1
|
Gomes GB, Zubieta CS, Guilhermi JDS, Toffoli-Kadri MC, Beatriz A, Rafique J, Parisotto EB, Saba S, Perdomo RT. Selenylated Imidazo [1,2- a]pyridine Induces Apoptosis and Oxidative Stress in 2D and 3D Models of Colon Cancer Cells. Pharmaceuticals (Basel) 2023; 16:814. [PMID: 37375763 DOI: 10.3390/ph16060814] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Colon cancer incidence rates are increasing annually, a scenario aggravated by genetic and epigenetic alterations that promote drug resistance. Recent studies showed that novel synthetic selenium compounds are more efficient and less toxic than conventional drugs, demonstrating biocompatibility and pro-oxidant effects on tumor cells. This study aimed to investigate the cytotoxic effect of MRK-107, an imidazo [1,2- a]pyridine derivative, in 2D and 3D cell culture models of colon cancer (Caco-2 and HT-29). Sulforhodamine B results revealed a GI50 of 2.4 µM for Caco-2, 1.1 µM for HT-29, and 22.19 µM for NIH/3T3 in 2D cultures after 48 h of treatment. Cell recovery, migration, clonogenic, and Ki-67 results corroborated that MRK-107 inhibits cell proliferation and prevents cell regeneration and metastatic transition by selectively reducing migratory and clonogenic capacity; non-tumor cells (NIH/3T3) re-established proliferation in less than 18 h. The oxidative stress markers DCFH-DA and TBARS revealed increased ROS generation and oxidative damage. Caspases-3/7 are activated and induce apoptosis as the main mode of cell death in both cell models, as assessed by annexin V-FITC and acridine orange/ethidium bromide staining. MRK-107 is a selective, redox-active compound with pro-oxidant and pro-apoptotic properties and the capacity to activate antiproliferative pathways, showing promise in anticancer drug research.
Collapse
Affiliation(s)
- Giovana Bicudo Gomes
- Postgraduate Course in Pharmaceutical Sciences, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, Brazil
| | - Claudia Stutz Zubieta
- Postgraduate Course in Pharmaceutical Sciences, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, Brazil
| | | | - Mônica Cristina Toffoli-Kadri
- Postgraduate Course in Pharmaceutical Sciences, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, Brazil
| | - Adilson Beatriz
- Laboratory of Synthesis and Transformation of Organic Molecules (SINTMOL), Institute of Chemistry (INQUI), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79074-460, Brazil
| | - Jamal Rafique
- Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Goiania 74690-900, Brazil
- Laboratory of Synthesis and Transformation of Organic Molecules (SINTMOL), Institute of Chemistry (INQUI), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79074-460, Brazil
| | - Eduardo Benedetti Parisotto
- Postgraduate Course in Pharmaceutical Sciences, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, Brazil
| | - Sumbal Saba
- Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Goiania 74690-900, Brazil
| | - Renata Trentin Perdomo
- Postgraduate Course in Pharmaceutical Sciences, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, Brazil
| |
Collapse
|
2
|
Zhu X, Yan H, Cui Z, Li H, Zhou W, Liu Z, Zhang H, Manoli T, Mo H, Hu L. Ultrasound-assisted blue light killing Vibrio parahaemolyticus to improve salmon preservation. ULTRASONICS SONOCHEMISTRY 2023; 95:106389. [PMID: 37003214 PMCID: PMC10457575 DOI: 10.1016/j.ultsonch.2023.106389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/27/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Vibrio parahaemolyticus is a typical marine bacterium, which often contaminates seafood and poses a health risk to consumers. Some non-thermal sterilization technologies, such as ultrasonic field (UF) and blue light (BL) irradiation, have been widely used in clinical practice due to their efficiency, safety, and avoidance of drug resistance, but their application in food preservation has not been extensively studied. This study aims to investigate the effect of BL on V. parahaemolyticus in culture media and in ready-to-eat fresh salmon, and to evaluate the killing effectiveness of the UF combined with BL treatment on V. parahaemolyticus. The results showed that BL irradiation at 216 J/cm2 was effective in causing cell death (close to 100%), cell shrinkage and reactive oxygen species (ROS) burst in V. parahaemolyticus. Application of imidazole (IMZ), an inhibitor of ROS generation, attenuated the cell death induced by BL, indicating that ROS were involved in the bactericidal effects of BL on V. parahaemolyticus. Furthermore, UF for 15 min enhanced the bactericidal effect of BL at 216 J/cm2 on V. parahaemolyticus, with the bactericidal rate of 98.81%. In addition, BL sterilization did not affect the color and quality of salmon, and the additive UF treatment for 15 min did not significant impact on the color of salmon. These results suggest that BL or UF combined with BL treatment has potential for salmon preservation, however, it is crucial to strictly control the intensity of BL and the duration of UF treatment to prevent reducing the freshness and brightness of salmon.
