1
|
Yi K, Zhou Y, Zhang M, Guo Y. The Core Mechanism of Yiqi Yangjing Decoction Inhibiting Nonsmall-Cell Lung Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2256671. [PMID: 35586682 PMCID: PMC9110163 DOI: 10.1155/2022/2256671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/22/2022] [Indexed: 11/23/2022]
Abstract
Background Yiqi Yangjing prescription (YQYJ) is a traditional Chinese medicine prescription used for treating lung cancer. It has a significant effect on enhancing efficacy, reducing toxic symptoms, and improving patients' physical well-being. The effective inhibitory effect on nonsmall-cell lung cancer (NSCLC) has been demonstrated in vitro and in vivo. However, the mechanism of action and the material basis still remain unclear. Methods In this study, we explored this mechanism using network pharmacology, after which we explored the pharmacodynamics and the action mechanism of YQYJ using cell viability evaluation, plate clone formation assay, flow cytometry, real-time quantitative PCR, and Western blot. Results The enrichment results showed that there were 50 active components and 68 core targets related to YQYJ inhibiting NSCLC, including quercetin, luteolin, gamatin, kaempferol, heat shock protein HSP 90-alpha (HSP90AA1), cyclin-dependent kinase 2 (CDK2), epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3), and others. Among them, quercetin and kaempferol revealed the best binding effect with core targets. Most importantly, YQYJ promoted A549 cells from the quiescent phase into the proliferative phase to enhance the sensitivity of A549 cells to YQYJ and inhibited the proliferation of A549 cells significantly (P < 0.05). The A549 cells were blocked in both S and G2/M phases while the apoptosis ratio was increased. The proliferation score of A549 cells treated with YQYJ was significantly reduced compared to A549 cells in the proliferative phase (P < 0.05). This regulatory effect was related to the expression regulation of HSP90AA1, CDK2, STAT3, and phosphor-STAT3 (p-STAT3) by YQYJ, kaempferol, and quercetin. Conclusion Our results suggested that the inhibition of NSCLC via YQYJ had multicomponent and multitarget characteristics. Its core mechanism is related to the regulation of the cell cycle, proliferation, and apoptosis of NSCLC. This study provides a direction and scientific basis for exploring the future mechanism of YQYJ for the treatment of NSCLC.
Collapse
Affiliation(s)
- Kaiyan Yi
- Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yaning Zhou
- Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ming Zhang
- Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yijun Guo
- Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
2
|
Situ Y, Gao R, Lei L, Deng L, Xu Q, Shao Z. System analysis of FHIT in LUAD and LUSC: The expression, prognosis, gene regulation network, and regulation targets. Int J Biol Markers 2022; 37:158-169. [PMID: 35254116 DOI: 10.1177/03936155221084056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Fragile histidine triad (FHIT) is a strong tumor suppressor gene, and cells deficient in FHIT are prone to acquiring cancer-promoting mutations. Due to its location, deletions within FHIT are common in cancer. Over 50% of cancers show loss of FHIT expression. However, to date, expression levels, gene regulatory networks, prognostic value, and target prediction of FHIT in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) have not been fully reported. Therefore, systematic analysis of FHIT expression, gene regulatory network, prognostic value, and targeted prediction in patients with LUAD and LUSC has important guiding significance, providing new therapeutic targets and strategies for clinical treatment of lung cancer to further improve the therapeutic effect of lung cancer. METHODS Multiple free online databases were used for the abovementioned analysis in this study, including cBioPortal, TRRUST, Human Protein Atlas, GeneMANIA, GEPIA, Metascape, UALCAN, LinkedOmics, and TIMER. RESULTS FHIT was upregulated in patients with LUAD, and downregulated in patients with LUSC. Genetic alterations of FHIT were found in patients with LUAD (7%), and LUSC (10%). The promoter methylation of FHIT was lower in patients with LUAD and LUSC. FHIT expression significantly correlated with LUSC pathological stages. Furthermore, patients with LUAD and LUSC having low FHIT expression levels had a longer survival than those having high FHIT expression levels. FHIT and its neighboring genes (the 50 most frequently altered neighboring genes of FHIT) functioned in the regulation of protein kinase and DNA binding in patients with LUAD, as well as cell channels and membrane potential in patients with LUSC. Gene ontology enrichment analysis revealed that the functions of FHIT and its neighboring genes are mainly related to disordered domain-specific binding, protein kinase binding, and ion gated channel activity in patients with LUAD, as well as calcium ion binding and intracellular ligand-gated