with no previous skin ulcer, the Cox regression yielded a hazard ratio (HR) of 1.40 (95% CI 1.26-1.56) for newly exposed individuals. Among 7402 exposed and 29,605 unexposed individuals, the PERR analysis found a non-significant HR of 1.03 (95% CI 0.87-1.24). Results were similar on the different sensitivity analyses. CONCLUSION No association between bisphosphonate and skin ulcers was found in the French population. The association observed in previous pharmacovigilance studies and in the Cox regression analysis is likely due to unmeasured confounding factors.
Collapse
Affiliation(s)
- Clément Jambon-Barbara
- Pharmacovigilance Department, Grenoble Alpes University Hospital, 38043, Grenoble, France
| | - Claire Bernardeau
- Pharmacovigilance Department, Grenoble Alpes University Hospital, 38043, Grenoble, France
| | - Julien Bezin
- University Bordeaux, INSERM, BPH, Team AHeaD, U1219, 33000, Bordeaux, France
- Clinical Pharmacology Unit, CHU de Bordeaux, 33000, Bordeaux, France
| | - Matthieu Roustit
- University Grenoble Alpes, Inserm U1300, HP2, 38000, Grenoble, France
- University Grenoble Alpes, Inserm CIC1406, Grenoble Alpes University Hospital, 38000, Grenoble, France
| | - Sophie Blaise
- University Grenoble Alpes, Inserm U1300, HP2, 38000, Grenoble, France
- Department of Vascular Medicine, Grenoble Alpes University Hospital, University Grenoble Alpes, 38000, Grenoble, France
| | - Jean-Luc Cracowski
- Pharmacovigilance Department, Grenoble Alpes University Hospital, 38043, Grenoble, France
- University Grenoble Alpes, Inserm U1300, HP2, 38000, Grenoble, France
| | - Charles Khouri
- Pharmacovigilance Department, Grenoble Alpes University Hospital, 38043, Grenoble, France.
- University Grenoble Alpes, Inserm U1300, HP2, 38000, Grenoble, France.
- University Grenoble Alpes, Inserm CIC1406, Grenoble Alpes University Hospital, 38000, Grenoble, France.
- Centre Regional de Pharmacovigilance, CHU Grenoble Alpes, CS 10217, 38043, Grenoble Cedex 9, France.
| |
Collapse
|
6
|
Guirguis RH, Tan LP, Hicks RM, Hasan A, Duong TD, Hu X, Hng JYS, Hadi MH, Owuama HC, Matthyssen T, McCullough M, Canfora F, Paolini R, Celentano A. In Vitro Cytotoxicity of Antiresorptive and Antiangiogenic Compounds on Oral Tissues Contributing to MRONJ: Systematic Review. Biomolecules 2023; 13:973. [PMID: 37371553 DOI: 10.3390/biom13060973] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Invasive dental treatment in patients exposed to antiresorptive and antiangiogenic drugs can cause medication-related osteonecrosis of the jaw (MRONJ). Currently, the exact pathogenesis of this disease is unclear. METHODS In March 2022, Medline (Ovid), Embase (Ovid), Scopus, and Web of Science were screened to identify eligible in vitro studies investigating the effects of antiresorptive and antiangiogenic compounds on orally derived cells. RESULTS Fifty-nine articles met the inclusion criteria. Bisphosphonates were used in 57 studies, denosumab in two, and sunitinib and bevacizumab in one. Zoledronate was the most commonly used nitrogen-containing bisphosphonate. The only non-nitrogen-containing bisphosphonate studied was clodronate. The most frequently tested tissues were gingival fibroblasts, oral keratinocytes, and alveolar osteoblasts. These drugs caused a decrease in cell proliferation, viability, and migration. CONCLUSIONS Antiresorptive and antiangiogenic drugs displayed cytotoxic effects in a dose and time-dependent manner. Additional research is required to further elucidate the pathways of MRONJ.
