1
|
Wen J, Zhong X, Gao C, Yang M, Tang M, Yuan Z, Wang Q, Xu L, Ma Q, Guo X, Fang L. TPP1 Inhibits DNA Damage Response and Chemosensitivity in Esophageal Cancer. Crit Rev Eukaryot Gene Expr 2023; 33:77-91. [PMID: 37606165 DOI: 10.1615/critreveukaryotgeneexpr.2023048720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
TPP1, as one of the telomere-protective protein complex, functions to maintain telomere stability. In this study, we found that TPP1 was significantly upregulated in esophageal cancer (EC). We found that the proliferation and migration ability were significantly inhibited, while the results of flow cytometry assay indicated that the growth was hindered in the G1 phase after TPP1 knockdown. However, the proliferative viability and migratory ability were reversed after TPP1 overexpression in EC cells. Then, we found a significant increase in β-galactosidase positivity following TPP1 knockdown and the opposite following TPP1 overexpression in EC cells. Furthermore, TPP1 knockdown increased DNA damage and upregulated expression of the γ-H2AXS139 in the cell nucleus. Correspondingly, DNA damage was reversed after TPP1 overexpression in EC cells. Similarly, we found that the expression of ATM/ATR pathway proteins were upregulated after TPP1 knockdown, while the expression of the above proteins was downregulated after TPP1 overexpression in EC cells. TPP1 knockdown significantly inhibited the growth of transplanted tumors and upregulated the expression of ATM/ATR pathway proteins in transplanted tissues, whereas TPP1 overexpression significantly promoted their proliferation and downregulated the expression of the above proteins in vivo. Strikingly, we found that TPP1 could reduce the chemosensitivity of EC cells to cisplatin, which may have a potential link to clinical chemoresistance. In conclusion, TPP1 regulates the DNA damage response through the ATM/ATR-p53 signaling pathway and chemoresistance and may be a new target for improving the efficacy of chemotherapy in the treatment of EC.
Collapse
Affiliation(s)
- Jilin Wen
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong 637000, China
| | - Xiaowu Zhong
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China; Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China; Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Chuanli Gao
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong 637000, China
| | - Miyuan Yang
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong 637000, China
| | - Maoju Tang
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong 637000, China
| | - Zichun Yuan
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China; Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Qin Wang
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong 637000, China
| | - Lei Xu
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Qiang Ma
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China; Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China; Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xiaolan Guo
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China; Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China; Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Li Fang
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong 637000, China; Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| |
Collapse
|
2
|
Rae S, Spillane C, Blackshields G, Madden SF, Keenan J, Stordal B. The EMT-activator ZEB1 is unrelated to platinum drug resistance in ovarian cancer but is predictive of survival. Hum Cell 2022; 35:1547-1559. [PMID: 35794446 PMCID: PMC9374625 DOI: 10.1007/s13577-022-00744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022]
Abstract
The IGROVCDDP cisplatin-resistant ovarian cancer cell line is an unusual model, as it is also cross-resistant to paclitaxel. IGROVCDDP, therefore, models the resistance phenotype of serous ovarian cancer patients who have failed frontline platinum/taxane chemotherapy. IGROVCDDP has also undergone epithelial-mesenchymal transition (EMT). We aim to determine if alterations in EMT-related genes are related to or independent from the drug-resistance phenotypes. EMT gene and protein markers, invasion, motility and morphology were investigated in IGROVCDDP and its parent drug-sensitive cell line IGROV-1. ZEB1 was investigated by qPCR, Western blotting and siRNA knockdown. ZEB1 was also investigated in publicly available ovarian cancer gene-expression datasets. IGROVCDDP cells have decreased protein levels of epithelial marker E-cadherin (6.18-fold, p = 1.58e-04) and higher levels of mesenchymal markers vimentin (2.47-fold, p = 4.43e-03), N-cadherin (4.35-fold, p = 4.76e-03) and ZEB1 (3.43-fold, p = 0.04). IGROVCDDP have a spindle-like morphology consistent with EMT. Knockdown of ZEB1 in IGROVCDDP does not lead to cisplatin sensitivity but shows a reversal of EMT-gene signalling and an increase in cell circularity. High ZEB1 gene expression (HR = 1.31, n = 2051, p = 1.31e-05) is a marker of poor overall survival in high-grade serous ovarian-cancer patients. In contrast, ZEB1 is not predictive of overall survival in high-grade serous ovarian-cancer patients known to be treated with platinum chemotherapy. The increased expression of ZEB1 in IGROVCDDP appears to be independent of the drug-resistance phenotypes. ZEB1 has the potential to be used as biomarker of overall prognosis in ovarian-cancer patients but not of platinum/taxane chemoresistance.
