1
|
Li H, Sun Y, Yin H, Zhang Y, Yu J, Hou N, Wang P, Liang H, Xie A, Wang X, Dong J, Xu X. Virtual screening of natural products targeting ubiquitin-specific protease 7. J Biomol Struct Dyn 2025; 43:2666-2673. [PMID: 38361286 DOI: 10.1080/07391102.2024.2316779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/27/2023] [Indexed: 02/17/2024]
Abstract
Ubiquitin-specific protease 7 (USP7) is a promising prognostic and druggable target for cancer therapy. Inhibition of USP7 can activate the MDM2-P53 signaling pathway, thereby promoting cancer cell apoptosis. This study based on watvina molecular docking of virtual screening method and biological evaluation found the new USP7 inhibitors targeting catalytic active site. Three hits were screened from 3760 natural products and validated as USP7 inhibitors by enzymatic and kinetic assays. The IC50 values of scutellarein (Scu), semethylzeylastera (DML) and salvianolic acid C (SAC) were 3.017, 6.865 and 8.495 μM, respectively. Further, we reported that the hits could downregulate MDM2 and activate p53 signal pathway in HCT116 cells. Molecular dynamics simulation was used to investigate the binding mechanism of USP7 to Scu, the compound with the best performance, which formed stable contact with Val296, Gln297, Phe409, Tyr465 and Tyr514. These interactions are essential for maintaining the biological activity of Scu. Three natural products are suitable as lead compounds for the development of novel USP7 inhibitors, especially anti-colon cancer drugs.
Collapse
Affiliation(s)
- Hongju Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yujie Sun
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Hua Yin
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, China
| | - Yuzhu Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Junhong Yu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, China
| | - Ning Hou
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Peng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Huicong Liang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Aowei Xie
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiaohong Wang
- Shandong Foreign Trade Vocational College, Qingdao, Shandong, China
| | - Jianjun Dong
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, China
| | - Ximing Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
- Qingdao Marine Science and Technology Center, Qingdao, China
- Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong, China
| |
Collapse
|
2
|
Zhai Q, Shang S, Zhang Z, Sun L, Huang Y, Feng S, Wu Q, Cui H, Shi X. Mechanism of salvianolic phenolic acids and hawthorn triterpenic acids combination in intervening atherosclerosis: network pharmacology, molecular docking, and experimental validation. Front Pharmacol 2025; 16:1501846. [PMID: 39950115 PMCID: PMC11821658 DOI: 10.3389/fphar.2025.1501846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/10/2025] [Indexed: 02/16/2025] Open
Abstract
Background This study employs network pharmacology and molecular docking methods in conjunction with animal experimentation to elucidate the underlying mechanism by which the combination of salvianolic phenolic acids and hawthorn triterpenic acids (SHC) exerts its therapeutic effect on carotid atherosclerosis (AS) in ApoE-/- mice. Methods A network pharmacology research approach was used to predict potential core targets for SHC intervention in atherosclerosis. The predictions were subsequently validated through the implementation of animal in vivo experiments. ApoE-/- mice were randomly assigned to three experimental groups, namely, a model group, an atorvastatin group, and an SHC group. After the administration period, the plaque area in the carotid artery and aortic arch, blood lipid levels, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), and nitric oxide (NO) content were measured. Additionally, the expression of PI3K, Akt, NF-κB, JNK1, ERK1/2, and p38-MAPK in the aortic arteries was analyzed. Based on the protein expression results, molecular docking was used to predict the binding activity between the core compounds and core targets. Results A total of 23 core compounds were identified in SHC, and 55 core targets of SHC were screened as potential targets for intervention in AS. The results of the enrichment analysis indicated that the principal mechanisms through which SHC exerts its effects in AS are associated with lipid metabolism and the PI3K-Akt and MAPK pathways. The results from animal experiments demonstrated that atorvastatin and SHC markedly reduced the area of carotid plaque and downregulated the levels of TC and LDL-C in ApoE-/- mice. The administration of SHC was associated with an increase in SOD activity and a reduction in NO levels in the livers of mice. Furthermore, SHC was observed to downregulate the expression of NF-κB and p38-MAPK in the carotid region. The results of molecular docking demonstrated that the core compounds of SHC, including salvianolic acid A, B, and C, maslinic acid, ursolic acid, and oleic acid, were capable of stably binding to the core targets NF-κB and MAPK14. Conclusion It is hypothesized that SHC may reduce lipid deposition and plaque formation in AS by regulating blood lipids, a process that may be closely linked to the inhibition of inflammatory regulator expression, including NF-κB and p38-MAPK.