Collapse
Affiliation(s)
- Robert H Guirguis
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Leonard P Tan
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Rebecca M Hicks
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Aniqa Hasan
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Tina D Duong
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Xia Hu
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Jordan Y S Hng
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Mohammad H Hadi
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Henry C Owuama
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Tamara Matthyssen
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Michael McCullough
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Federica Canfora
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy
| | - Rita Paolini
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Antonio Celentano
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| |
Collapse
|
7
|
Samadian E, Colagar AH, Safarzad M, Asadi J, Mansouri K. Inhibitory potency of the nettle lectin on neovascularization: a biomolecule for carbohydrate-mediated targeting of angiogenesis. Mol Biol Rep 2023; 50:4491-4503. [PMID: 37024746 DOI: 10.1007/s11033-023-08355-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/22/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND Current angiogenesis inhibitors target cellular vascularization processes, including proliferation, migration, and tube formation. In this study, we investigated the impact of Urtica dioica agglutinin (UDA) on the cellular vascularization process. METHODS AND RESULTS Various concentrations of UDA were applied to normal (HUVEC, MCF-10 A, and HDF from humans, and L-929 from mice) and cancer (A431 and U87 from humans, and 4T1 from mice) cell lines at different times. The MTT, cell migration assay, differentiation of endothelial cells, expression of VEGF-A/VEGF-R2, and integrin α2 were evaluated. The MTT results demonstrated that UDA was non-toxic to normal cells while inhibiting the growth of neoplastic cells. The migratory capacity of HUVECs and U87 glioblastoma cells was inhibited by UDA in the wound repair model. This lectin inhibited HUVEC-induced vessel sprouting in the collagen-cytodex matrix. In addition, UDA treatment reduced VEGF-integrin cross-talk in HUVECs, confirming the anti-angiogenic activity of this molecule. CONCLUSIONS Based on our findings, UDA may have an effect on cancer cell proliferation and vascularization events while causing minimal toxicity to normal cells via binding glyco-conjugates containing GlcNAc/man oligomers like EGFR. This is a blue clue for the angiogenesis-related therapeutic importance of UDA.
Collapse
Affiliation(s)
- Esmaeil Samadian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Abasalt Hosseinzadeh Colagar
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran.
| | - Mahdieh Safarzad
- Metabolic Disorders Research Center, Golestan University of Medical Science, Gorgan, Iran
| | - Jahanbakhsh Asadi
- Metabolic Disorders Research Center, Golestan University of Medical Science, Gorgan, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
8
|
Hart DA. Are secondary effects of bisphosphonates on the vascular system of bone contributing to increased risk for atypical femoral fractures in osteoporosis? Bioessays 2023; 45:e2200206. [PMID: 36807308 DOI: 10.1002/bies.202200206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/22/2023]
Abstract
Osteoporosis (OP) is a bone disease which affects a number of post-menopausal females and puts many at risk for fractures. A large number of patients are taking bisphosphonates (BPs) to treat their OP and a rare complication is the development of atypical femoral fractures (AFF). No real explanations for the mechanisms underlying the basis for development of where AFF develop while on BPs has emerged. The present hypothesis will discuss the possibility that part of the risk for an AFF is a secondary effect of BPs on a subset of vascular cells in a genetically at-risk population, leading to localized deregulation of the endothelial cell (EC)-bone cell-matrix units in nutrient channels/canals of the femur and increased risk for AFF. This concept of targeting ECs is consistent with location of AFF in the femur, the bilateral risk for occurrence of AFF, and the requirement for long term exposure to the drugs.
