1
|
Mangalore S, Pradeep GVN, Murthy VKS, Bairwa P, Kumar P, Saini J, Prasad C, Sadashiva N, Beniwal M, Santosh V. Prospective Study to Evaluate the Role of Dual Point Contrast-enhanced Magnetic Resonance Imaging in Differentiation of Brain Tumoral from Nontumoral Tissue: A Magnetic Resonance/PET Study. Indian J Nucl Med 2024; 39:87-97. [PMID: 38989312 PMCID: PMC11232725 DOI: 10.4103/ijnm.ijnm_103_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 07/12/2024] Open
Abstract
Background and Purpose Follow-up imaging of gliomas is crucial to look for residual or recurrence and to differentiate them from nontumoral tissue. Positron emission tomography (PET)-magnetic resonance imaging (MRI) is the problem-solving tool in such cases. We investigated the role of dual point contrast (DPC)-enhanced MRI to discriminate tumoral from the nontumoral tissue compared to PET-MRI taken as the gold standard. Materials and Methods The institutional ethics committee approved the study, and consent was obtained from all the patients included in the study. We prospectively did immediate and 75-min delayed contrast MRI in glioma cases who came for follow-up as a part of PET-MRI study in our institute. Subtracted images were obtained using immediate and 75-min delayed contrast images. Color-coded subtracted images were compared with PET-MRI images. 75-min delayed contrast MRI and diffusion-weighted imaging (DWI) images with Gray Scale inversion were compared with PET attenuation-corrected images. Results We included 23 PET MRI cases done with different radiotracers in our study. Overall, we found PET-DPC correlation in (20/20 ~ 100%) cases of enhancing tumors. In two cases (DOPA and fluorodeoxyglucose), since they were nonenhancing low-grade gliomas and the other one was melanoma with intrinsic T1 hyperintensity and the DPC technique could not be used. DWI-PET correlated in 17/19 (~89.4%) cases, and perfusion-weighted imaging (PWI)-PET dynamic susceptibility contrast (DSC)/ASL correlated in 14/18 (~77.7%) cases after cases with hemorrhage were excluded. Conclusion DPC MRI showed a good correlation with PET MRI in discriminating tumoral from the nontumoral tissue. DPC MRI can act as a potential alternative to PET MRI in peripheral hospitals where PET is not available. However, the DPC technique is limited in low-grade nonenhancing gliomas.
Collapse
Affiliation(s)
- Sandhya Mangalore
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Guddanti Venkata Naga Pradeep
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Venkatesh K. S. Murthy
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Pawan Bairwa
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Pardeep Kumar
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Chandrajit Prasad
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Nishanth Sadashiva
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Manish Beniwal
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Vani Santosh
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| |
Collapse
|
2
|
Henderson F, Brem S, Hussain J, Buch L, Maloney E, Singhal S, Lee JYK. Second window indocyanine green localizes CNS lymphoma in real time in the operating room: report of two cases. Br J Neurosurg 2023; 37:619-623. [PMID: 32009484 PMCID: PMC10997215 DOI: 10.1080/02688697.2020.1716945] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 10/25/2022]
Abstract
Intraoperative distinction of lesional tissue versus normal brain parenchyma can be difficult in neurosurgical oncology procedures. We report the successful, real-time visualization of central nervous system (CNS) lymphoma using the 'Second Window Indocyanine Green' (SWIG) method for two patients who underwent craniotomy for pathology that was determined to be large B cell lymphoma. Indocyanine green (ICG), when administered intravenously the day prior to cranial surgery, is a re-purposed fluorophore that may afford safe, immediate visual confirmation of on-target tissue resection, thereby providing a valuable adjunct to intraoperative navigation and decreasing reliance on frozen pathology analysis. These first reported cases of SWIG for lymphoma in the CNS indicate that further study of fluorophores to improve biopsy targeting and yield is warranted.
Collapse
Affiliation(s)
- Fraser Henderson
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Steven Brem
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jasmin Hussain
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Love Buch
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Eileen Maloney
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Sunil Singhal
- Division of Thoracic Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - John Y K Lee
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Poltojainen V, Kemppainen J, Keinänen N, Bode M, Isokangas JM, Kuitunen H, Nikkinen J, Sonkajärvi E, Korhonen V, Tuovinen T, Järvelä M, Huotari N, Raitamaa L, Kananen J, Korhonen T, Tetri S, Kuittinen O, Kiviniemi V. Physiological instability is linked to mortality in primary central nervous system lymphoma: A case-control fMRI study. Hum Brain Mapp 2022; 43:4030-4044. [PMID: 35543292 PMCID: PMC9374894 DOI: 10.1002/hbm.25901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/07/2022] [Accepted: 04/26/2022] [Indexed: 11/07/2022] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is an aggressive brain disease where lymphocytes invade along perivascular spaces of arteries and veins. The invasion markedly changes (peri)vascular structures but its effect on physiological brain pulsations has not been previously studied. Using physiological magnetic resonance encephalography (MREGBOLD ) scanning, this study aims to quantify the extent to which (peri)vascular PCNSL involvement alters the stability of physiological brain pulsations mediated by cerebral vasculature. Clinical implications and relevance were explored. In this study, 21 PCNSL patients (median 67y; 38% females) and 30 healthy age-matched controls (median 63y; 73% females) were scanned for MREGBOLD signal during 2018-2021. Motion effects were removed. Voxel-by-voxel Coefficient of Variation (CV) maps of MREGBOLD signal was calculated to examine the stability of physiological brain pulsations. Group-level differences in CV were examined using nonparametric covariate-adjusted tests. Subject-level CV alterations were examined against control population Z-score maps wherein clusters of increased CV values were detected. Spatial distributions of clusters and findings from routine clinical neuroimaging were compared [contrast-enhanced, diffusion-weighted, fluid-attenuated inversion recovery (FLAIR) data]. Whole-brain mean CV was linked to short-term mortality with 100% sensitivity and 100% specificity, as all deceased patients revealed higher values (n = 5, median 0.055) than surviving patients (n = 16, median 0.028) (p < .0001). After adjusting for medication, head motion, and age, patients revealed higher CV values (group median 0.035) than healthy controls (group median 0.024) around arterial territories (p ≤ .001). Abnormal clusters (median 1.10 × 105 mm3 ) extended spatially beyond FLAIR lesions (median 0.62 × 105 mm3 ) with differences in volumes (p = .0055).