Collapse
Affiliation(s)
- Qu Zhai
- Institute of Executive Development, China National Medical Products Administration, Beijing, China
| | - Shixi Shang
- Beijing Key Laboratory of TCM Basic Research on Prevention and Treatment of Major Disease, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zihan Zhang
- Beijing University of Chinese Medical, Beijing, China
| | - Lihua Sun
- Beijing Key Laboratory of TCM Basic Research on Prevention and Treatment of Major Disease, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Huang
- Beijing Key Laboratory of TCM Basic Research on Prevention and Treatment of Major Disease, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuyi Feng
- Beijing Key Laboratory of TCM Basic Research on Prevention and Treatment of Major Disease, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Wu
- Beijing Key Laboratory of TCM Basic Research on Prevention and Treatment of Major Disease, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haifeng Cui
- Beijing Key Laboratory of TCM Basic Research on Prevention and Treatment of Major Disease, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolu Shi
- Beijing Key Laboratory of TCM Basic Research on Prevention and Treatment of Major Disease, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Guo J, Jia H. DNMT3A transcriptionally downregulated by KLF5 alleviates LPS-induced inflammatory response and promotes osteogenic differentiation in hPDLSCs. J Appl Oral Sci 2024; 32:e20240268. [PMID: 39476105 DOI: 10.1590/1678-7757-2024-0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/10/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Periodontitis is an inflammatory disease typically characterized by the destruction of periodontal tissues and complicated etiology. DNA methyltransferase 3A (DNMT3A) has been implicated in possessing pro-inflammatory properties. This study sought to explore the role of DNMT3A in periodontitis and its relevant mechanism. METHODOLOGY Lipopolysaccharide (LPS) was used to induce inflammation in human periodontal ligament stem cells (hPDLSCs). DNMT3A and KLF5 expressions were detected using RT-qPCR and western blot. The levels of inflammatory cytokines and inflammation-related proteins were detected using ELISA and western blot. NF-κB p65 expression was detected using immunofluorescence (IF) assay, while osteogenic differentiation was assessed using ALP assay and ARS staining. Western blot was used to measure the protein contents associated with osteogenic differentiation. DNMT3A activity was detected using luciferase report assay and chromatin immunoprecipitation (ChIP) was used to verify the interaction between KLF5 and DNMT3A. RESULTS DNMT3A expression increased in LPS-induced hPDLSCs. Silencing DNMT3A suppressed the LPS-induced inflammation in hPDLSCs, while promoting osteogenic differentiation. It was also found that transcriptional factor KLF5 could bind to DNMT3A promoters and regulate DNMT3A expression. Rescue experiments showed that KLF5 interference partially counteracted the inhibitory impacts of DNMT3A deficiency on inflammation and the promotive effects on osteogenic differentiation in LPS-induced hPDLSCs. CONCLUSION DNMT3A, when transcriptionally downregulated by KLF5, could alleviate LPS-challenged inflammatory responses and facilitate osteogenic differentiation in hPDLSCs.
Collapse
Affiliation(s)
- Jianling Guo
- Suzhou Stomatology Hospital (Group) Co. Ltd. Suzhou, Department of Pediatric Dentistry, Jiangsu, China
| | - Huijie Jia
- Minhang Hospital, Fudan University, Department of Stomatology, Shanghai, China
| |
Collapse
|
4
|
Cong S, Peng Q, Cao L, Yi Q, Liu Y, Li L, Tong Q, Liang D. Diosgenin prevents periodontitis by inhibiting inflammation and promoting osteogenic differentiation. Oral Dis 2024; 30:2497-2510. [PMID: 37593795 DOI: 10.1111/odi.14708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/28/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023]
Abstract
Diosgenin, an essential dietary steroidal sapogenin, possess multiple pharmacological activities. This study aimed to assess the effects of diosgenin on periodontitis and elucidate the mechanisms. Lipopolysaccharide (LPS)-stimulated human periodontal ligament stem cells (hPDLCs) and a Porphyromonas gingivalis (P.g) plus ligation-induced animal model were used for in vitro and in vivo studies, respectively. Inflammatory responses, nuclear factor κ-B (NF-κB) signaling and osteogenesis-related markers were measured both in LPS-stimulated hPDLSCs and in gingival tissue of periodontitis rats. Treatment with diosgenin significantly inhibited the production of tumor necrosis factor α (TNF-α), interleukin (IL)-1β, and interleukin (IL)-6 and the activation of NF-κB pathway in LPS-stimulated hPDLSCs. Further, treatment with diosgenin enhanced the expression of osteoblast-related genes and increased the osteogenic differentiation capacity. Further, activation NF-κB pathway largely abolished the protective effects of diosgenin. Consistent with the in vitro studies, in vivo studies showed that administering diosgenin to periodontitis rats significantly lowered the levels of the TNF-α, IL-1β, and IL-6 and the inflammatory transcription factor NF-κB in gingival tissue. In addition, osteoblast-related genes were promoted. Diosgenin attenuates periodontitis by adjusting NF-κB signaling to inhibit inflammatory effects and promoting osteogenesis, suggesting diosgenin might be developed as a therapeutic strategy for treating periodontitis in the future.
Collapse
Affiliation(s)
- Shaohua Cong
- Department of Stomatology, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qian Peng
- Plastic and Reconstructive Surgery, Hubei No. 3 People's Hospital of Jianghan University, Wuhan, China
| | - Liou Cao
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qingqing Yi
- Clinical Research Center, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yi Liu
- Department of Stomatology, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Linhui Li
- Clinical Research Center, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qingchun Tong
- Department of Stomatology, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Dongyu Liang
- Clinical Research Center, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
5
|
Li W, Xiang Z, Yu W, Huang X, Jiang Q, Abumansour A, Yang Y, Chen C. Natural compounds and mesenchymal stem cells: implications for inflammatory-impaired tissue regeneration. Stem Cell Res Ther 2024; 15:34. [PMID: 38321524 PMCID: PMC10848428 DOI: 10.1186/s13287-024-03641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/21/2024] [Indexed: 02/08/2024] Open
Abstract
Inflammation is a common and important pathological process occurring in any part of the body and relating to a variety of diseases. Effective tissue repair is critical for the survival of impaired organisms. Considering the side effects of the currently used anti-inflammatory medications, new therapeutic agents are urgently needed for the improvement of regenerative capacities of inflammatory-impaired tissues. Mesenchymal stromal stem/progenitor cells (MSCs) are characterized by the capabilities of self-renewal and multipotent differentiation and exhibit immunomodulatory capacity. Due to the ability to modulate inflammatory phenotypes and immune responses, MSCs have been considered as a potential alternative therapy for autoimmune and inflammatory diseases. Natural compounds (NCs) are complex small multiple-target molecules mostly derived from plants and microorganisms, exhibiting therapeutic effects in many disorders, such as osteoporosis, diabetes, cancer, and inflammatory/autoimmune diseases. Recently, increasing studies focused on the prominent effects of NCs on MSCs, including the regulation of cell survival and inflammatory response, as well as osteogenic/adipogenic differentiation capacities, which indicate the roles of NCs on MSC-based cytotherapy in several inflammatory diseases. Their therapeutic effects and fewer side effects in numerous physiological processes, compared to chemosynthetic drugs, made them to be a new therapeutic avenue combined with MSCs for impaired tissue regeneration. Here we summarize the current understanding of the influence of NCs on MSCs and related downstream signaling pathways, specifically in pathological inflammatory conditions. In addition, the emerging concepts through the combination of NCs and MSCs to expand the therapeutic perspectives are highlighted. A promising MSC source from oral/dental tissues is also discussed, with a remarkable potential for MSC-based therapy in future clinical applications.