Collapse
Affiliation(s)
- Sophie Rae
- Department of Natural Sciences, Middlesex University London, London, UK
| | - Cathy Spillane
- Department of Histopathology, St James' Hospital and Trinity College Dublin, Dublin, Ireland
| | - Gordon Blackshields
- Department of Histopathology, St James' Hospital and Trinity College Dublin, Dublin, Ireland
| | - Stephen F Madden
- Data Science Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Joanne Keenan
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Britta Stordal
- Department of Natural Sciences, Middlesex University London, London, UK.
| |
Collapse
|
3
|
Aleshin VA, Zhou X, Krishnan S, Karlsson A, Bunik VI. Interplay Between Thiamine and p53/p21 Axes Affects Antiproliferative Action of Cisplatin in Lung Adenocarcinoma Cells by Changing Metabolism of 2-Oxoglutarate/Glutamate. Front Genet 2021; 12:658446. [PMID: 33868388 PMCID: PMC8047112 DOI: 10.3389/fgene.2021.658446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Thiamine (vitamin B1) is often deficient in oncopatients, particularly those undergoing chemotherapy. However, interaction between the thiamine deficiency and anticancer action of drugs has not been characterized. A major natural thiamine derivative, thiamine diphosphate (ThDP), is a coenzyme of central metabolism, also known to affect transcriptional activity of the master metabolic regulator and genome guardian p53. A direct transcriptional target of p53, p21, regulates cell cycle dynamics and DNA damage response. Our work focuses on dependence of the action of the DNA damaging anticancer drug cisplatin on metabolic regulation through p53/p21 axes and cellular thiamine status in human lung adenocarcinoma cells A549. These cells are used as a model of a hardly curable cancer, known to develop chemoresistance to platinum drugs, such as cisplatin. Compared to wild type (A549WT), a stable line with a 60% knockdown of p21 (A549p21-) is less sensitive to antiproliferative action of cisplatin. In contrast, in the thiamine-deficient medium, cisplatin impairs the viability of A549p21- cells more than that of A549WT cells. Analysis of the associated metabolic changes in the cells indicates that (i) p21 knockdown restricts the production of 2-oxoglutarate via glutamate oxidation, stimulating that within the tricarboxylic acid (TCA) cycle; (ii) cellular cisplatin sensitivity is associated with a 4-fold upregulation of glutamic-oxaloacetic transaminase (GOT2) by cisplatin; (iii) cellular cisplatin resistance is associated with a 2-fold upregulation of p53 by cisplatin. Correlation analysis of the p53 expression and enzymatic activities upon variations in cellular thiamine/ThDP levels indicates that p21 knockdown substitutes positive correlation of the p53 expression with the activity of 2-oxoglutarate dehydrogenase complex (OGDHC) for that with the activity of glutamate dehydrogenase (GDH). The knockdown also changes correlations of the levels of OGDHC, GDH and GOT2 with those of the malate and isocitrate dehydrogenases. Thus, a p53/p21-dependent change in partitioning of the glutamate conversion to 2-oxoglutarate through GOT2 or GDH, linked to NAD(P)-dependent metabolism of 2-oxoglutarate in affiliated pathways, adapts A549 cells to thiamine deficiency or cisplatin treatment. Cellular thiamine deficiency may interfere with antiproliferative action of cisplatin due to their common modulation of the p53/p21-dependent metabolic switch between the glutamate oxidation and transamination.
