1
|
Chen F, Xiang W, Qiang G. Tanshinone IIA affects the proliferation of A549/Tax by affecting the expression of MMP7 through the PI3K-AKT-mTOR signaling pathway. Discov Oncol 2025; 16:369. [PMID: 40113621 PMCID: PMC11926296 DOI: 10.1007/s12672-025-02152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/14/2025] [Indexed: 03/22/2025] Open
Abstract
OBJECTIVE This study aims to explore whether tanshinone IIA can act on paclitaxel-resistant non-small cell lung cancer A549/Tax and analyze the possible mechanisms involved. METHODS Using the Cell Counting Kit-8 (CCK-8), we preliminarily analyzed whether tanshinone IIA has an inhibitory effect on A549/Tax cells. We utilized public datasets, self-collected transcriptome datasets, and drug target analysis to identify potential targets. We employed real-time fluorescent quantitative polymerase chain reaction (RT-qPCR) to detect the expression of core genes before and after drug treatment to analyze potential target genes and validated them using data from The Cancer Genome Atlas (TCGA). We conducted enrichment analysis on co-expressed genes of the target genes to explore potential mechanisms. Furthermore, we employed molecular docking and western blot to verify the possible mechanisms involved. RESULTS The CCK8 results indicated that tanshinone IIA has a significant inhibitory effect on A549/Tax cells. The qPCR results and the analysis of TCGA data indicated that MMP7 is the target gene. Enrichment results of MMP7 co-expressed genes suggested that the PI3K-AKT signaling pathway might play a key role. Molecular docking results indicated that tanshinone IIA has strong binding activity with PI3K, AKT, mTOR, and MMP7. Western blotting results showed that tanshinone IIA might inhibit MMP7 through the PI3K-AKT-mTOR signaling pathway. CONCLUSIONS Tanshinone IIA may affect the proliferation of A549/Tax by influencing the expression of MMP7 through the PI3K-AKT-mTOR signaling pathway.
Collapse
Affiliation(s)
- Fangjun Chen
- Department of Thoracic Surgery, China Japan Friendship Institute of Clinical Medicine Research, Beijing, China
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Wenqiong Xiang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangliang Qiang
- Department of Thoracic Surgery, Peking University Third Hospital, No.49 Huayuan North Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
2
|
Zhang F, Wang J, Li H, Luo X, Xu Q, Liu L, Xu Y, Yang K, Liu Z, Gong R. Blocking lncRNA HCG18 re-sensitizes Taxol resistant lung cancer cells to Taxol through modulating the miR-34a-5p/HDAC1 axis. J Chemother 2024; 36:682-693. [PMID: 38706347 DOI: 10.1080/1120009x.2024.2308979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 12/28/2023] [Accepted: 01/16/2024] [Indexed: 05/07/2024]
Abstract
Lung cancer is one of the most frequently diagnosed cancers worldwide, associated with a poor survival rate. Taxol (Paclitaxel) is commonly used as a chemotherapeutic treatment for advanced lung cancers. While Taxol has improved clinical outcomes for lung cancer patients, a significant number of them develop resistance to Taxol, resulting in treatment failure. The role of the long noncoding RNA HCG18 in lung cancer and Taxol resistance has not yet been fully understood. To investigate this, we examined the expression of HCG18 and miR-34a-5p in lung tumors and normal lung tissues using qRT-PCR. We also assessed Taxol resistance through cell viability and apoptosis assays. Through the starBase online service, we analyzed the interactions between lncRNA and mRNA as well as miRNA and mRNA. We further validated the association between lncRNA and miRNA through luciferase and RNA pull-down assays. Our findings demonstrated that HCG18 was significantly upregulated in lung cancer tissues compared to normal lung tissues. Silencing HCG18 increased the sensitivity of lung cancer cells to Taxol. Additionally, our study established a Taxol-resistant cell line and observed a substantial upregulation of HCG18 in Taxol-resistant lung cancer cells. Bioinformatic analysis predicted that HCG18 could bind to miR-34a-5p, forming a competing endogenous RNA network, which was confirmed through luciferase assay. We found that miR-34a-5p was downregulated in lung cancer tissues and negatively correlated with Taxol resistance, as it directly bound to the 3'UTR region of HDAC1. Further results showed that inhibition of HCG18 significantly increased miR-34a-5p expression and sensitized lung cancer cells to Taxol. This sensitization could be reversed by inhibiting miR-34a-5p. Finally, we demonstrated in a xenograft mouse model that inhibition of HCG18 sensitized Taxol-resistant lung cancer cells to Taxol treatment by modulating the miR-34a-5p-HDAC1 axis. In conclusion, our in vitro and in vivo results uncover a novel molecular mechanism by which HCG18 promotes Taxol resistance through modulation of the miR-34a-5p/HDAC1 axis. These findings contribute to the diagnosis and treatment of chemo-resistant lung cancer.