ion channel activity in patients with LUSC. Transcription factor targets of FHIT and its neighboring genes in patients with lung cancer were found: USF1, SOX6, USF2, SIRT1, VHL, LEF1, EZH2, TP53, HDAC1, ESR1, EGR1, YY1, MYC, RELA, NFKB1, and E2F1 in LUAD; and HDAC1, DNMT1, and E2F1 in LUSC. We further explored the FHIT-associated kinase (PRKCQ, AURKB and ATM in LUAD as well as PLK3 in LUSC) and FHIT-associated miRNA targets (MIR-188, MIR-323, and MIR-518A-2 in LUAD). Furthermore, the following genes had the strongest correlation with FHIT expression in patients with lung cancer: NICN1, HEMK1, and BDH2 in LUAD, and ZMAT1, TTC21A, and NICN1 in LUSC. FHIT expression was positively associated with immune cell infiltration (B cell) in patients with LUAD, as well as B cell, CD8 + T, CD4 + T cells, macrophages, and dendritic cells in patients with LUSC. Nevertheless, FHIT expression was negatively associated with CD8 + T cells and neutrophils in patients with LUAD. CONCLUSIONS The expression, gene regulatory network, prognostic value and targeted prediction of FHIT in patients with LUAD and LUSC were systematically analyzed and revealed in this study, thereby laying a foundation for further research on the role of FHIT in LUAD and LUSC occurrence. This study provides new LUAD and LUSC therapeutic targets and prognostic biomarkers as a reference for fundamental and clinical research.
Collapse
Affiliation(s)
- Yongli Situ
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, Guangdong, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ruxiu Gao
- Department of Parasitology, 12453Guangdong Medical University, Zhanjiang 524023,Guangdong, China
| | - Lei Lei
- Department of Parasitology, 12453Guangdong Medical University, Zhanjiang 524023,Guangdong, China
| | - Li Deng
- Department of Parasitology, 12453Guangdong Medical University, Zhanjiang 524023,Guangdong, China
| | - Qinying Xu
- Department of Parasitology, 12453Guangdong Medical University, Zhanjiang 524023,Guangdong, China
| | - Zheng Shao
- Department of Parasitology, 12453Guangdong Medical University, Zhanjiang 524023,Guangdong, China
| |
Collapse
|
3
|
Rood K, Begum K, Wang H, Wangworawat YC, Davis R, Yamauchi CR, Perez MC, Simental AA, Laxa RT, Wang C, Roy S, Khan S. Differential Expression of Non-Coding RNA Signatures in Thyroid Cancer between Two Ethnic Groups. ACTA ACUST UNITED AC 2021; 28:3610-3628. [PMID: 34590612 PMCID: PMC8482137 DOI: 10.3390/curroncol28050309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/27/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022]
Abstract
Filipino Americans show higher thyroid cancer recurrence rates compared to European Americans. Although they are likely to die of this malignancy, the molecular mechanism has not yet been determined. Recent studies demonstrated that small non-coding RNAs could be utilized to assess thyroid cancer prognosis in tumor models. The goal of this study is to determine whether microRNA (miRNA) signatures are differentially expressed in thyroid cancer in two different ethnic groups. We also determined whether these miRNA signatures are related to cancer staging. This is a retrospective study of archival samples from patients with thyroid cancer (both sexes) in the pathology division from the last ten years at Loma Linda University School of Medicine, California. Deidentified patient demographics were extracted from the patient chart. Discarded formalin-fixed paraffin-embedded tissues were collected post-surgeries. We determined the differential expressions of microRNA in archival samples from Filipino Americans compared to European Americans using the state-of-the-art technique, HiSeq4000. By ingenuity pathway analysis, we determined miRNA targets and the pathways that those targets are involved in. We validated their expressions by real-time quantitative PCR and correlated them with the clinicopathological status in a larger cohort of miRNA samples from both ethnicities. We identified the differentially upregulated/downregulated miRNA clusters in Filipino Americans compared to European Americans. Some of these miRNA clusters are known to target genes that are linked to cancer invasion and metastasis. In univariate analysis, ethnicity and tumor staging were significant factors predicting miR-4633-5p upregulation. When including these factors in a multivariate logistic regression model, ethnicity and tumor staging remained significant independent predictors of miRNA upregulation, whereas the interaction of ethnicity and tumor staging was not significant. In contrast, ethnicity remained an independent predictor of significantly downregulated miR-491-5p and let-7 family. We provide evidence that Filipino Americans showed differentially expressed tumor-tissue-derived microRNA clusters. The functional implications of these miRNAs are under investigation.
Collapse
Affiliation(s)
- Kristiana Rood
- Division of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (K.R.); (H.W.); (R.D.); (C.R.Y.); (R.T.L.)
- Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Khodeza Begum
- Department of Biological Sciences, University of Texas El Paso, El Paso, TX 79968, USA;
- Border Biomedical Research Center, University of Texas El Paso, El Paso, TX 79968, USA
| | - Hanmin Wang
- Division of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (K.R.); (H.W.); (R.D.); (C.R.Y.); (R.T.L.)
| | - Yan C. Wangworawat
- Department of Pathology & Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Y.C.W.); (M.C.P.)
| | - Ryan Davis
- Division of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (K.R.); (H.W.); (R.D.); (C.R.Y.); (R.T.L.)
- Division of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA;
| | - Celina R. Yamauchi
- Division of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (K.R.); (H.W.); (R.D.); (C.R.Y.); (R.T.L.)
- Division of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA;
| | - Mia C. Perez
- Department of Pathology & Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Y.C.W.); (M.C.P.)
- Division of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA;
| | - Alfred A. Simental
- Division of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA;
| | - Ria T. Laxa
- Division of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (K.R.); (H.W.); (R.D.); (C.R.Y.); (R.T.L.)
- Division of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA;
| | - Charles Wang
- Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA;
| | - Sourav Roy
- Department of Biological Sciences, University of Texas El Paso, El Paso, TX 79968, USA;
- Border Biomedical Research Center, University of Texas El Paso, El Paso, TX 79968, USA
- Correspondence: (S.R.); (S.K.)
| | - Salma Khan
- Division of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (K.R.); (H.W.); (R.D.); (C.R.Y.); (R.T.L.)
- Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Division of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA;
- Department of Internal Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
- Correspondence: (S.R.); (S.K.)
| |
Collapse
|
4
|
Ghafouri-Fard S, Aghabalazade A, Shoorei H, Majidpoor J, Taheri M, Mokhtari M. The Impact of lncRNAs and miRNAs on Apoptosis in Lung Cancer. Front Oncol 2021; 11:714795. [PMID: 34367998 PMCID: PMC8335161 DOI: 10.3389/fonc.2021.714795] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is a coordinated cellular process that occurs in several physiological situations. Dysregulation of apoptosis has been documented in numerous pathological situations, particularly cancer. Non-coding RNAs regulate apoptosis via different mechanisms. Lung cancer is among neoplastic conditions in which the role of non-coding RNAs in the regulation of apoptosis has been investigated. Non-coding RNAs that regulate apoptosis in lung cancer have functional interactions with PI3K/Akt, PTEN, GSK-3β, NF-κB, Bcl-2, Bax, p53, mTOR and other important cancer-related pathways. Globally, over-expression of apoptosis-blocking non-coding RNAs has been associated with poor prognosis of patients, while apoptosis-promoting ones have the opposite effect. In the current paper, we describe the impact of lncRNAs and miRNAs on cell apoptosis in lung cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Aghabalazade
- Department of Pharmacology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Jamal Majidpoor
- Department of Anatomical Sciences, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Mokhtari
- Critical Care Quality improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Masood M, Grimm S, El-Bahrawy M, Yagüe E. TMEFF2: A Transmembrane Proteoglycan with Multifaceted Actions in Cancer and Disease. Cancers (Basel) 2020; 12:3862. [PMID: 33371267 PMCID: PMC7766544 DOI: 10.3390/cancers12123862] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022] Open
Abstract
Transmembrane protein with an EGF-like and two Follistatin-like domains 2 (TMEFF2) is a 374-residue long type-I transmembrane proteoglycan which is proteolytically shed from the cell surface. The protein is involved in a range of functions including metabolism, neuroprotection, apoptosis, embryonic development, onco-suppression and endocrine function. TMEFF2 is methylated in numerous cancers, and an inverse correlation with the stage, response to therapy and survival outcome has been observed. Moreover, TMEFF2 methylation increases with breast, colon and gastric cancer progression. TMEFF2 is methylated early during oncogenesis in breast and colorectal cancer, and the detection of methylated free-circulating TMEFF2 DNA has been suggested as a potential diagnostic tool. The TMEFF2 downregulation signature equals and sometimes outperforms the Gleason and pathological scores in prostate cancer. TMEFF2 is downregulated in glioma and cotricotropinomas, and it impairs the production of adrenocorticotropic hormone in glioma cells. Interestingly, through binding the amyloid β protein, its precursor and derivatives, TMEFF2 provides neuroprotection in Alzheimer's disease. Despite undergoing extensive investigation over the last two decades, the primary literature regarding TMEFF2 is incoherent and offers conflicting information, in particular, the oncogenic vs. onco-suppressive role of TMEFF2 in prostate cancer. For the first time, we have compiled, contextualised and critically analysed the vast body of TMEFF2-related literature and answered the apparent discrepancies regarding its function, tissue expression, intracellular localization and oncogenic vs. onco-suppressive role.