Collapse
Affiliation(s)
- Vasily A. Aleshin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Xiaoshan Zhou
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Shuba Krishnan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Anna Karlsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Victoria I. Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Biological Chemistry, Sechenov University, Moscow, Russia
| |
Collapse
|
4
|
Fattahi S, Nikbakhsh N, Taheri H, Ranaee M, Akhavan-Niaki H. RNA Sequencing of Early-Stage Gastric Adenocarcinoma Reveals Multiple Activated Pathways and Novel Long Non-Coding RNAs in Patient Tissue Samples. Rep Biochem Mol Biol 2021; 9:478-489. [PMID: 33969142 PMCID: PMC8068441 DOI: 10.52547/rbmb.9.4.478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 09/24/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Gastric cancer is among the most common cancers worldwide that currently lacks effective diagnostic biomarkers and therapeutic targets. Next-generation RNA sequencing is a powerful tool that allows rapid and accurate transcriptome-wide profiling to detect differentially expressed transcripts involved in normal biological and pathological processes. Given the function of this technique, it has the potential to identify new molecular targets for the early diagnosis of disease, particularly in gastric adenocarcinoma. METHODS In this study, whole-transcriptome analysis was performed with RNA sequencing on tumoral and non-tumoral tissue samples from patients with early-stage gastric cancer. Gene ontology and pathway enrichment analysis were used to determine the main function of the specific genes and pathways present in tissue samples. RESULTS Analysis of the differentially expressed genes revealed 5 upregulated and 234 downregulated genes in gastric cancer tissues. Pathway enrichment analysis revealed significantly dysregulated signalling pathways, including those involved in gastric acid secretion, drug metabolism and transporters, molecular toxicology, O-linked glycosylation of mucins, immunotoxicity, metabolism of xenobiotics by cytochrome P450, and glycosylation. We also found novel downregulated non-coding RNAs present in gastric cancer tissues, including GATA6 antisense RNA 1, antisense to LYZ, antisense P4HB, overlapping ACER2, long intergenic non-protein coding RNA 2688 (LINC02688) and uncharacterized LOC25845 (PP7080). CONCLUSION The transcriptomic data found in this study illustrates the power of RNA-sequencing in discovering novel genes and tumorigenic pathways involved in human carcinogenesis. The anomalies present in these genes may serve as promising tools for the development of accurate diagnostic biomarkers for the detection of early-stage gastric cancer.
Collapse
Affiliation(s)
- Sadegh Fattahi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
- North Research Center of Pasteur Institute, Amol, Iran.
| | - Novin Nikbakhsh
- Department of Surgery, Rouhani hospital Babol University of Medical Sciences, Babol, Iran.
| | - Hassan Taheri
- Department of Internal Medicine, Rouhani hospital Babol University of Medical Sciences, Babol, Iran.
| | - Mohammad Ranaee
- Department of Pathology, Rouhani hospital, Babol University of Medical Sciences, Babol, Iran.
| | - Haleh Akhavan-Niaki
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
5
|
Xu T, Li X, Leng T, Zhuang T, Sun Y, Tang Y, Wang L, Yang M, Ji M. CYP2A13 Acts as the Main Metabolic CYP450s Enzyme for Activating Leonurine in Human Bronchial Epithelial Cells. Med Sci Monit 2020; 26:e922149. [PMID: 32284524 PMCID: PMC7174896 DOI: 10.12659/msm.922149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Leonurine is an active component of the traditional Chinese medicine Leonurus japonicus. This study aimed to investigate the effects of overexpressed CYP450s on the metabolic activity of leonurine. Material/Methods BEAS-2B cells stably expressing CYP1A1, 1A2, 2A13, 2B6, and 3A4 were constructed. CYP450s expression was identified using reverse-transcription PCR and Western blot assay. CCK-8 assay was used to evaluate the effect of leonurine on cell activity. Leonurine was incubated in vitro with CYP1A1, 1A2, 2A13, 2B6, and 3A4 metabolic enzymes to evaluate the clearance rate of CYP450 enzymes for leonurine. UPLC-MS was used to detect changes of drug concentration and discover the main metabolic enzymes affecting leonurine. Results BEAS-2B cells stably expressing CYP1A1, 1A2, 2A13, 2B6, and 3A4 were successfully constructed. According to primary mass spectra and secondary mass spectra of leonurine, the main metabolic enzymes were 312.1550 [H+] and 181.0484. Compared to the control group, residue of leonurine in CYP2A13 group was significantly reduced (F=5.307, p=0.024). Compared to the 0-min group, the clearance rate of leonurine in the CYP2A13-treated group was significantly decreased at 120 min after treatment (F=7.273, p=0.007). CCK-8 results also showed that activity of BEAS-2B cells that overexpress CYP2A13 gradually decreased with increased concentration of leonurine. Although CYP2A13 demonstrated good metabolic activity for leonurine, we found that CYP1A1, 1A2, 2B6, and 3A4 had no metabolic effects on leonurine. Conclusions Leonurine can be effectively activated through CYP2A13 enzyme metabolism, and further inhibits activity of human lung epithelial cells (BEAS-2B). Therefore, CYP2A13 is a main metabolic enzyme for leonurine in BEAS-2B cells.
