1
|
Michalak KP, Michalak AZ. Understanding chronic inflammation: couplings between cytokines, ROS, NO, Ca i 2+, HIF-1α, Nrf2 and autophagy. Front Immunol 2025; 16:1558263. [PMID: 40264757 PMCID: PMC12012389 DOI: 10.3389/fimmu.2025.1558263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/14/2025] [Indexed: 04/24/2025] Open
Abstract
Chronic inflammation is an important component of many diseases, including autoimmune diseases, intracellular infections, dysbiosis and degenerative diseases. An important element of this state is the mainly positive feedback between inflammatory cytokines, reactive oxygen species (ROS), nitric oxide (NO), increased intracellular calcium, hypoxia-inducible factor 1-alpha (HIF-1α) stabilisation and mitochondrial oxidative stress, which, under normal conditions, enhance the response against pathogens. Autophagy and the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant response are mainly negatively coupled with the above-mentioned elements to maintain the defence response at a level appropriate to the severity of the infection. The current review is the first attempt to build a multidimensional model of cellular self-regulation of chronic inflammation. It describes the feedbacks involved in the inflammatory response and explains the possible pathways by which inflammation becomes chronic. The multiplicity of positive feedbacks suggests that symptomatic treatment of chronic inflammation should focus on inhibiting multiple positive feedbacks to effectively suppress all dysregulated elements including inflammation, oxidative stress, calcium stress, mito-stress and other metabolic disturbances.
Collapse
Affiliation(s)
- Krzysztof Piotr Michalak
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | |
Collapse
|
2
|
Li QR, Xu HY, Ma RT, Ma YY, Chen MJ. Targeting Autophagy: A Promising Therapeutic Strategy for Diabetes Mellitus and Diabetic Nephropathy. Diabetes Ther 2024; 15:2153-2182. [PMID: 39167303 PMCID: PMC11410753 DOI: 10.1007/s13300-024-01641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
Diabetes mellitus (DM) significantly impairs patients' quality of life, primarily because of its complications, which are the leading cause of mortality among individuals with the disease. Autophagy has emerged as a key process closely associated with DM, including its complications such as diabetic nephropathy (DN). DN is a major complication of DM, contributing significantly to chronic kidney disease and renal failure. The intricate connection between autophagy and DM, including DN, highlights the potential for new therapeutic targets. This review examines the interplay between autophagy and these conditions, aiming to uncover novel approaches to treatment and enhance our understanding of their underlying pathophysiology. It also explores the role of autophagy in maintaining renal homeostasis and its involvement in the development and progression of DM and DN. Furthermore, the review discusses natural compounds that may alleviate these conditions by modulating autophagy.
Collapse
Affiliation(s)
- Qi-Rui Li
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, China
| | - Hui-Ying Xu
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, China
| | - Rui-Ting Ma
- Inner Mongolia Autonomous Region Mental Health Center, Hohhot, 010010, China
| | - Yuan-Yuan Ma
- The Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao Street, Hohhot, 010050, China.
| | - Mei-Juan Chen
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, China.
| |
Collapse
|
3
|
Cortés A, Marqués J, Pejenaute Á, Ainzúa E, Ansorena E, Abizanda G, Prósper F, de Miguel C, Zalba G. Endothelial NOX5 overexpression induces changes in the cardiac gene profile: potential impact in myocardial infarction? J Physiol Biochem 2023; 79:787-797. [PMID: 37566320 PMCID: PMC10635946 DOI: 10.1007/s13105-023-00975-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 07/06/2023] [Indexed: 08/12/2023]
Abstract
Cardiovascular diseases and the ischemic heart disease specifically constitute the main cause of death worldwide. The ischemic heart disease may lead to myocardial infarction, which in turn triggers numerous mechanisms and pathways involved in cardiac repair and remodeling. Our goal in the present study was to characterize the effect of the NADPH oxidase 5 (NOX5) endothelial expression in healthy and infarcted knock-in mice on diverse signaling pathways. The mechanisms studied in the heart of mice were the redox pathway, metalloproteinases and collagen pathway, signaling factors such as NFκB, AKT or Bcl-2, and adhesion molecules among others. Recent studies support that NOX5 expression in animal models can modify the environment and predisposes organ response to harmful stimuli prior to pathological processes. We found many alterations in the mRNA expression of components involved in cardiac fibrosis as collagen type I or TGF-β and in key players of cardiac apoptosis such as AKT, Bcl-2, or p53. In the heart of NOX5-expressing mice after chronic myocardial infarction, gene alterations were predominant in the redox pathway (NOX2, NOX4, p22phox, or SOD1), but we also found alterations in VCAM-1 and β-MHC expression. Our results suggest that NOX5 endothelial expression in mice preconditions the heart, and we propose that NOX5 has a cardioprotective role. The correlation studies performed between echocardiographic parameters and cardiac mRNA expression supported NOX5 protective action.