Collapse
Affiliation(s)
- Wen Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zichao Xiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Wenjing Yu
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St., Philadelphia, PA, 19104, USA
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaobin Huang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St., Philadelphia, PA, 19104, USA
| | - Qian Jiang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St., Philadelphia, PA, 19104, USA
| | - Arwa Abumansour
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St., Philadelphia, PA, 19104, USA
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Yang
- Research and Innovation Oral Care, Colgate-Palmolive Company, Piscataway, NJ, USA
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St., Philadelphia, PA, 19104, USA.
- Center of Innovation and Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Poblano-Pérez LI, Castro-Manrreza ME, González-Alva P, Fajardo-Orduña GR, Montesinos JJ. Mesenchymal Stromal Cells Derived from Dental Tissues: Immunomodulatory Properties and Clinical Potential. Int J Mol Sci 2024; 25:1986. [PMID: 38396665 PMCID: PMC10888494 DOI: 10.3390/ijms25041986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells located in different areas of the human body. The oral cavity is considered a potential source of MSCs because they have been identified in several dental tissues (D-MSCs). Clinical trials in which cells from these sources were used have shown that they are effective and safe as treatments for tissue regeneration. Importantly, immunoregulatory capacity has been observed in all of these populations; however, this function may vary among the different types of MSCs. Since this property is of clinical interest for cell therapy protocols, it is relevant to analyze the differences in immunoregulatory capacity, as well as the mechanisms used by each type of MSC. Interestingly, D-MSCs are the most suitable source for regenerating mineralized tissues in the oral region. Furthermore, the clinical potential of D-MSCs is supported due to their adequate capacity for proliferation, migration, and differentiation. There is also evidence for their potential application in protocols against autoimmune diseases and other inflammatory conditions due to their immunosuppressive capacity. Therefore, in this review, the immunoregulatory mechanisms identified at the preclinical level in combination with the different types of MSCs found in dental tissues are described, in addition to a description of the clinical trials in which MSCs from these sources have been applied.
Collapse
Affiliation(s)
- Luis Ignacio Poblano-Pérez
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), Mexico City 06720, Mexico; (L.I.P.-P.); (G.R.F.-O.)
| | - Marta Elena Castro-Manrreza
- Immunology and Stem Cells Laboratory, FES Zaragoza, National Autonomous University of Mexico (UNAM), Mexico City 09230, Mexico;
| | - Patricia González-Alva
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico;
| | - Guadalupe R. Fajardo-Orduña
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), Mexico City 06720, Mexico; (L.I.P.-P.); (G.R.F.-O.)
| | - Juan José Montesinos
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), Mexico City 06720, Mexico; (L.I.P.-P.); (G.R.F.-O.)
| |
Collapse
|
7
|
Lin H, Wang Q, Quan C, Ren Q, He W, Xiao H. Low-intensity pulsed ultrasound enhances immunomodulation and facilitates osteogenesis of human periodontal ligament stem cells by inhibiting the NF-κB pathway. Cell Tissue Bank 2023; 24:45-58. [PMID: 35644018 PMCID: PMC9148194 DOI: 10.1007/s10561-022-10010-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/22/2022] [Indexed: 01/20/2023]
Abstract
Human periodontal ligament stem cells (hPDLSCs) are vital in cellular regeneration and tissue repair due to their multilineage differentiation potential. Low intensity pulsed ultrasound (LIPUS) has been applied for treating bone and cartilage defects. This study explored the role of LIPUS in the immunomodulation and osteogenesis of hPDLSCs. hPDLSCs were cultured in vitro, and the effect of different intensities of LIPUS (30, 60, and 90 mW/cm2) on hPDLSC viability was measured. hPDLSCs irradiated by LIPUS and stimulated by lipopolysaccharide (LPS) and LIPUS (90 mW/cm2) were co-cultured with peripheral blood mononuclear cells (PBMCs). Levels of immunomodulatory factors in hPDLSCs and inflammatory factors in PBMCs were estimated, along with determination of osteogenesis-related gene expression in LIPUS-irradiated hPDLSCs. The mineralized nodules and alkaline phosphatase (ALP) activity of hPDLSCs and levels of IκBα, p-IκBα, and p65 subunits of NF-κB were determined. hPDLSC viability was increased as LIPUS intensity increased. Immunomodulatory factors were elevated in LIPUS-irradiated hPDLSCs, and inflammatory factors were reduced in PBMCs. Osteogenesis-related genes, mineralized nodules, and ALP activity were promoted in LIPUS-irradiated hPDLSCs. The cytoplasm of hPDLSCs showed increased IκBα and p65 and decreased p-IκBα at increased LIPUS intensity. After LPS and LIPUS treatment, the inhibitory effect of LIPUS irradiation on the NF-κB pathway was partially reversed, and the immunoregulation and osteogenic differentiation of hPDLSCs were decreased. LIPUS irradiation enhanced immunomodulation and osteogenic differentiation abilities of hPDLSCs by inhibiting the NF-κB pathway, and the effect is dose-dependent. This study may offer novel insights relevant to periodontal tissue engineering.