Collapse
Affiliation(s)
- David A Hart
- Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Sun H, Li P, Kong Q, Deng F, Yu X. Zoledronic acid affects the process of Porphyromonas gingivalis infecting oral mucosal epithelial barrier: An in-vivo and in-vitro study. Front Cell Infect Microbiol 2023; 13:1104826. [PMID: 37056703 PMCID: PMC10086244 DOI: 10.3389/fcimb.2023.1104826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Zoledronic acid (ZA), one of the commonly used bisphosphonates, is mainly used for bone-metabolic diseases. Studies proved that ZA has adverse effects on oral soft tissues. As the first line of innate immunity, the gingival epithelium could be infected by periodontal pathogens, which is a key process of the initiation of periodontal diseases. Yet, how ZA affects the periodontal pathogens infecting the epithelial barrier remains unclear. This study aimed to investigate the influences of ZA on the process of Porphyromonas gingivalis (P. gingivalis) infecting the gingival epithelial barrier via in-vitro and in-vivo experiments. In the in-vitro experiments, under the condition of different concentrations of ZA (0, 1, 10, and 100 μM), P. gingivalis was used to infect human gingival epithelial cells (HGECs). The infections were detected by transmission electron microscope and confocal laser scanning microscope. Besides, the internalization assay was applied to quantify the P. gingivalis, which infected the HGECs, in the different groups. To evaluate the expression levels of pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, and IL-8, by infected HGECs, real-time quantitative reverse transcription-polymerase chain reactions were applied. In the in-vivo experiments, rats were given ZA solution (ZA group) or saline (control group) by tail intravenous injection for 8 weeks. Subsequently, we put ligatures around the maxillary second molars of all the rats and inoculated P. gingivalis to the gingiva every other day from day 1 to day 13. The rats were sacrificed on days 3, 7, and 14 for micro-CT and histological analyses. The in-vitro results manifested that the quantity of P. gingivalis that had infected HGECs increased with the ZA concentrations. Pro-inflammatory cytokines expression by HGECs were significantly increased by 100 μM ZA. In the in-vivo study, compared to the control group, more P. gingivalis was detected in the superficial layer of gingival epithelium in the ZA group. Besides, ZA significantly increased the expression level of IL-1β on day 14 and IL-6 on days 7 and 14 in gingival tissues. These findings suggest that the oral epithelial tissues of patients who receive high-dose ZA treatment may be more susceptible to periodontal infections, resulting in severe inflammatory conditions.
Collapse
Affiliation(s)
- Hanyu Sun
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Pugeng Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Qingci Kong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Xiaolin Yu, ; Feilong Deng,
| | - Xiaolin Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Xiaolin Yu, ; Feilong Deng,
| |
Collapse
|
10
|
Srivichit B, Thonusin C, Chattipakorn N, Chattipakorn SC. Impacts of bisphosphonates on the bone and its surrounding tissues: mechanistic insights into medication-related osteonecrosis of the jaw. Arch Toxicol 2022; 96:1227-1255. [PMID: 35199244 DOI: 10.1007/s00204-021-03220-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/23/2021] [Indexed: 01/20/2023]
Abstract
Bisphosphonates are widely used as anti-resorptive agents for the treatment of various bone and joint diseases, including advanced osteoporosis, multiple myeloma, bone metastatic cancers, Paget's disease of bone, and rheumatoid arthritis. Bisphosphonates act as an anti-osteoclast via the induction of osteoclast apoptosis, resulting in a decreased rate of bone resorption. Unfortunately, there is much evidence to demonstrate that the long-term use of bisphosphonates is associated with osteonecrosis. The pathogenesis of osteonecrosis includes the death of osteoblasts, osteoclasts, and osteocytes. In addition, the functions of endothelial cells, epithelial cells, and fibroblasts are impaired in osteonecrosis, leading to disruptive angiogenesis, and delayed wound healing. Osteonecrosis is most commonly found in the jawbone and the term medication-related osteonecrosis of the jaw (MRONJ) has become the condition of greatest clinical concern among patients receiving bisphosphonates. Although surgical treatment is an effective strategy for the treatment of MRONJ, several non-surgical interventions for the attenuation of MRONJ have also been investigated. With the aim of increasing understanding around MRONJ, we set out to summarize and discuss the holistic effects of bisphosphonates on the bone and its surrounding tissues. In addition, non-surgical interventions for the attenuation of bisphosphonate-induced osteonecrosis were reviewed and discussed.
Collapse
Affiliation(s)
- Bhumrapee Srivichit
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Chanisa Thonusin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand. .,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
11
|
Bullock G, Miller CA, McKechnie A, Hearnden V. A Review Into the Effects of Pamidronic Acid and Zoledronic Acid on the Oral Mucosa in Medication-Related Osteonecrosis of the Jaw. FRONTIERS IN ORAL HEALTH 2022; 2:822411. [PMID: 35224540 PMCID: PMC8865370 DOI: 10.3389/froh.2021.822411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/17/2021] [Indexed: 01/02/2023] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a growing problem without an effective treatment, presenting as necrotic bone sections exposed via lesions in the overlying soft tissue. There is currently a lack of clarity on how the factors involved in MRONJ development and progression contribute to disease prognosis and outcomes. Bisphosphonates (BPs), the most common cause of MRONJ, affect bone remodeling, angiogenesis, infection, inflammation and soft tissue toxicity, all of which contribute to MRONJ development. This article reviews the cellular mechanisms through which BPs contribute to MRONJ pathology, with a focus on the effects on cells of the oral mucosa. BPs have been shown to reduce cell viability, reduce proliferation, and increase apoptosis in oral keratinocytes and fibroblasts. BPs have also been demonstrated to reduce epithelial thickness and prevent epithelial formation in three-dimensional tissue engineered models of the oral mucosa. This combination of factors demonstrates how BPs lead to the reduced wound healing seen in MRONJ and begins to uncover the mechanisms through which these effects occur. The evidence presented here supports identification of targets which can be used to develop novel treatment strategies to promote soft tissue wound healing and restore mucosal coverage of exposed bone in MRONJ.