Collapse
Affiliation(s)
- Motasim Masood
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK;
| | - Stefan Grimm
- Department of Medicine, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK;
| | - Mona El-Bahrawy
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Ernesto Yagüe
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK;
| |
Collapse
|
6
|
Bioinformatics Analysis of Key Genes and circRNA-miRNA-mRNA Regulatory Network in Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2862701. [PMID: 32908877 PMCID: PMC7463386 DOI: 10.1155/2020/2862701] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
Abstract
Gastric cancer (GC) is one of the most common malignancies in the world, with morbidity and mortality ranking second among all cancers. Accumulating evidences indicate that circular RNAs (circRNAs) are closely correlated with tumorigenesis. However, the mechanisms of circRNAs still remain unclear. This study is aimed at determining hub genes and circRNAs and analyzing their potential biological functions in GC. Expression profiles of mRNAs and circRNAs were downloaded from the Gene Expression Omnibus (GEO) data sets of GC and paracancer tissues. Differentially expressed genes (DEGs) and differentially expressed circRNAs (DE-circRNAs) were identified. The target miRNAs of DE-circRNAs and the bidirectional interaction between target miRNAs and DEGs were predicted. Functional analysis was performed, and the protein-protein interaction (PPI) network and the circRNA-miRNA-mRNA network were established. A total of 456 DEGs and 2 DE-circRNAs were identified with 3 mRNA expression profiles and 2 circRNA expression profiles. GO analysis indicated that DEGs were mainly enriched in extracellular matrix and cell adhesion, and KEGG confirmed that DEGs were mainly associated with focal adhesion, the PI3K-Akt signaling pathway, extracellular matrix- (ECM)- receptor interaction, and gastric acid secretion. 15 hub DEGs (BGN, COL1A1, COL1A2, FBN1, FN1, SPARC, SPP1, TIMP1, UBE2C, CCNB1, CD44, CXCL8, COL3A1, COL5A2, and THBS1) were identified from the PPI network. Furthermore, the survival analysis indicate that GC patients with a high expression of the following 9 hub DEGs, namely, BGN, COL1A1, COL1A2, FBN1, FN1, SPARC, SPP1, TIMP1, and UBE2C, had significantly worse overall survival. The circRNA-miRNA-mRNA network was constructed based on 1 circRNA, 15 miRNAs, and 45 DEGs. In addition, the 45 DEGs included 5 hub DEGs. These results suggested that hub DEGs and circRNAs could be implicated in the pathogenesis and development of GC. Our findings provide novel evidence on the circRNA-miRNA-mRNA network and lay the foundation for future research of circRNAs in GC.
Collapse
|
7
|
Liu Y, Li L, Liu Z, Yuan Q, Lu X. Plasma miR-323 as a Biomarker for Screening Papillary Thyroid Cancer From Healthy Controls. Front Med (Lausanne) 2020; 7:122. [PMID: 32478079 PMCID: PMC7242560 DOI: 10.3389/fmed.2020.00122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/19/2020] [Indexed: 11/25/2022] Open
Abstract
The present study aims to evaluate whether plasma miR-323 serves as a potential biomarker to screen patients with papillary thyroid cancer (PTC) from healthy controls. Real-time PCR was performed to evaluate miR-323 expression in healthy controls and benign thyroid nodule (BTN) and PTC patients. Receiver operating characteristic (ROC) curve analysis was used to evaluate whether plasma miR-323 could be used to screen PTC patients from BTN patients and healthy controls. Plasma miR-323 was significantly increased in PTC patients compared with that in BNT patients and healthy controls. Moreover, miR-323 in the thyroid tissue was significantly increased in PTC patients when compared to BNT patients. We further showed that plasma and tissue miR-323 levels were significantly increased in PTC patients with metastasis compared to those without metastasis. Plasma miR-323 was significantly increased in PTC patients with BRAF V600E mutation when compared to those with wild-type BRAF. Furthermore, plasma miR-323 was significantly increased in PTC patients with higher Tg-FNAB. ROC analysis showed that plasma miR-323 could distinguish PTC patients from BNT patients and healthy controls. The present study demonstrated that plasma miR-323 might be an effective noninvasive indicator for PTC progression and serve as a biomarker for the diagnosis of PTC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Li
- Department of Dermatology, Henan Children's Hospital, Zhengzhou, China
| | - Zheng Liu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingling Yuan
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiubo Lu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|