Collapse
Affiliation(s)
- Haiyan Lin
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, No. 366 South Jiangnan Road, Haizhu District, Guangzhou, 510280, Guangdong, People's Republic of China
- Department of Orthodontics, Nanning Angel Stomatological Hospital, No. 20-1, Xinmin Road, Nanning, 530029, Guangxi, People's Republic of China
| | - Qing Wang
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, No. 366 South Jiangnan Road, Haizhu District, Guangzhou, 510280, Guangdong, People's Republic of China
| | - Chuntian Quan
- Department of Orthodontics, Nanning Angel Stomatological Hospital, No. 20-1, Xinmin Road, Nanning, 530029, Guangxi, People's Republic of China
| | - Qingyuan Ren
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, No. 366 South Jiangnan Road, Haizhu District, Guangzhou, 510280, Guangdong, People's Republic of China
| | - Wulin He
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, No. 366 South Jiangnan Road, Haizhu District, Guangzhou, 510280, Guangdong, People's Republic of China.
| | - Hui Xiao
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, No. 366 South Jiangnan Road, Haizhu District, Guangzhou, 510280, Guangdong, People's Republic of China.
| |
Collapse
|
8
|
Yang P, Shi F, Zhang Y. Baricitinib alleviates lipopolysaccharide‑induced human periodontal ligament stem cell injury and promotes osteogenic differentiation by inhibiting JAK/STAT signaling. Exp Ther Med 2022; 25:74. [PMID: 36684656 PMCID: PMC9842944 DOI: 10.3892/etm.2022.11773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Periodontitis is the chronic inflammation of the periodontal tissue. The present study aimed to investigate the role of baricitinib, a Janus kinase (JAK)1/2 inhibitor, in periodontitis by using a lipopolysaccharide (LPS)-induced human periodontal ligament stem cell (PDLSC) model. The viability of PDLSCs stimulated by LPS was assessed in the presence of baricitinib by Cell Counting Kit-8 assay. The induction of oxidative stress was evaluated by detecting the intracellular reactive oxygen species (ROS) levels, superoxide dismutase (SOD) activity and glutathione (GSH) content. ELISA and reverse transcription-quantitative PCR were used to determine the levels of inflammatory factors TNF-α, IL-1β and IL-6. Alkaline phosphatase (ALP) activity and alizarin red staining were used to assess the osteogenic differentiation of PDLSCs. The expression levels of osteogenic differentiation- and JAK/signal transducer and activator of transcription (STAT) signaling-associated proteins were estimated with western blotting. RO8191, an agonist of the JAK/STAT pathway, was used to treat PDLSCs to investigate the regulatory mechanism of baricitinib. The results indicated that baricitinib elevated the LPS-induced decrease in cell viability. LPS-triggered oxidative stress and inflammation were inhibited by baricitinib, as demonstrated by the decreased levels of ROS, TNF-α, IL-1β, IL-6 and increased levels of SOD and GSH. In addition, baricitinib caused a marked elevation in ALP activity and mineralization ability of PDLSCs, as determined by the upregulated osteocalcin and Runt-related transcription factor 2 expression. Moreover, the expression levels of phosphorylated (p)-JAK1, p-JAK2 and p-STAT3 were downregulated by baricitinib in a dose-dependent manner. Furthermore, addition of RO8191 restored the effect of baricitinib on the induction of oxidative stress, inflammation and osteogenic differentiation of PDLSCs exposed to LPS. Collectively, these findings suggested that baricitinib alleviated oxidative stress and inflammation and promoted osteogenic differentiation of LPS-induced PDLSCs by inhibiting JAK/STAT signaling.
Collapse
Affiliation(s)
- Ping Yang
- Department of Stomatology, AnTing Campus, The Third Affiliated Hospital of Naval Military Medical University, Shanghai 200438, P.R. China
| | - Fenghua Shi
- Department of Radiotherapy, AnTing Campus, The Third Affiliated Hospital of Naval Military Medical University, Shanghai 201805, P.R. China
| | - Yanli Zhang
- Outpatient Department, ChangHai Road Campus, The Third Affiliated Hospital of Naval Military Medical University, Shanghai 200438, P.R. China,Correspondence to: Dr Yanli Zhang, Outpatient Department, ChangHai Road Campus, The Third Affiliated Hospital of Naval Military Medical University, 225 Changhai Road, Yangpu, Shanghai 200438, P.R. China
| |
Collapse
|
9
|
Wang J, Li L, Song Y. α-Cyperone Ameliorates Lipopolysaccharide-Induced Inflammation and Apoptosis of Periodontal Ligament Stem Cells via Blocking the Toll-Like Receptor 4/NF- κB Signaling. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Periodontitis is a long-lasting inflammatory microbial sickness that could cause damage to the periodontal ligament, gums, cementum and alveolar bone directly. Cyperus rotundus is a common traditional Chinese medicine clinically with many pharmacological activities, α-Cyperone
is a bioactive ingredient abundant in Cyperus rotundus, few studies have focused on its anti-fungal and anti-oxidative stress activities in mice, during this research, we firstly investigated the impact of α-Cyperone on PDLSCs inflammatory by LPS stimulation. Our findings illustrated
that α-Cyperone exerted no influence on PDLSCs viability at concentrations lower than 60 μM, and the release of inflammatory cytokines decreased with an increase in LPS concentration. Meanwhile, we found that α-Cyperone effectively restrained LPS-induced
PDLSC cell apoptosis by CCK-8 cell viability assay and TUNEL-positive staining. Furthermore, the TLR4 expression and NF-κB kinase activation were greatly repressed by α-Cyperone treatment in LPS-induced PDLSCs inflammatory model. Subsequently, enhanced TLR4 expression
was observed to reverse the suppressed release of inflammatory cytokines and decreased apoptosis effects mediated by α-Cyperone in LPS-cotreated PDLSCs, indicating that the deactivation of TLR4 and downstream NF-κB were implicated in favoring α-Cyperone-triggered
protective effects of LPS in PDLSCs.