Collapse
Affiliation(s)
- George Bullock
- Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, United Kingdom
- School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
| | - Cheryl A. Miller
- School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
- *Correspondence: Cheryl A. Miller
| | | | - Vanessa Hearnden
- Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
12
|
Inchingolo F, Hazballa D, Inchingolo AD, Malcangi G, Marinelli G, Mancini A, Maggiore ME, Bordea IR, Scarano A, Farronato M, Tartaglia GM, Lorusso F, Inchingolo AM, Dipalma G. Innovative Concepts and Recent Breakthrough for Engineered Graft and Constructs for Bone Regeneration: A Literature Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1120. [PMID: 35161065 PMCID: PMC8839672 DOI: 10.3390/ma15031120] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND For decades, regenerative medicine and dentistry have been improved with new therapies and innovative clinical protocols. The aim of the present investigation was to evaluate through a critical review the recent innovations in the field of bone regeneration with a focus on the healing potentials and clinical protocols of bone substitutes combined with engineered constructs, growth factors and photobiomodulation applications. METHODS A Boolean systematic search was conducted by PubMed/Medline, PubMed/Central, Web of Science and Google scholar databases according to the PRISMA guidelines. RESULTS After the initial screening, a total of 304 papers were considered eligible for the qualitative synthesis. The articles included were categorized according to the main topics: alloplastic bone substitutes, autologous teeth derived substitutes, xenografts, platelet-derived concentrates, laser therapy, microbiota and bone metabolism and mesenchymal cells construct. CONCLUSIONS The effectiveness of the present investigation showed that the use of biocompatible and bio-resorbable bone substitutes are related to the high-predictability of the bone regeneration protocols, while the oral microbiota and systemic health of the patient produce a clinical advantage for the long-term success of the regeneration procedures and implant-supported restorations. The use of growth factors is able to reduce the co-morbidity of the regenerative procedure ameliorating the post-operative healing phase. The LLLT is an adjuvant protocol to improve the soft and hard tissues response for bone regeneration treatment protocols.
Collapse
Affiliation(s)
- Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Denisa Hazballa
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
- Kongresi Elbasanit, Rruga: Aqif Pasha, 3001 Elbasan, Albania
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Grazia Marinelli
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Maria Elena Maggiore
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Marco Farronato
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy; (M.F.); (G.M.T.)
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy; (M.F.); (G.M.T.)