Collapse
Affiliation(s)
- Adriana Cortés
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Javier Marqués
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Álvaro Pejenaute
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Elena Ainzúa
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Eduardo Ansorena
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Gloria Abizanda
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Hematology Service, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Felipe Prósper
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Hematology Service, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
- CIBERONC, Madrid, Spain
| | - Carlos de Miguel
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Guillermo Zalba
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
| |
Collapse
|
4
|
Chaudhari S, Yazdizadeh Shotorbani P, Tao Y, Kasetti R, Zode G, Mathis KW, Ma R. Neogenin pathway positively regulates fibronectin production by glomerular mesangial cells. Am J Physiol Cell Physiol 2022; 323:C226-C235. [PMID: 35704698 DOI: 10.1152/ajpcell.00359.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neogenin, a transmembrane receptor, was recently found in kidney cells and immune cells. However, the function of neogenin signaling in kidney is not clear. Mesangial cells (MCs) are a major source of extracellular matrix (ECM) proteins in glomerulus. In many kidney diseases, MCs are impaired and manifest myofibroblast phenotype. Over production of ECM by the injured MCs promotes renal injury and accelerates the progression of kidney diseases. The present study was aimed to determine if neogenin receptor was expressed in MCs and if the receptor signaling regulated ECM protein production by MCs. We showed that neogenin was expressed in the glomerular MCs. Deletion of neogenin using CRISPR/Cas9 lentivirus system, significantly reduced the abundance of fibronectin, an ECM protein. Netrin-1, a ligand for neogenin, also significantly decreased fibronectin production by MCs and decreased neogenin protein expression in MCs. Furthermore, treatment of human MCs with high glucose (25 mM) significantly increased the protein abundance of neogenin as early as 8 h. Consistently, neogenin expression in glomerulus significantly increased in the eNOS-/- db/db diabetic mice starting as early as the age of 8 weeks and this increase sustained at least to the age of 24 weeks. We further found that the HG induced increase in neogenin abundance was blunted by antioxidant PEG-catalase and N-acetyl cysteine. Taken together, our results suggest a new mechanism of regulation of fibronectin production by MCs. This previously unrecognized neogenin-fibronectin pathway may contribute to glomerular injury responses during the course of diabetic nephropathy.
Collapse
Affiliation(s)
- Sarika Chaudhari
- Dept. of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | | | - Yu Tao
- Dept. of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Ramesh Kasetti
- The North Texas Eye Research Institute and Dept. of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, United States
| | - Gulab Zode
- The North Texas Eye Research Institute and Dept. of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, United States
| | - Keisa W Mathis
- Dept. of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Rong Ma
- Dept. of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
5
|
Endothelial NOX5 Expression Modulates Thermogenesis and Lipolysis in Mice Fed with a High-Fat Diet and 3T3-L1 Adipocytes through an Interleukin-6 Dependent Mechanism. Antioxidants (Basel) 2021; 11:antiox11010030. [PMID: 35052534 PMCID: PMC8772862 DOI: 10.3390/antiox11010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity is a global health issue associated with the development of metabolic syndrome, which correlates with insulin resistance, altered lipid homeostasis, and other pathologies. One of the mechanisms involved in the development of these pathologies is the increased production of reactive oxygen species (ROS). One of the main producers of ROS is the family of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, among which NOX5 is the most recently discovered member. The aim of the present work is to describe the effect of endothelial NOX5 expression on neighboring adipose tissue in obesity conditions by using two systems. An in vivo model based on NOX5 conditional knock-in mice fed with a high-fat diet and an in vitro model developed with 3T3-L1 adipocytes cultured with conditioned media of endothelial NOX5-expressing bEnd.3 cells, previously treated with glucose and palmitic acid. Endothelial NOX5 expression promoted the expression and activation of specific markers of thermogenesis and lipolysis in the mesenteric and epididymal fat of those mice fed with a high-fat diet. Additionally, the activation of these processes was derived from an increase in IL-6 production as a result of NOX5 activity. Accordingly, 3T3-L1 adipocytes treated with conditioned media of endothelial NOX5-expressing cells, presented higher expression of thermogenic and lipolytic genes. Moreover, endothelial NOX5-expressing bEnd.3 cells previously treated with glucose and palmitic acid also showed interleukin (IL-6) production. Finally, it seems that the increase in IL-6 stimulated the activation of markers of thermogenesis and lipolysis through phosphorylation of STAT3 and AMPK, respectively. In conclusion, in response to obesogenic conditions, endothelial NOX5 activity could promote thermogenesis and lipolysis in the adipose tissue by regulating IL-6 production.