Collapse
Affiliation(s)
- Juexing Wang
- Department of Stomatology, Tangshan Workers’ Hospital, Tangshan 063000, China
| | - Lv Li
- Department of Stomatology, Tangshan Workers’ Hospital, Tangshan 063000, China
| | - Yajie Song
- Department of Pediatric Stomatology, Bochuang Stomatological Hospital, North China University of Science and Technology, Tangshan 063007, China
| |
Collapse
|
10
|
Jin S, Jiang H, Sun Y, Li F, Xia J, Li Y, Zheng J, Qin Y. Osteogenic differentiation of periodontal membrane stem cells in inflammatory environments. Open Life Sci 2022; 17:1240-1248. [PMID: 36213382 PMCID: PMC9490861 DOI: 10.1515/biol-2022-0474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Periodontitis is a common disease that is difficult to treat, and if not controlled in time, it causes severe conditions, such as alveolar bone resorption and tooth loosening and loss. Periodontal ligament stem cells constitute a promising cell source for regenerative treatment of periodontitis due to their high osteogenic differentiation capacity. PDLSC osteogenesis plays a central role in periodontal regeneration through successive cytokine-mediated signaling pathways and various biochemical and physicochemical factors. However, this process is inhibited in the inflammatory periodontitis environment due to high concentrations of lipopolysaccharide. Here, we review the mechanisms that influence the osteogenic differentiation of periodontal stem cells in this inflammatory microenvironment.
Collapse
Affiliation(s)
- Shenghao Jin
- Department of Periodontics, School of Stomatology, Xuzhou Medical University , Xuzhou , Jiangsu, 221000 , China
| | - Haitao Jiang
- Department of Periodontics, School of Stomatology, Xuzhou Medical University , Xuzhou , Jiangsu, 221000 , China
| | - Yue Sun
- Department of Periodontics, School of Stomatology, Xuzhou Medical University , Xuzhou , Jiangsu, 221000 , China
| | - Fang Li
- Department of Periodontics, School of Stomatology, Xuzhou Medical University , Xuzhou , Jiangsu, 221000 , China
| | - Jianglan Xia
- Department of Periodontics, School of Stomatology, Xuzhou Medical University , Xuzhou , Jiangsu, 221000 , China
| | - Yaxin Li
- Department of Periodontics, School of Stomatology, Xuzhou Medical University , Xuzhou , Jiangsu, 221000 , China
| | - Jiwei Zheng
- Department of Periodontics, School of Stomatology, Xuzhou Medical University , Xuzhou , Jiangsu, 221000 , China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Xuzhou Medical University , Xuzhou , Jiangsu, 221000 , China
| | - Ying Qin
- Department of Periodontics, School of Stomatology, Xuzhou Medical University , Xuzhou , Jiangsu, 221000 , China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Xuzhou Medical University , Xuzhou , Jiangsu, 221000 , China
| |
Collapse
|
11
|
Wang S, Duan Y. LncRNA OIP5-AS1 inhibits the lipopolysaccharide-induced inflammatory response and promotes osteogenic differentiation of human periodontal ligament cells by sponging miR-92a-3p. Bioengineered 2022; 13:12055-12066. [PMID: 35546327 PMCID: PMC9276041 DOI: 10.1080/21655979.2022.2067291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/12/2022] Open
Abstract
Periodontitis is a chronic infectious disease that affects the oral health of adults. Long non-coding RNA OIP5 antisense RNA 1 (OIP5-AS1) has been reported to downregulated in the periodontal tissue of patients with periodontitis. Therefore, the study sought to look at the possible functions of OIP5-AS1 in periodontitis and the associated underlying mechanisms. In the present study, the expression level of OIP5-AS1 and microRNA-92a-3p were analyzed using reverse transcription-quantitative PCR. The levels of osteogenic proteins were determined using western blotting and inflammatory cytokines and oxidative stress were also examined. The proliferation of human periodontal ligament stem cells (hPDLSCs) was evaluated using MTT assays. Assay of osteogenic differentiation was undertaken by means of Alkaline phosphatase staining. The possible association between OIP5-AS1 and miR-92a-3p was determined applying dual-luciferase reporter assays and verified by RNA immunoprecipitation assay. We found that OIP5-AS1 was expressed at low levels in lipopolysaccharide (LPS)-stimulated hPDLSCs. OIP5-AS1 overexpression promoted proliferation and osteogenic differentiation ability and reduced LPS-induced inflammation in hPDLSCs. Furthermore, OIP5-AS1 directly targeted and reduced miR-92a-3p expression. The overexpression of miR-92a-3p partly abolished the effects of OIP5-AS1 on LPS-induced cell proliferation and osteogenic differentiation as well as inflammation in hPDLSCs. Collectively, the results indicated that OIP5-AS1 overexpression inhibited the LPS-induced inflammatory response and promoted the osteogenic differentiation of hPDLSCs by sponging miR-92a-3p. Thus, OIP5-AS1 is probably an essential objective for research during periodontitis treatment.