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| |
Collapse
|
13
|
Gan D, Cheng W, Ke L, Sun AR, Jia Q, Chen J, Xu Z, Xu J, Zhang P. Biphasic Effect of Pirfenidone on Angiogenesis. Front Pharmacol 2022; 12:804327. [PMID: 35069215 PMCID: PMC8766764 DOI: 10.3389/fphar.2021.804327] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022] Open
Abstract
Pirfenidone (PFD), a synthetic arsenic compound, has been found to inhibit angiogenesis at high concentrations. However, the biphasic effects of different PFD concentrations on angiogenesis have not yet been elucidated, and the present study used an in vitro model to explore the mechanisms underlying this biphasic response. The effect of PFD on the initial angiogenesis of vascular endothelial cells was investigated through a Matrigel tube formation assay, and the impact of PFD on endothelial cell migration was evaluated through scratch and transwell migration experiments. Moreover, the expression of key migration cytokines, matrix metalloproteinase (MMP)-2 and MMP-9, was examined. Finally, the biphasic mechanism of PFD on angiogenesis was explored through cell signaling and apoptosis analyses. The results showed that 10–100 μM PFD has a significant and dose-dependent inhibitory effect on tube formation and migration, while 10 nM–1 μM PFD significantly promoted tube formation and migration, with 100 nM PFD having the strongest effect. Additionally, we found that a high concentration of PFD could significantly inhibit MMP-2 and MMP-9 expression, while low concentrations of PFD significantly promoted their expression. Finally, we found that high concentrations of PFD inhibited EA.hy926 cell tube formation by promoting apoptosis, while low concentrations of PFD promoted tube formation by increasing MMP-2 and MMP-9 protein expression predominantly via the EGFR/p-p38 pathway. Overall, PFD elicits a biphasic effect on angiogenesis through different mechanisms, could be used as a new potential drug for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Donghao Gan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,School of Medicine, The Southern University of Science and Technology, Shenzhen, China
| | - Wenxiang Cheng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liqing Ke
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Antonia RuJia Sun
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qingyun Jia
- Second Ward of Trauma Surgery Department, Linyi People's Hospital, Linyi, China
| | - Jianhai Chen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhanwang Xu
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Juan Xu
- Department of Stomatology, SijingHospital, Shanghai, China
| | - Peng Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Engineering Research Center for Medical Bioactive Materials, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Medication-Related Osteonecrosis of the Jaws Initiated by Zoledronic Acid and Potential Pathophysiology. Dent J (Basel) 2021; 9:dj9080085. [PMID: 34435997 PMCID: PMC8392270 DOI: 10.3390/dj9080085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022] Open
Abstract
The aim of this systematic review is to present an up-to-date review of available publications investigating the cellular mechanisms initiating the development of medication-related osteonecrosis of the jaw caused by zoledronic acid. Electronic searches of MEDLINE/PubMed and Scopus were conducted on the 3 June 2019. A total of 804 publications were identified, of which 11 met the inclusion criteria and were, therefore, included in this study. All the included studies were in vitro studies investigating various human cells. The current review found that zoledronic acid in various concentrations increased apoptosis and decreased migration and proliferation of epithelial cells, fibroblasts, osteoblasts, endothelial cells and dental pulp stem cells, which can affect local tissue homeostasis. The consequences of zoledronic acid were found to be both time- and dose-dependent. The pathophysiology of medication-related osteonecrosis of the jaw is likely a multifactorial process involving prolonged wound healing, chronic inflammation and altered bone remodelling following the administration of zoledronic acid. Further research is needed to identify the exact pathophysiology to optimise management and treatment.
Collapse
|
15
|
Pan J, Liu JY. Mechanism, prevention, and treatment for medication-related osteonecrosis of the jaws. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:245-254. [PMID: 34041871 DOI: 10.7518/hxkq.2021.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The morbidity rate of medication-related osteonecrosis of the jaws (MRONJ) increased rapidly in recent years. Thusfar, the mechanism of MRONJ has no consensus. The possible mechanisms may include bone remodeling inhibition theory, angiogenesis inhibition theory, oral microorganism infection theory, immunosuppression theory, cytotoxicity-targeted oral epithelial cells, microcrack formation of maxillary or mandibular bone, and single nucleotide polymorphism. However, the efficacy of prevention and treatment based on a single mechanism is not ideal. Routine oral examination before MRONJ-related drug treatment, treatment of related dental diseases, and regular oral follow-up during drug treatment are of great significance for the prevention of MRONJ. During the treatment of MRONJ, the stage of MRONJ must be determined accurately, treatment must be standardized in accordance with the guidelines, and personalized adjustments must be made considering the specific conditions of patients. This review aimed to combine the latest research and guidelines for MRONJ and the experiences on the treatment of MRONJ in the Maxillofacial Surgery Department of West China Hospital of Stomatology, Sichuan University, and discuss the strategies to improve the clinical process.