Collapse
Affiliation(s)
- Valter Poltojainen
- Oulu Functional Neuroimaging, University of Oulu/Oulu University Hospital, Oulu, Finland.,Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Radiology, Oulu University Hospital, Oulu, Finland
| | - Janette Kemppainen
- Oulu Functional Neuroimaging, University of Oulu/Oulu University Hospital, Oulu, Finland.,Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland
| | - Nina Keinänen
- Department of Anaesthesiology, Oulu University Hospital, Oulu, Finland
| | - Michaela Bode
- Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Radiology, Oulu University Hospital, Oulu, Finland
| | | | - Hanne Kuitunen
- Department of Oncology and Haematology, Oulu University Hospital, Oulu, Finland
| | - Juha Nikkinen
- Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Oncology and Radiotherapy, Oulu University Hospital, Oulu, Finland
| | - Eila Sonkajärvi
- Department of Anaesthesiology, Oulu University Hospital, Oulu, Finland
| | - Vesa Korhonen
- Oulu Functional Neuroimaging, University of Oulu/Oulu University Hospital, Oulu, Finland.,Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Radiology, Oulu University Hospital, Oulu, Finland
| | - Timo Tuovinen
- Oulu Functional Neuroimaging, University of Oulu/Oulu University Hospital, Oulu, Finland.,Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Radiology, Oulu University Hospital, Oulu, Finland
| | - Matti Järvelä
- Oulu Functional Neuroimaging, University of Oulu/Oulu University Hospital, Oulu, Finland.,Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Radiology, Oulu University Hospital, Oulu, Finland
| | - Niko Huotari
- Oulu Functional Neuroimaging, University of Oulu/Oulu University Hospital, Oulu, Finland.,Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Radiology, Oulu University Hospital, Oulu, Finland
| | - Lauri Raitamaa
- Oulu Functional Neuroimaging, University of Oulu/Oulu University Hospital, Oulu, Finland.,Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Radiology, Oulu University Hospital, Oulu, Finland
| | - Janne Kananen
- Oulu Functional Neuroimaging, University of Oulu/Oulu University Hospital, Oulu, Finland.,Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Radiology, Oulu University Hospital, Oulu, Finland
| | - Tommi Korhonen
- Medical Research Center, University of Oulu/Oulu University Hospital, Oulu, Finland.,Department of Clinical Neuroscience, University of Oulu, Oulu, Finland
| | - Sami Tetri
- Medical Research Center, University of Oulu/Oulu University Hospital, Oulu, Finland.,Department of Clinical Neuroscience, University of Oulu, Oulu, Finland
| | - Outi Kuittinen
- Department of Oncology and Haematology, Oulu University Hospital, Oulu, Finland.,Cancer Center, Kuopio University Hospital, Kuopio, Finland.,Faculty of Health Medicine, Institute of Clinical Medicine, University of Eastern Finland, Oulu, Finland
| | - Vesa Kiviniemi
- Oulu Functional Neuroimaging, University of Oulu/Oulu University Hospital, Oulu, Finland.,Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Radiology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
4
|
Krebs S, Barasch JG, Young RJ, Grommes C, Schöder H. Positron emission tomography and magnetic resonance imaging in primary central nervous system lymphoma-a narrative review. ANNALS OF LYMPHOMA 2021; 5. [PMID: 34223561 PMCID: PMC8248935 DOI: 10.21037/aol-20-52] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review addresses the challenges of primary central nervous system (CNS) lymphoma diagnosis, assessment of treatment response, and detection of recurrence. Primary CNS lymphoma is a rare form of extra-nodal non-Hodgkin lymphoma that can involve brain, spinal cord, leptomeninges, and eyes. Primary CNS lymphoma lesions are most commonly confined to the white matter or deep cerebral structures such as basal ganglia and deep periventricular regions. Contrast-enhanced magnetic resonance imaging (MRI) is the standard diagnostic modality employed by neuro-oncologists. MRI often shows common morphological features such as a single or multiple uniformly well-enhancing lesions without necrosis but with moderate surrounding edema. Other brain tumors or inflammatory processes can show similar radiological patterns, making differential diagnosis difficult. [18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) has selected utility in cerebral lymphoma, especially in diagnosis. Primary CNS lymphoma can sometimes present with atypical findings on MRI and FDG PET, such as disseminated disease, non-enhancing or ring-like enhancing lesions. The complementary strengths of PET and MRI have led to the development of combined PET-MR systems, which in some cases may improve lesion characterization and detection. By highlighting active developments in this field, including advanced MRI sequences, novel radiotracers, and potential imaging biomarkers, we aim to spur interest in sophisticated imaging approaches.
Collapse
Affiliation(s)
- Simone Krebs
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julia G Barasch
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Robert J Young
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christian Grommes
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Heiko Schöder
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|