Collapse
Affiliation(s)
- Shiwei Wang
- Dental Department, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shanxi 710077, P.R. China
| | - Yao Duan
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, P.R. China
| |
Collapse
|
12
|
Chen M, Lin X, Zhang L, Hu X. Effects of nuclear factor-κB signaling pathway on periodontal ligament stem cells under lipopolysaccharide-induced inflammation. Bioengineered 2022; 13:7951-7961. [PMID: 35297308 PMCID: PMC9208442 DOI: 10.1080/21655979.2022.2051690] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lipopolysaccharide (LPS) induces inflammatory stress and apoptosis. This study focused on the effect of nuclear factor kappa B (NF-κB) signaling pathway on proliferation and osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) after LPS induction and its mechanism. We first isolated hPDLSCs from human tooth root samples in vitro. Then, flow cytometry detected positive expression of cell surface antigens CD146 and STRO-1 and negative expression of CD45, suggesting the hPDLSCs were successfully isolated. LPS significantly induced increased apoptosis and diminished proliferation of hPDLSCs. The NF-κB pathway agonist phorbol 12-myristate 13-acetate (PMA) or p65 overexpression inhibited the proliferation of LPS-treated hPDLSCs and promoted apoptosis. PMA also promoted LPS-induced up-regulation of the expression of inflammatory factors TNF-α and IL-6 and down-regulation of the expression of anti-inflammatory factor IL-10. Additionally, LPS was confirmed to lead to a reduction of alkaline phosphatase (ALP) activity, calcium nodules, and expression of osteogenic markers Runt-related transcription factor 2 (Runx2) and osteopontin. This reduction could be promoted by PMA. Western blotting further indicated that PMA could promote LPS-induced decrease of expression of p65 (cytoplasm), and total cellular proteins IKKα and IKKβ in hPDLSCs, while protein expression of p-IκBα (cytoplasm) and p65 (nucleus), and p-IκBα/IκBα ratio was elevated. By contrast, inhibition of the NF-κB pathway (PDTC) or small-interfering RNA targeting NF-κB/p65 (p65 siRNA) showed the opposite results. In conclusion, activation of NF-κB signaling in LPS-induced inflammatory environment can inhibit the proliferation and osteogenic differentiation of hPDLSCs. This study provides a theory foundation for the clinical treatment of periodontitis.
Collapse
Affiliation(s)
- Mingyue Chen
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Xiaobo Lin
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Li Zhang
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Xiaoli Hu
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China.,Department of Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| |
Collapse
|
13
|
Wang Q, Lin H, Ran J, Jiang Z, Ren Q, He W, Xiao H. miR-200a-3p represses osteogenesis of human periodontal ligament stem cells by targeting ZEB2 and activating the NF-κB pathway. Acta Odontol Scand 2022; 80:140-149. [PMID: 34632930 DOI: 10.1080/00016357.2021.1964593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Human periodontal ligament stem cells (hPDLSCs) bear multilineage differentiation potential and represent the cytological basis of periodontal tissue regeneration. microRNA (miR) is accepted as a critical regulator of cell differentiation. This study explored the molecular mechanism of miR-200a-3p in osteogenesis of hPDLSCs. MATERIAL AND METHODS hPDLSCs were cultured and identified in vitro. miR-200a-3p expression during osteogenic differentiation of hPDLSCs was detected. hPDLSCs were transfected with miR-200a-3p mimic or miR-200a-3p inhibitor. Alkaline phosphatase (ALP) activity, calcified nodules and osteogenesis-related genes of hPDLSCs were measured. The binding relationship between miR-200a-3p and ZEB2 was predicted and verified. hPDLSCs were infected with sh-ZEB2, and then the osteogenic capacity was examined. miR-200a-3p inhibitor-transfected hPDLSCs were infected with sh-ZEB2. The key proteins of the NF-κB pathway were measured. RESULTS miR-200a-3p expression was downregulated during osteogenic differentiation of hPDLSCs. Upregulation of miR-200a-3p reduced ALP activity, calcified nodules and osteogenesis-related genes of hPDLSCs, while downregulation of miR-200a-3p facilitated the osteogenesis of hPDLSCs. miR-200a-3p targeted ZEB2. ZEB2 silencing repressed osteogenesis of hPDLSCs. ZEB2 silencing attenuated the promoting effect of miR-200a-3p inhibitor on osteogenesis of hPDLSCs. miR-200a-3p activated the NF-κB pathway by targeting ZEB2. CONCLUSION miR-200a-3p repressed osteogenesis of hPDLSCs by targeting ZEB2 and activating the NF-κB pathway. This study may offer insights for periodontal tissue regeneration engineering.
Collapse
Affiliation(s)
- Qing Wang
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Haiyan Lin
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jinxiang Ran
- Department of Orthodontics, Qiannan Traditional Chinese Medical Hospital, School of Stomatology and Medicine, Qiannan Buyi and Miao Autonomous Prefecture, Duyun, China
| | - Ziran Jiang
- Department of Orthodontics, Foshan Stomatology Hospital, School of Stomatology and Medicine, Foshan, China
| | - Qingyuan Ren
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Wulin He
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Hui Xiao
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Yang Y, He Y, Wei X, Wan H, Ding Z, Yang J, Zhou H. Network Pharmacology and Molecular Docking-Based Mechanism Study to Reveal the Protective Effect of Salvianolic Acid C in a Rat Model of Ischemic Stroke. Front Pharmacol 2022; 12:799448. [PMID: 35153756 PMCID: PMC8828947 DOI: 10.3389/fphar.2021.799448] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
Salvianolic acid C (SAC) is a major bioactive component of Salvia miltiorrhiza Bunge (Danshen), a Chinese herb for treating ischemic stroke (IS). However, the mechanism by which SAC affects the IS has not yet been evaluated, thus a network pharmacology integrated molecular docking strategy was performed to systematically evaluate its pharmacological mechanisms, which were further validated in rats with cerebral ischemia. A total of 361 potential SAC-related targets were predicted by SwissTargetPrediction and PharmMapper, and a total of 443 IS-related targets were obtained from DisGeNET, DrugBank, OMIM, and Therapeutic Target database (TTD) databases. SAC-related targets were hit by the 60 targets associated with IS. By Gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment combined with the protein-protein interaction (PPI) network and cytoHubba plug-ins, nine related signaling pathways (proteoglycans in cancer, pathways in cancer, PI3K-Akt signaling pathway, Focal adhesion, etc.), and 20 hub genes were identified. Consequently, molecular docking indicated that SAC may interact with the nine targets (F2, MMP7, KDR, IGF1, REN, PPARG, PLG, ACE and MMP1). Four of the target proteins (VEGFR2, MMP1, PPARγ and IGF1) were verified using western blot. This study comprehensively analyzed pathways and targets related to the treatment of IS by SAC. The results of western blot also confirmed that the SAC against IS is mainly related to anti-inflammatory and angiogenesis, which provides a reference for us to find and explore the effective anti-IS drugs.