Collapse
Affiliation(s)
- Jian Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ji-Yuan Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Yu Y, Liang C, Xu R, Wang T, Deng F, Yu X. Titanium implant alters the effect of zoledronic acid on the behaviour of endothelial cells. Oral Dis 2021; 28:1968-1978. [PMID: 33908127 DOI: 10.1111/odi.13890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/03/2021] [Accepted: 04/16/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To evaluate the effect of zoledronic acid (ZA) on human umbilical vein endothelial cells (HUVECs) attached to different surfaces. MATERIALS AND METHODS A total of three groups were evaluated in this study: sandblasting and acid etching (SLA) + HUVECs; mechanically polished (MP) + HUVECs; and plastic cell culture plates + HUVECs. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, surface roughness and water contact angle were tested for titanium surface characterisation. ZA was added at different concentrations (0, 1, 10, 50 and 100 μM). Cell adhesion, proliferation, viability, apoptosis and gene expression were evaluated. RESULTS Mechanically polished and SLA surfaces showed negative effects on cell adhesion and proliferation and promoted cell apoptosis with 100 μM ZA (p < .05). The highest expression of intercellular adhesion molecule-1 (ICAM-1) and angiopoietin-1 was found on SLA surfaces (p < .01). The lowest expression of platelet-endothelial cell adhesion molecule-1 and ICAM-1 was found on MP surfaces (p < .05). A significant decrease in von Willebrand factor was detected on MP and SLA surfaces (p < .001). CONCLUSIONS Zoledronic acid has an anti-angiogenic effect on HUVECs attached to titanium implants, while the SLA surface might stimulate HUVECs to express angiogenic and adhesive factor genes despite ZA treatment.
Collapse
Affiliation(s)
- Yi Yu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Chaoan Liang
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Ruogu Xu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Tianlu Wang
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Feilong Deng
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Xiaolin Yu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
17
|
Wang QZ, Zhao ZL, Liu C, Zheng JW. Exosome-derived miR-196b-5p facilitates intercellular interaction in infantile hemangioma via down-regulating CDKN1B. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:394. [PMID: 33842615 PMCID: PMC8033367 DOI: 10.21037/atm-20-6456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Though infantile hemangioma (IH) is a common benign vascular tumor, its pathogenesis remains unclear. This study explored the function of hemangioma-derived stem cells (HemSCs) derived exosomes, which exerted an intercellular effect on hemangioma-derived endothelial cells (HemECs). Methods First, HemSCs and HemECs were extracted and cultured. HemSCs derived exosomes (HemSCs-exos) were harvested. miRNA sequencing and target prediction were used to explore differentially expressed miRNAs and potential binding targets. After HemECs were co-cultured with HemSCs-exos, a series of in vitro assays were then performed including cell counting kit-8 (CCK-8) assay, cell apoptosis assay, cell cycle assay and tube formation assay to evaluate proliferation, angiogenesis abilities, etc. qRT-PCR and Western blot were conducted to detect the expression level of target genes and proteins. Results After co-culturing with HemSCs-exos, proliferation, and angiogenesis abilities of HemECs were enhanced, while apoptosis and cell cycle arrest rate were decreased. MiR-196b-5p was observed to be significantly highly expressed in HemSCs-exos. CDKN1B was identified as the binding target of miR-196b-5p. HemECs' proliferation and angiogenesis abilities were elevated when co-cultured with exosomes from HemSCs transfected with miR-196b-5p mimic. In addition, apoptosis rate declined, and lower cells were arrested in G0/G1 phases. Cyclin E, bcl-2 were significantly highly expressed, whereas p27, Bax expression were significantly down-regulated. The positive effect of miR-196b-5p in HemSCs-exos was dramatically reversed when HemECs were transfected with oe-CDKN1B. Conclusions The current study found a novel intercellular interaction between IH cells. Briefly, exosome-derived miRNA-196b-5p in HemSCs could facilitate proliferation and angiogenesis abilities, and attenuate apoptosis and cell cycle repression rate of HemECs by directly binding with CDKN1B.
