1
|
Specific Blood RNA Profiles in Individuals with Acute Spinal Cord Injury as Compared with Trauma Controls. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1485135. [PMID: 36686379 PMCID: PMC9851797 DOI: 10.1155/2023/1485135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/30/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023]
Abstract
Background Spinal cord injury (SCI) is known to cause a more robust systemic inflammatory response than general trauma without CNS injury, inducing severe secondary organ damage, especially the lung and liver. Related studies are principally focused on the mechanisms underlying repair and regeneration in the injured spinal cord tissue. However, the specific mechanism of secondary injury after acute SCI is widely overlooked, compared with general trauma. Methods Two datasets of GSE151371 and GSE45376 related to the blood samples and spinal cord after acute SCI were selected to identify the differentially expressed genes (DEGs). In GSE151371, functional enrichment analysis on specific DEGs of blood samples was performed. And the top 15 specific hub genes were identified from intersectional genes between the specific upregulated DEGs of blood samples in GSE151371 and the upregulated DEGs of the spinal cord in GSE45376. The specific functional enrichment analysis and the drug candidates of the hub genes and the miRNAs-targeted hub genes were also analyzed and predicted. Results DEGs were identified, and a total of 64 specific genes were the intersection of upregulated genes of the spinal cord in GSE45376 and upregulated genes of human blood samples in GSE151371. The top 15 hub genes including HP, LCN2, DLGAP5, CEP55, HMMR, CDKN3, PRTN3, SKA3, MPO, LTF, CDC25C, MMP9, NEIL3, NUSAP1, and CD163 were calculated from the 64 specific genes. Functional enrichment analysis of the top 15 hub genes revealed inflammation-related pathways. The predicted miRNAs-targeted hub genes and drug candidates of hub genes were also performed to put forward reasonable treatment strategies. Conclusion The specific hub genes of acute SCI as compared with trauma without CNS injury were identified. The functional enrichment analysis of hub genes showed a specific immune response. Several predicted drugs of hub genes were also obtained. The hub genes and the predicted miRNAs may be potential biomarkers and therapeutic targets and require further validation.
Collapse
|
2
|
Hart SN, Patel SP, Michael FM, Stoilov P, Leow CJ, Hernandez AG, Jolly A, de la Grange P, Rabchevsky AG, Stamm S. Rat Spinal Cord Injury Associated with Spasticity Leads to Widespread Changes in the Regulation of Retained Introns. Neurotrauma Rep 2022; 3:105-121. [PMID: 35403103 PMCID: PMC8985541 DOI: 10.1089/neur.2021.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Samantha N. Hart
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Samir P. Patel
- Department of Physiology and Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, Kentucky, USA
| | - Felicia M. Michael
- Department of Physiology and Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, Kentucky, USA
| | - Peter Stoilov
- Department of Biochemistry, University West Virginia, Morgantown, West Virginia, USA
| | - Chi Jing Leow
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | - Alexander G. Rabchevsky
- Department of Physiology and Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, Kentucky, USA
| | - Stefan Stamm
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
3
|
Li Q, Li B, Tao B, Zhao C, Fan B, Wang Q, Sun C, Duan H, Pang Y, Fu X, Feng S. Identification of four genes and biological characteristics associated with acute spinal cord injury in rats integrated bioinformatics analysis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:570. [PMID: 33987268 PMCID: PMC8105796 DOI: 10.21037/atm-21-603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/05/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) is a serious condition that can cause physical disability and sensory dysfunction. Cytokines play an extremely important role in the acute phase of SCI. Clarifying the cytokine expression profile is of great importance. METHODS Cytokine array analysis was used to explore the changes in 67 different proteins at 0 hours, 2 hours, 1 day, 3 days, and 7 days after acute SCI in rats. The differentially expressed cytokines in the various periods were analyzed and compared. The biological processes related to the differentially expressed proteins were examined using Gene Ontology (GO) analysis. RESULTS Immediately after SCI (0 hours), only ciliary neurotrophic factor (CNTF) was slightly up-regulated, while 23 other proteins were down-regulated. At 2 hours after SCI, there were 3 upregulated and 21 downregulated proteins. At 1 day after SCI, there were 5 upregulated and 6 downregulated proteins. At 3 days after SCI, there were 6 upregulated and 4 downregulated proteins. At 7 days after SCI, there were 4 upregulated and 9 downregulated proteins. Erythropoietin (EPO) and Fms related tyrosine kinase 3 ligand (Flt-3L) were downregulated at all time points. CD48 was decreased at 2 hours to 7 days after SCI. Monocyte chemotactic protein-1 (MCP-1) was the only protein that was upregulated at 2 hours to 7 days. The GO and pathway analyses revealed that the cytokine-related pathways, cell death, and proliferation might play a key role during secondary SCI. CONCLUSIONS This study identified 3 downregulated proteins during SCI, that being EPO, Flt-3L, and CD48. MCP-1 was the only upregulated protein, and its expression was upregulated till day 7 following SCI. These 4 identified genes may be potential therapeutic targets for the treatment of SCI.
Collapse
Affiliation(s)
- Qiang Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Bo Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bo Tao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Chenxi Zhao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Baoyou Fan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Qi Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
- Department of Orthopedics, Tianjin Hospital of ITCWM Nankai Hospital, Tianjin, China
| | - Chao Sun
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Huiquan Duan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Yilin Pang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Xuanhao Fu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| |
Collapse
|