Collapse
Affiliation(s)
- Yuting Yang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu He
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoyu Wei
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhishan Ding
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Huifen Zhou
- Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
15
|
Fan X, Zhou C, Huang C, Zhang J. Asperuloside ameliorates lipopolysaccharide-induced primary human periodontal ligament cell injury by decreasing TLR4 expression and NF-κB activation. Arch Oral Biol 2021; 129:105199. [PMID: 34174589 DOI: 10.1016/j.archoralbio.2021.105199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The mechanism underlying lipopolysaccharide (LPS)-induced primary human periodontal ligament (PDLC) cell injury is unclear. In this study, we focused on the therapeutic function of asperuloside (ASP) on LPS-induced cell injury. DESIGN The study enrolled 41 participants, including 18 healthy controls and 23 CP patients. Western blotting was used to measure the expression of Toll-like receptor 4 (TLR4), phosphorylated p65 (p-p65) and cyclin D1. Enzyme-linked immunosorbent assays (ELISAs) were utilized to evaluate the protein levels of proinflammatory factors interleukin (IL)-1β, IL-6, IL-8 and tumor necrosis factor alpha (TNF-α). MTT assays and 5-ethynyl-2'-deoxyuridine (EdU) staining were performed to investigate cell proliferation. Immunohistochemistry was used to detect TLR4 and p65 expression in gingival tissues. RESULTS AND CONCLUSIONS Asperuloside ameliorates lipopolysaccharide-induced PDLC cell injury by decreasing TLR4 expression and NF-κB activation, while this protective effect of ASP was reversed by TLR4 overexpression.
Collapse
Affiliation(s)
- Xiaodan Fan
- Department of Stomatology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
| | - Chun Zhou
- Department of Stomatology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Cheng Huang
- Department of Stomatology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Junye Zhang
- Department of Stomatology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| |
Collapse
|
16
|
Effects of Traditional Chinese Medication-Based Bioactive Compounds on Cellular and Molecular Mechanisms of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3617498. [PMID: 34093958 PMCID: PMC8139859 DOI: 10.1155/2021/3617498] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 04/28/2021] [Indexed: 12/21/2022]
Abstract
The oxidative stress reaction is the imbalance between oxidation and antioxidation in the body, resulting in excessive production of oxygen free radicals in the body that cannot be removed, leading to excessive oxidation of the body, and causing damage to cells and tissues. A large number of studies have shown that oxidative stress is involved in the pathological process of many diseases, so inhibiting oxidative stress, that is, antioxidation, is of great significance for the treatment of diseases. Studies have shown that many traditional Chinese medications contain antioxidant active bioactive compounds, but the mechanisms of those compounds are different and complicated. Therefore, by summarizing the literature on antioxidant activity of traditional Chinese medication-based bioactive compounds in recent years, our review systematically elaborates the main antioxidant bioactive compounds contained in traditional Chinese medication and their mechanisms, so as to provide references for the subsequent research.
Collapse
|
17
|
Anti-Inflammatory Effects of Fermented Lotus Root and Linoleic Acid in Lipopolysaccharide-Induced RAW 264.7 Cells. Life (Basel) 2020; 10:life10110293. [PMID: 33228085 PMCID: PMC7699317 DOI: 10.3390/life10110293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a protective response of the innate immune system. However, aberrant inflammatory responses lead to various diseases. Lotus root, the edible rhizome of Nelumbo nucifera, is a popular traditional herbal medicine in East Asia. In a previous study, we reported that fermented lotus root (FLR) alleviated ethanol/HCl-induced gastric ulcers in rats by modulating inflammation-related genes. However, the mechanisms underlying the anti-inflammatory effects of FLR and its major constituent, linoleic acid (LA), are still largely unknown. In this study, we investigated the anti-inflammatory effects of FLR and LA on lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 murine macrophages. We found that FLR inhibited LPS-induced expression of inflammatory mediators through down-regulation of NF-κB activity. Similarly, LA also attenuated LPS-induced inflammatory responses and reduced LPS-induced phosphorylation of proteins associated with NF-κB signaling, such as ERK, JNK, and p38. Overall, our results suggested that FLR and LA may effectively ameliorate inflammatory diseases.
Collapse
|
18
|
Xu T, Wu X, Zhou Z, Ye Y, Yan C, Zhuge N, Yu J. Hyperoside ameliorates periodontitis in rats by promoting osteogenic differentiation of BMSCs via activation of the NF-κB pathway. FEBS Open Bio 2020; 10:1843-1855. [PMID: 32687664 PMCID: PMC7459408 DOI: 10.1002/2211-5463.12937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/10/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
Hyperoside, as an active compound, widely exists in a large number of Chinese herbal medicines and has been reported to possess anti‐inflammatory and diuretic properties. However, the effects and underlying mechanisms of hyperoside on periodontitis have not been previously reported. In this study, we found that hyperoside ameliorates symptoms of periodontitis in a rat model, with improvements in alveolar bone resorption, relief of inflammatory infiltration, increase in orderly arrangement of collagen fibers and increase of osteogenic differentiation. In addition, hyperoside promoted proliferation, up‐regulated EdU‐positive cells, decreased cell‐cycle distribution and increased the protein expression of Ki67 and PCNA in rat bone mesenchymal stem cells (rBMSCs), as revealed by Cell Counting Kit‐8, EdU, flow cytometry and western blot analysis. Moreover, hyperoside significantly promoted osteogenic differentiation, as shown by quantitative RT‐PCR, western blot and alizarin red staining assays. Furthermore, hyperoside activated the nuclear factor‐κB (NF‐κB) signaling pathway in rBMSCs, similar to the results observed in vivo. Finally, BMS345541, an inhibitor of the NF‐κB signaling pathway, could reverse the effects of hyperoside on the biological functions in rBMSCs. In conclusion, our results suggest that hyperoside has potential therapeutic properties against periodontitis via promotion of proliferation and osteogenic differentiation of rBMSCs via activation of the NF‐κB signaling pathway.