Collapse
Affiliation(s)
- Qi-Zhang Wang
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ze-Liang Zhao
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Liu
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-Wei Zheng
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Zhang W, Gao L, Ren W, Li S, Zheng J, Li S, Jiang C, Yang S, Zhi K. The Role of the Immune Response in the Development of Medication-Related Osteonecrosis of the Jaw. Front Immunol 2021; 12:606043. [PMID: 33717086 PMCID: PMC7947359 DOI: 10.3389/fimmu.2021.606043] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/03/2021] [Indexed: 12/22/2022] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a rare but serious adverse drug effect. There are multiple hypotheses to explain the development of MRONJ. Reduced bone remodeling and infection or inflammation are considered central to the pathogenesis of MRONJ. In recent years, increasing evidence has shown that bisphosphonates (BPs)-mediated immunity dysfunction is associated with the pathophysiology of MRONJ. In a healthy state, mucosal immunity provides the first line of protection against pathogens and oral mucosal immune cells defense against potentially invading pathogens by mediating the generation of protective immunoinflammatory responses. In addition, the immune system takes part in the process of bone remodeling and tissue repair. However, the treatment of BPs disturbs the mucosal and osteo immune homeostasis and thus impairs the body's ability to resist infection and repair from injury, thereby adding to the development of MRONJ. Here, we present the current knowledge about immunity dysfunction to shed light on the role of local immune disorder in the development of MRONJ.
Collapse
Affiliation(s)
- Weidong Zhang
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China
| | - Ling Gao
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Key Laboratory of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingjing Zheng
- Key Laboratory of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Endodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shasha Li
- Department of Stomatology, Binzhou People'Hospital, Binzhou, China
| | - Chunmiao Jiang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuying Yang
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Keqian Zhi
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Key Laboratory of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
19
|
Kambara Y, Kobayashi E, Katsuragi H, Tanaka A. Effects of Zoledronic Acid on Human Gingival Fibroblasts and Human Umbilical Vein Endothelial Cells. J HARD TISSUE BIOL 2021. [DOI: 10.2485/jhtb.30.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yumi Kambara
- Department of Oral and Maxillofacial Surgery, The Nippon Dental University Graduate School of Life Dentistry at Niigata
| | - Eizaburo Kobayashi
- Department of Oral and Maxillofacial Surgery, The Nippon Dental University Graduate School of Life Dentistry at Niigata
| | - Hiroaki Katsuragi
- Department of Microbiology, The Nippon Dental University Graduate School of Life Dentistry at Niigata
| | - Akira Tanaka
- Department of Oral and Maxillofacial Surgery, The Nippon Dental University Graduate School of Life Dentistry at Niigata
- Division of Cell Regeneration and Transplantation, Advanced Research Center School of Life Dentistry at Niigata
| |
Collapse
|
20
|
You M, Xia X, Li H, Wu J, Rong R, Zeng Z, Xiong K, Huang J, Tang L, Lei H, Wu W, Ji D. Normal vitreous promotes angiogenesi via the epidermal growth factor receptor. FASEB J 2020; 34:14799-14809. [PMID: 32910506 DOI: 10.1096/fj.201902862rrr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 08/16/2020] [Accepted: 08/23/2020] [Indexed: 11/11/2022]
Abstract
Vitreous, a transparent tissue in our body, contains anti-angiogenesis factors. Our previous work reported that vitreous activates the signaling pathway of epidermal growth factor receptor (EGFR), which plays a critical role in angiogenesis. The aim of this study was to determine the role of EGFR in vitreous-induced angiogenesis-related cellular responses in vitro. Using a pharmacologic and molecular approach, we found that vitreous increased proliferation and migration via EGFR in human umbilical vein endothelial cells (HUVECs). Furthermore, we demonstrated that vitreous promoted tube formation via EGFR in HUVECs. Subsequently, depletion of EGFR using CRISPR/Cas9 and blockage with EGFR inhibitor AG1478 suppressed vitreous-induced Akt activation and cell proliferation, migration, and tube formation in HUVECs. The significance of the angiogenic effect derived from vitreous demonstrates the importance of vitreous in the ocular physiology and the pathobiology of angiogenesis-related ophthalmic diseases, such as proliferative diabetic retinopathy.
Collapse
Affiliation(s)
- Mengling You
- Departments of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, P.R. China
| | - Xiaobo Xia
- Departments of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, P.R. China
| | - Haibo Li
- Departments of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, P.R. China
| | - Jiayu Wu
- School of Life Sciences, Central South University, Changsha, P.R. China
| | - Rong Rong
- Departments of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, P.R. China
| | - Zhou Zeng
- Departments of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, P.R. China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, P.R. China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, P.R. China
| | - Luosheng Tang
- Departments of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Hetian Lei
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Shenzhen, P.R. China
| | - Wenyi Wu
- Departments of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, P.R. China
| | - Dan Ji
- Departments of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, P.R. China
| |
Collapse
|