Collapse
Affiliation(s)
- Fujun Zhang
- Department of Geriatric Thoracic surgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Province, China
| | - Juan Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Yunnan Province, China
| | - Haoyu Li
- Department of Geriatric Thoracic surgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Province, China
| | - Xiaoyu Luo
- Department of Geriatric Thoracic surgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Province, China
| | - Qiuyue Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Yunnan Province, China
| | - Lin Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Yunnan Province, China
| | - Yunmin Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Yunnan Province, China
| | - Kai Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Yunnan Province, China
| | - Zijie Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Yunnan Province, China
| | - Rong Gong
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Yunnan Province, China
| |
Collapse
|
3
|
Alalawy AI, Sakran M, Alzuaibr FM, Alotaibi MA, El-Hefnawy ME, Hazazi AY, El-Gendy SM, Aidy EA, Effat H, Ismail DF, Hessien M. Inhibition of Drp1 orchestrates the responsiveness of breast cancer cells to paclitaxel but insignificantly relieves paclitaxel-related ovarian damage in mice. Sci Rep 2023; 13:22782. [PMID: 38129495 PMCID: PMC10739747 DOI: 10.1038/s41598-023-49578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
Chemoresistance and chemotherapy-related ovarian damage are well-reported in breast cancer (BC) young patients. Herein, the inhibition of the mitochondrial fission was invested to explore its chemosensitizing role in Paclitaxel (PTX)-resistant cells, and its ability to restore the ovarian integrity in mice receiving PTX or cisplatin chemotherapy. To establish these aims, PTX-resistance was generated in BC cells, which were treated with PTX in combination with Drp1 deficiency, via mdivi-1, or Drp1-specific siRNA transfection. Furthermore, the alterations in the ovarian structure and the endocrine-related hormones were explored in mice receiving repetitive doses of PTX or cisplatin. We found that combining PTX with mdivi-1 improved cell responsiveness to PTX, induced apoptosis- and autophagy-mediated cell death, and relieved cellular oxidative stress. Additionally, the expression of PCNA1 and cyclin B1 genes were downregulated, meanwhile, p53, p21, and mitochondrial fusion proteins (Mfu1&Mfu2) were increased. The in vivo investigations in mice demonstrated that PTX induced gonadotoxic damage similar to cisplatin, whereas dual treatment of mice with PTX+ mdivi-1 failed to restore their normal follicular count and the circulating levels of E2 and AMH hormones. These results suggested that combining Drp1 inhibition with PTX resensitized breast cancer cells to PTX but failed to offer enough protection against chemotherapy-related gonadotoxicity.
Collapse
Affiliation(s)
- Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Mohamed Sakran
- Department of Biochemistry, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
- Division of Biochemistry, Faculty of Science, Tanta University, Tanta City, 31512, Egypt
| | - Fahad M Alzuaibr
- Biology Department, Faculty of Science, Tabuk University, Tabuk, Saudi Arabia
| | - Maeidh A Alotaibi
- King Faisal Medical Complex Laboratory, Ministry of Health, Taif, Saudi Arabia
| | - Mohamed E El-Hefnawy
- Division of Biochemistry, Faculty of Science, Tanta University, Tanta City, 31512, Egypt
- Department of Chemistry, Rabigh College of Sciences and Arts, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulelah Y Hazazi
- Department of Biochemistry, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Saad M El-Gendy
- Department of Cancer Biology, National Cancer Institute, Cairo University, Giza, Egypt
| | - Esraa A Aidy
- Department of Cancer Biology, National Cancer Institute, Cairo University, Giza, Egypt
| | - Heba Effat
- Department of Cancer Biology, National Cancer Institute, Cairo University, Giza, Egypt
| | - Doha F Ismail
- Department of Cancer Biology, National Cancer Institute, Cairo University, Giza, Egypt
| | - Mohamed Hessien
- Division of Biochemistry, Faculty of Science, Tanta University, Tanta City, 31512, Egypt.
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31512, Egypt.