Collapse
Affiliation(s)
- Xiaolin Zhu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Han Yan
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China; College of Applied Technology, Hezhou University, Hezhou, Guangxi 542899, China
| | - Zhenkun Cui
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China.
| | - Hongbo Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Wei Zhou
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Zhenbin Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Hao Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Tatiana Manoli
- Department of Meat, Fish and Seafood Technology, Odessa National Academy of Food Technologies, Odessa 65039, Ukraine
| | - Haizhen Mo
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Liangbin Hu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
3
|
Viability of Glioblastoma Cells and Fibroblasts in the Presence of Imidazole-Containing Compounds. Int J Mol Sci 2022; 23:ijms23105834. [PMID: 35628643 PMCID: PMC9146156 DOI: 10.3390/ijms23105834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 12/10/2022] Open
Abstract
The naturally occurring dipeptide carnosine (β-alanyl-L-histidine) specifically attenuates tumor growth. Here, we ask whether other small imidazole-containing compounds also affect the viability of tumor cells without affecting non-malignant cells and whether the formation of histamine is involved. Patient-derived fibroblasts and glioblastoma cells were treated with carnosine, L-alanyl-L-histidine (LA-LH), β-alanyl-L-alanine, L-histidine, histamine, imidazole, β-alanine, and L-alanine. Cell viability was assessed by cell-based assays and microscopy. The intracellular release of L-histidine and formation of histamine was investigated by high-performance liquid chromatography coupled to mass spectrometry. Carnosine and LA-LH inhibited tumor cell growth with minor effects on fibroblasts, and L-histidine, histamine, and imidazole affected viability in both cell types. Compounds without the imidazole moiety did not diminish viability. In the presence of LA-LH but not in the presence of carnosine, a significant rise in intracellular amounts of histidine was detected in all cells. The formation of histamine was not detectable in the presence of carnosine, LA-LH, or histidine. In conclusion, the imidazole moiety of carnosine contributes to its anti-neoplastic effect, which is also seen in the presence of histidine and LA-LH. Despite the fact that histamine has a strong effect on cell viability, the formation of histamine is not responsible for the effects on the cell viability of carnosine, LA-LH, and histidine.
Collapse
|
4
|
Feng C, Pan L, Tang S, He L, Wang X, Tao Y, Xie Y, Lai Z, Tang Z, Wang Q, Li T. Integrative Transcriptomic, Lipidomic, and Metabolomic Analysis Reveals Potential Biomarkers of Basal and Luminal Muscle Invasive Bladder Cancer Subtypes. Front Genet 2021; 12:695662. [PMID: 34484294 PMCID: PMC8415304 DOI: 10.3389/fgene.2021.695662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
Muscle invasive bladder cancer (MIBC) is a heterogeneous disease with a high recurrence rate and poor clinical outcomes. Molecular subtype provides a new framework for the study of MIBC heterogeneity. Clinically, MIBC can be classified as basal and luminal subtypes; they display different clinical and pathological characteristics, but the molecular mechanism is still unclear. Lipidomic and metabolomic molecules have recently been considered to play an important role in the genesis and development of tumors, especially as potential biomarkers. Their different expression profiles in basal and luminal subtypes provide clues for the molecular mechanism of basal and luminal subtypes and the discovery of new biomarkers. Herein, we stratified MIBC patients into basal and luminal subtypes using a MIBC classifier based on transcriptome expression profiles. We qualitatively and quantitatively analyzed the lipids and metabolites of basal and luminal MIBC subtypes and identified their differential lipid and metabolite profiles. Our results suggest that free fatty acids (FFAs) and sulfatides (SLs), which are closely associated with immune and stromal cell types, can contribute to the diagnosis of basal and luminal subtypes of MIBC. Moreover, we showed that glycerophosphocholine (GCP)/imidazoles and nucleosides/imidazoles ratios can accurately distinguish the basal and luminal tumors. Overall, by integrating transcriptomic, lipidomic, and metabolomic data, our study reveals specific biomarkers to differentially diagnose basal and luminal MIBC subtypes and may provide a basis for precision therapy of MIBC.
Collapse
Affiliation(s)
- Chao Feng
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Lixin Pan
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Shaomei Tang
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liangyu He
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Nanning, China.,Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Xi Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Yuting Tao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Yuanliang Xie
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Zhiyong Lai
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Zhong Tang
- School of Information and Management, Guangxi Medical University, Nanning, China
| | - Qiuyan Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Tianyu Li
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Nanning, China.,Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| |
Collapse
|