Collapse
Affiliation(s)
- Ting Xu
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Xuxu Li
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Tian Leng
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Tianchi Zhuang
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Yan Sun
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Yajun Tang
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Li Wang
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Muyi Yang
- Department of Obstetrics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Minghui Ji
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
6
|
Mora-Lagos B, Cartas-Espinel I, Riquelme I, Parker AC, Piccolo SR, Viscarra T, Reyes ME, Zanella L, Buchegger K, Ili C, Brebi P. Functional and transcriptomic characterization of cisplatin-resistant AGS and MKN-28 gastric cancer cell lines. PLoS One 2020; 15:e0228331. [PMID: 31990955 PMCID: PMC6986722 DOI: 10.1371/journal.pone.0228331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is a significant cancer-related cause of death worldwide. The most used chemotherapeutic regimen in GC is based on platinum drugs such as cisplatin (CDDP). However, CDDP resistance reduces advanced GC survival. In vitro drug-resistant cell model would help in the understanding of molecular mechanisms underlying this drug-resistance phenomenon. The aim of this study was to characterize new models of CDDP-resistant GC cell lines (AGS R-CDDP and MKN-28 R-CDDP) obtained through a stepwise increasing drug doses method, in order to understand the molecular mechanisms underlying chemoresistance as well as identify new therapeutic targets for the treatment of GC. Cell viability assays, cell death assays and the expression of resistance molecular markers confirmed that AGS R-CDDP and MKN-28 R-CDDP are reliable CDDP-resistant models. RNA-seq and bioinformatics analyses identified a total of 189 DEGs, including 178 up-regulated genes and 11 down-regulated genes, associated mainly to molecular functions involved in CDDP-resistance. DEGs were enriched in 23 metabolic pathways, among which the most enriched was the inflammation mediated by chemokine and cytokine signaling pathway. Finally, the higher mRNA expression of SERPINA1, BTC and CCL5, three up-regulated DEGs associated to CDDP resistance found by RNA-seq analysis was confirmed. In summary, this study showed that AGS R-CDDP and MKN-28 R-CDDP are reliable models of CDDP resistance because resemble many of resistant phenotype in GC, being also useful to assess potential therapeutic targets for the treatment of gastric cancers resistant to CDDP. In addition, we identified several DEGs associated with molecular functions such as binding, catalytic activity, transcription regulator activity and transporter activity, as well as signaling pathways associated with inflammation process, which could be involved in the development of CDDP resistance in GC. Further studies are necessary to clarify the role of inflammatory processes in GC resistant to CDDP and these models could be useful for these purposes.
Collapse
Affiliation(s)
- Barbara Mora-Lagos
- Laboratory of Integrative Biology (LIBi), Scientific and Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, Chile
- Dirección de Investigación, Vicerrectoría de Investigación y Postgrado, Universidad Autónoma de Chile, Temuco, Chile
| | - Irene Cartas-Espinel
- Laboratory of Integrative Biology (LIBi), Scientific and Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, Chile
| | - Ismael Riquelme
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - Alyssa C. Parker
- Department of Biology, Brigham Young University, Provo, Utah, United States of America
| | - Stephen R. Piccolo
- Department of Biology, Brigham Young University, Provo, Utah, United States of America
| | - Tamara Viscarra
- Laboratory of Integrative Biology (LIBi), Scientific and Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, Chile
| | - María Elena Reyes
- Laboratory of Integrative Biology (LIBi), Scientific and Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, Chile
| | - Louise Zanella
- Laboratory of Integrative Biology (LIBi), Scientific and Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, Chile
| | - Kurt Buchegger
- Laboratory of Integrative Biology (LIBi), Scientific and Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, Chile
- Department of Basic Sciences, School of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Carmen Ili
- Laboratory of Integrative Biology (LIBi), Scientific and Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, Chile
- * E-mail: (CI); (PB)
| | - Priscilla Brebi
- Laboratory of Integrative Biology (LIBi), Scientific and Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, Chile
- * E-mail: (CI); (PB)
| |
Collapse
|
7
|
Wang Y, Lina L, Xu L, Yang Z, Qian Z, Zhou J, Suoni L. Arctigenin enhances the sensitivity of cisplatin resistant colorectal cancer cell by activating autophagy. Biochem Biophys Res Commun 2019; 520:20-26. [DOI: 10.1016/j.bbrc.2019.09.086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/20/2019] [Indexed: 12/16/2022]
|