| |
Collapse
|
4
|
Arai W, Konno T, Kohno T, Kodera Y, Tsujiwaki M, Shindo Y, Chiba H, Miyajima M, Sakuma Y, Watanabe A, Kojima T. Downregulation of angulin-1/LSR induces malignancy via upregulation of EGF-dependent claudin-2 and TGF-β-dependent cell metabolism in human lung adenocarcinoma A549 cells. Oncotarget 2023; 14:261-275. [PMID: 36961882 PMCID: PMC10038356 DOI: 10.18632/oncotarget.27728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023] Open
Abstract
Abnormal expression of bicellular tight junction claudins, including claudin-2 are observed during carcinogenesis in human lung adenocarcinoma. However, little is known about the role of tricellular tight junction molecule angulin-1/lipolysis-stimulated lipoprotein receptor (LSR). In the lung adenocarcinoma tissues examined in the present study, expression of claudin-2 was higher than in normal lung tissues, while angulin-1/LSR was poorly or faintly expressed. We investigated how loss of angulin-1/LSR affects the malignancy of lung adenocarcinoma cell line A549 and normal human lung epithelial (HLE) cells. The EGF receptor tyrosine kinase inhibitor AG1478 prevented the increase of claudin-2 expression induced by EGF in A549 cells. Knockdown of LSR induced expression of claudin-2 at the protein and mRNA levels and AG1478 prevented the upregulation of claudin-2 in A549 cells. Knockdown of LSR induced cell proliferation, cell migration and cell metabolism in A549 cells. Knockdown of claudin-2 inhibited the cell proliferation but did not affect the cell migration or cell metabolism of A549 cells. The TGF-β type I receptor inhibitor EW-7197 prevented the decrease of LSR and claudin-2 induced by TGF-β1 in A549 cells and 2D culture of normal HLE cells. EW-7197 prevented the increase of cell migration and cell metabolism induced by TGF-β1 in A549 cells. EW-7197 prevented the increase of epithelial permeability of FITC-4kD dextran induced by TGF-β1 in 2.5D culture of normal HLE cells. In conclusion, downregulation of angulin-1/LSR induces malignancy via EGF-dependent claudin-2 and TGF-β-dependent cell metabolism in human lung adenocarcinoma.
Collapse
Affiliation(s)
- Wataru Arai
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuki Kodera
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mitsuhiro Tsujiwaki
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuma Shindo
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hirofumi Chiba
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahiro Miyajima
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuji Sakuma
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Watanabe
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
5
|
Xie L, Zhou T, Xie Y, Bode AM, Cao Y. Mitochondria-Shaping Proteins and Chemotherapy. Front Oncol 2021; 11:769036. [PMID: 34868997 PMCID: PMC8637292 DOI: 10.3389/fonc.2021.769036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 12/23/2022] Open
Abstract
The emergence, in recent decades, of an entirely new area of “Mitochondrial dynamics”, which consists principally of fission and fusion, reflects the recognition that mitochondria play a significant role in human tumorigenesis and response to therapeutics. Proteins that determine mitochondrial dynamics are referred to as “shaping proteins”. Marked heterogeneity has been observed in the response of tumor cells to chemotherapy, which is associated with imbalances in mitochondrial dynamics and function leading to adaptive and acquired resistance to chemotherapeutic agents. Therefore, targeting mitochondria-shaping proteins may prove to be a promising approach to treat chemotherapy resistant cancers. In this review, we summarize the alterations of mitochondrial dynamics in chemotherapeutic processing and the antitumor mechanisms by which chemotherapy drugs synergize with mitochondria-shaping proteins. These might shed light on new biomarkers for better prediction of cancer chemosensitivity and contribute to the exploitation of potent therapeutic strategies for the clinical treatment of cancers.
Collapse
Affiliation(s)
- Longlong Xie
- Hunan Children's Hospital, The Pediatric Academy of University of South China, Changsha, China.,Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
| | - Tiansheng Zhou
- Hunan Children's Hospital, The Pediatric Academy of University of South China, Changsha, China
| | - Yujun Xie
- Hunan Children's Hospital, The Pediatric Academy of University of South China, Changsha, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China.,Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, Changsha, China.,Molecular Imaging Research Center of Central South University, Changsha, China.,National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, Changsha, China
| |
Collapse
|
6
|
Primary high-grade serous ovarian cancer cells are sensitive to senescence induced by carboplatin and paclitaxel in vitro. Cell Mol Biol Lett 2021; 26:44. [PMID: 34674640 PMCID: PMC8532320 DOI: 10.1186/s11658-021-00287-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Various types of normal and cancer cells undergo senescence in response to carboplatin and paclitaxel, which are considered the gold standard treatments in ovarian cancer management. Surprisingly, the effect of these drugs on ovarian cancer cell senescence remained unknown. METHODS The experiments were conducted on primary high-grade serous ovarian cancer cells. Molecular markers of senescence were evaluated using cytochemistry and immunofluorescence. Cell cycle distribution was analyzed using flow cytometry. Expression of cyclins and signaling pathways was tested using western blot. Telomere length and telomerase activity were measured using qPCR, and the colocalization of telomeres with DNA damage foci using immuno-FISH. Oxidative stress-related parameters were quantified using appropriate fluorescence probes. Production of cancerogenic agents was analyzed using qPCR and ELISA. RESULTS Carboplatin applied with paclitaxel induces senescence of ovarian cancer cells in vitro. This activity was reflected by permanent G2/M growth arrest, a high fraction of cells expressing senescence biomarkers (SA-β-Gal and γ-H2A.X), upregulated expression of p16, p21, and p53 cell cycle inhibitors, and decreased expression of cyclin B1. Neither telomere length nor telomerase activity changed in the senescent cells, and the majority of DNA damage was localized outside telomeres. Moreover, drug-treated cancer cells exhibited increased production of STAT3 protein, overproduced superoxide and peroxides, and increased mitochondrial mass. They were also characterized by upregulated ANG1, CCL11, IL-6, PDGF-D, TIMP-3, TSP-1, and TGF-β1 at the mRNA and/or protein level. CONCLUSIONS Our findings imply that conventional chemotherapy may elicit senescence in ovarian cancer cells, which may translate to the development of a cancer-promoting phenotype, despite the inability of these cells to divide.