Collapse
Affiliation(s)
- Tao Xu
- Institute of Stomatology, Nanjing Medical University, Nanjing, China.,Department of Stomatology, Central Hospital of Nanjing, Nanjing, China
| | - Xiao Wu
- Institute of Stomatology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Oral Diseases of Jiangsu Province, Stomatological Institute, Nanjing Medical University, Nanjing, China
| | - Zhou Zhou
- Institute of Stomatology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Oral Diseases of Jiangsu Province, Stomatological Institute, Nanjing Medical University, Nanjing, China
| | - Yu Ye
- Institute of Stomatology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Oral Diseases of Jiangsu Province, Stomatological Institute, Nanjing Medical University, Nanjing, China
| | - Chaoting Yan
- Institute of Stomatology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Oral Diseases of Jiangsu Province, Stomatological Institute, Nanjing Medical University, Nanjing, China
| | | | - Jinhua Yu
- Institute of Stomatology, Nanjing Medical University, Nanjing, China.,Department of Endodontics, School of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Duan Y, An W, Wu Y, Wang J. Tetramethylpyrazine reduces inflammation levels and the apoptosis of LPS‑stimulated human periodontal ligament cells via the downregulation of miR‑302b. Int J Mol Med 2020; 45:1918-1926. [PMID: 32236610 PMCID: PMC7169953 DOI: 10.3892/ijmm.2020.4554] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/12/2020] [Indexed: 12/22/2022] Open
Abstract
Periodontitis is the main cause of tooth or tissue loss. Human periodontal ligament stem cells (hPDLSCs), which have high proliferative, self-renewal and multi-differentiation abilities, are vital for the restoration of periodontitis-induced injuries. The anti-inflammatory and anti-apoptotic agent, tetramethylpyrazine (TMP), is a promising agent used for the protection of PDLSCs from apoptosis and inflammation induced by periodontitis. The aim of the present study was to investigate the effects of TMP on lipopolysaccharide (LPS)-stimulated hPDLSCs. LPS-stimulated hPDLSCs were established as the cell model. CCK-8 assay was performed to evaluate cell viability, western blot analysis was performed to measure protein expression and flow cytometry was performed to detect cell apoptosis levels. Detection kits were used to evaluate the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6. Reverse transcription-quantitative PCR analysis was performed to detect gene expression. TMP alleviated the effects of LPS on cell viability, inflammation levels and cell apoptosis. TMP downregulated microRNA (miR)-302b levels in LPS-stimulated cells. Transfection with miR-302b mimic reversed the anti-inflammatory and anti-apoptotic effects of TMP on LPS-stimulated cells. TMP reduced inflammation and the apoptosis of LPS-stimulated human periodontal ligament cells via the downregulation of miR-302b. The anti-inflammatory and anti-apoptotic effects exerted by TMP render it a promising agent for the protection of PDLSCs from injuries induced by periodontitis. The findings of the present study may aid in the development of a novel strategy for the treatment of periodontitis and may pave the way for further research.
Collapse
Affiliation(s)
- Yan Duan
- Department of Oral Medicine, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030000, P.R. China
| | - Wei An
- Department of Oral Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030000, P.R. China
| | - Yunxia Wu
- Department of Oral Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jin Wang
- Department of Oral and Maxillofacial Surgery, Jinan Stomatological Hospital, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
20
|
Liu W, Cheng L, Li Q, Jing J. TRIP6 regulates the proliferation, migration, invasion and apoptosis of osteosarcoma cells by activating the NF-κB signaling pathway. Exp Ther Med 2020; 19:2317-2325. [PMID: 32104300 PMCID: PMC7027267 DOI: 10.3892/etm.2020.8466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/18/2019] [Indexed: 11/06/2022] Open
Abstract
Thyroid hormone receptor-interacting protein 6 (TRIP6), a member of the zyxin family of Lin-Isl-Mec (LIM) proteins, is an adaptor protein primarily expressed in epithelial cells. TRIP6 can regulate a variety of cellular responses, such as actin cytoskeletal reorganization and cell adhesion. However, to the best of our knowledge, the role of TRIP6 in osteosarcoma (Os) has not been previously reported. Therefore, the present study investigated the role of TRIP6 in the occurrence and development of Os, and the potential of utilizing TRIP6 as a therapeutic target in Os. The present results suggested that the expression levels of TRIP6 were significantly increased in Os cells and clinical tissue specimens compared with normal osteoblasts and adjacent non-tumor tissue. Moreover, the present results suggested that overexpressing TRIP6 significantly increased proliferation, migration and invasion, while inhibiting apoptosis in Os cells. However, silencing TRIP6 decreased proliferation, migration and invasion, while activating apoptosis in Os cells. The present results suggested that overexpression of TRIP6 increased NF-κB activation by decreasing the protein expression levels of inhibitor of κBα, and increasing total and phosphorylated P65 levels. The present results indicated that TRIP6 silencing decreased NF-κB activation. Collectively, the present results suggested that TRIP6 may play a role in promoting Os cell proliferation, migration and invasion, while inhibiting cell apoptosis. Furthermore, TRIP6 may be utilized as a novel prognostic biomarker and therapeutic target in Os.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Li Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Qingning Li
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Juehua Jing
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|