Collapse
|
6
|
Activated Histone Acetyltransferase p300/CBP-Related Signalling Pathways Mediate Up-Regulation of NADPH Oxidase, Inflammation, and Fibrosis in Diabetic Kidney. Antioxidants (Basel) 2021; 10:antiox10091356. [PMID: 34572988 PMCID: PMC8469026 DOI: 10.3390/antiox10091356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 01/15/2023] Open
Abstract
Accumulating evidence implicates the histone acetylation-based epigenetic mechanisms in the pathoetiology of diabetes-associated micro-/macrovascular complications. Diabetic kidney disease (DKD) is a progressive chronic inflammatory microvascular disorder ultimately leading to glomerulosclerosis and kidney failure. We hypothesized that histone acetyltransferase p300/CBP may be involved in mediating diabetes-accelerated renal damage. In this study, we aimed at investigating the potential role of p300/CBP in the up-regulation of renal NADPH oxidase (Nox), reactive oxygen species (ROS) production, inflammation, and fibrosis in diabetic mice. Diabetic C57BL/6J mice were randomized to receive 10 mg/kg C646, a selective p300/CBP inhibitor, or its vehicle for 4 weeks. We found that in the kidney of C646-treated diabetic mice, the level of H3K27ac, an epigenetic mark of active gene expression, was significantly reduced. Pharmacological inhibition of p300/CBP significantly down-regulated the diabetes-induced enhanced expression of Nox subtypes, pro-inflammatory, and pro-fibrotic molecules in the kidney of mice, and the glomerular ROS overproduction. Our study provides evidence that the activation of p300/CBP enhances ROS production, potentially generated by up-regulated Nox, inflammation, and the production of extracellular matrix proteins in the diabetic kidney. The data suggest that p300/CBP-pharmacological inhibitors may be attractive tools to modulate diabetes-associated pathological processes to efficiently reduce the burden of DKD.
Collapse
|
7
|
KCNQ1OT1/miR-18b/HMGA2 axis regulates high glucose-induced proliferation, oxidative stress, and extracellular matrix accumulation in mesangial cells. Mol Cell Biochem 2020; 476:321-331. [PMID: 32989627 DOI: 10.1007/s11010-020-03909-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022]
Abstract
The dysregulated long noncoding RNAs (lncRNAs) are associated with the pathogenesis of diabetic nephropathy (DN). LncRNA potassium voltage-gated channel subfamily Q member 1 overlapping transcript 1 (KCNQ1OT1) plays an important role in diabetes, but the role and mechanism of KCNQ1OT1 in DN are largely unknown. Serum samples were collected from 30 DN patients and normal volunteers. High glucose (HG)-challenged human mesangial cells (HMCs) were used as a cell model of DN. KCNQ1OT1, microRNA-18b (miR-18b), and high mobility group protein A2 (HMGA2) abundances were examined via quantitative reverse transcription polymerase chain reaction or western blot. Cell proliferation was assessed via 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide. Oxidative stress was assessed via the levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), and SOD2. Extracellular matrix (ECM) accumulation was investigated by the levels of fibronectin (FN), collagen I (Col I), and Col IV. The relationship between miR-18b and KCNQ1OT1 or HMGA2 was determined via dual-luciferase reporter analysis, RNA immunoprecipitation, and pull-down. KCNQ1OT1 expression was increased and miR-18b expression was decreased in DN patients and HG-challenged HMCs. miR-18b was targeted via KCNQ1OT1. Knockdown of KCNQ1OT1 weakened HG-caused proliferation, oxidative stress, and ECM accumulation of HMCs by increasing miR-18b. HMGA2 was targeted via miR-18b. miR-18b alleviated HG-induced cell proliferation, oxidative stress, and ECM accumulation by decreasing HMGA2. Silence of KCNQ1OT1 reduced HMGA2 expression via miR-18b. KCNQ1OT1 knockdown attenuated HG-induced proliferation, oxidative stress, and ECM accumulation of HMCs by regulating miR-18b/HMGA2 axis.
Collapse
|