Collapse
|
7
|
Kumar S, Ashraf R, C K A. Mitochondrial dynamics regulators: implications for therapeutic intervention in cancer. Cell Biol Toxicol 2021; 38:377-406. [PMID: 34661828 DOI: 10.1007/s10565-021-09662-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023]
Abstract
Regardless of the recent advances in therapeutic developments, cancer is still among the primary causes of death globally, indicating the need for alternative therapeutic strategies. Mitochondria, a dynamic organelle, continuously undergo the fusion and fission processes to meet cell requirements. The balanced fission and fusion processes, referred to as mitochondrial dynamics, coordinate mitochondrial shape, size, number, energy metabolism, cell cycle, mitophagy, and apoptosis. An imbalance between these opposing events alters mitochondWangrial dynamics, affects the overall mitochondrial shape, and deregulates mitochondrial function. Emerging evidence indicates that alteration of mitochondrial dynamics contributes to various aspects of tumorigenesis and cancer progression. Therefore, targeting the mitochondrial dynamics regulator could be a potential therapeutic approach for cancer treatment. This review will address the role of imbalanced mitochondrial dynamics in mitochondrial dysfunction during cancer progression. We will outline the clinical significance of mitochondrial dynamics regulators in various cancer types with recent updates in cancer stemness and chemoresistance and its therapeutic potential and clinical utility as a predictive biomarker.
Collapse
Affiliation(s)
- Sanjay Kumar
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Rami Reddy Nagar, Mangalam, Tirupati, Andhra Pradesh, 517507, India.
| | - Rahail Ashraf
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Rami Reddy Nagar, Mangalam, Tirupati, Andhra Pradesh, 517507, India
| | - Aparna C K
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Rami Reddy Nagar, Mangalam, Tirupati, Andhra Pradesh, 517507, India
| |
Collapse
|
8
|
Rodrigues T, Ferraz LS. Therapeutic potential of targeting mitochondrial dynamics in cancer. Biochem Pharmacol 2020; 182:114282. [PMID: 33058754 DOI: 10.1016/j.bcp.2020.114282] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
In the past mitochondria were considered as the "powerhouse" of cell, since they generate more than 90% of ATP in aerobic conditions through the oxidative phosphorylation. However, based on the current knowledge, mitochondria play several other cellular functions, including participation in calcium homeostasis, generation of free radicals and oxidative species, triggering/regulation of apoptosis, among others. Additionally, previous discoveries recognized mitochondria as highly dynamic structures, which undergo morphological alterations resulting in long or short fragments inside the living cells. This highly regulated process was referred as mitochondrial dynamics and involves mitochondrial fusion and fission. Thus, the number of mitochondria and the morphology of mitochondrial networks depend on the mitochondrial dynamics, biogenesis, and mitophagy. In each cell, there is a delicate balance between fusion and fission to allow the maintenance of appropriate mitochondrial functions. It has been proposed that the fusion and fission dynamics process controls cell cycle, metabolism, and survival, being implicated in a wide range of physiological and pathological conditions. Mitochondrial fusion is mediated by dynamin-like proteins, including mitofusin 1 (MFN1), mitofusin 2 (MFN2), and optic atrophy 1 protein (OPA1). Conversely, mitochondrial fission results in a large number of small fragments, which is mediated mainly by dynamin-related protein 1 (DRP1). Interestingly, there is growing evidence proposing that tumor cells modify the mitochondrial dynamics rheostat in order to gain proliferative and survival advantages. Increased mitochondrial fission has been reported in several types of human cancer cells (melanoma, ovarian, breast, lung, thyroid, glioblastoma, and others) and some studies have reported a possible direct correlation between increased mitochondrial fusion and chemoresistance of tumor cells. Here, the current knowledge about alterations of mitochondrial dynamics in cancer will be reviewed and its potential as a target for adjuvant cancer chemotherapy will be discussed.
Collapse
Affiliation(s)
- Tiago Rodrigues
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil.
| | - Letícia Silva Ferraz
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| |
Collapse
|