1
|
Toriyama K, Au Yeung WK, Inoue A, Kurimoto K, Yabuta Y, Saitou M, Nakamura T, Nakano T, Sasaki H. DPPA3 facilitates genome-wide DNA demethylation in mouse primordial germ cells. BMC Genomics 2024; 25:344. [PMID: 38580899 PMCID: PMC10996186 DOI: 10.1186/s12864-024-10192-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/05/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Genome-wide DNA demethylation occurs in mammalian primordial germ cells (PGCs) as part of the epigenetic reprogramming important for gametogenesis and resetting the epigenetic information for totipotency. Dppa3 (also known as Stella or Pgc7) is highly expressed in mouse PGCs and oocytes and encodes a factor essential for female fertility. It prevents excessive DNA methylation in oocytes and ensures proper gene expression in preimplantation embryos: however, its role in PGCs is largely unexplored. In the present study, we investigated whether or not DPPA3 has an impact on CG methylation/demethylation in mouse PGCs. RESULTS We show that DPPA3 plays a role in genome-wide demethylation in PGCs even before sex differentiation. Dppa3 knockout female PGCs show aberrant hypermethylation, most predominantly at H3K9me3-marked retrotransposons, which persists up to the fully-grown oocyte stage. DPPA3 works downstream of PRDM14, a master regulator of epigenetic reprogramming in embryonic stem cells and PGCs, and independently of TET1, an enzyme that hydroxylates 5-methylcytosine. CONCLUSIONS The results suggest that DPPA3 facilitates DNA demethylation through a replication-coupled passive mechanism in PGCs. Our study identifies DPPA3 as a novel epigenetic reprogramming factor in mouse PGCs.
Collapse
Affiliation(s)
- Keisuke Toriyama
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Wan Kin Au Yeung
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Azusa Inoue
- Laboratory for Epigenome Inheritance, Riken Center for Integrative Medical Sciences, Kanagawa, 230-0045, Japan
- Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Kazuki Kurimoto
- Department of Embryology, School of Medicine, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 634-8521, Japan
| | - Yukihiro Yabuta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe- cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe- cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toshinobu Nakamura
- Laboratory for Epigenetic Regulation, Department of Animal Bio-Science, Nagahama Institute of Bio-Science and Technology, Shiga, 526-0829, Japan
| | - Toru Nakano
- Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
2
|
Yu T, Ning J, Chen M, Wang F, Liu G, Wang Q, Xu X, Wang C, Lu X. Potential Involvement of DNA Methylation in Hybrid Sterility in Hermaphroditic Argopecten Scallops. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:701-717. [PMID: 37548862 DOI: 10.1007/s10126-023-10233-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023]
Abstract
DNA methylation is an important epigenetic modification factor in regulating fertility. Corresponding process remains poorly investigated in hermaphroditic scallops. The interspecific F1 hybrids between the hermaphroditic bay scallops (Argopecten irradians) and Peruvian scallops (Argopecten purpuratus) exhibited significant heterosis in yield, but sterility in hybrids obstructs the utilization of the genetic resources. However, the determination mechanism of hybrid sterility in the hermaphroditic Argopecten scallops is still unclear. In this study, the effect of DNA methylation in the hybrid sterility of hermaphroditic Argopecten scallops was explored. The results showed that the mean methylation level was higher in sterile hybrids than fertile hybrids, especially on chromosome 11 of the paternal parent. A total of 61,062 differentially methylated regions (DMRs) were identified, containing 3619 differentially methylated genes (DMGs) and 1165 differentially methylated promoters that are located in the DMRs of CG sequence context. The hyper-methylated genes were enriched into five KEGG pathways, including ubiquitin-mediated proteolysis, ECM-receptor interaction, non-homologous end-joining, notch signaling, and the mismatch repair pathways. The DMGs might induce hybrid sterility by inhibition of oogenesis and egg maturation, induction of apoptosis, increased ROS, and insufficient ATP supply. Our results would enrich the determination mechanism of hybrid sterility and provide new insights into the utilization of the genetic resources of the interspecific hybrids.
Collapse
Affiliation(s)
- Tieying Yu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junhao Ning
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, Shandong, China
| | - Min Chen
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, Shandong, China
| | - Fukai Wang
- College of Marine Science and Engineering, Qingdao Agricultural University, 266109, Qingdao, Shandong, China
| | - Guilong Liu
- Yantai Spring-Sea AquaSeed, Ltd., 264006, Yantai, China
| | - Quanchao Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, Shandong, China
| | - Xin Xu
- Yantai Spring-Sea AquaSeed, Ltd., 264006, Yantai, China
| | - Chunde Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, Shandong, China
- College of Marine Science and Engineering, Qingdao Agricultural University, 266109, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xia Lu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, Shandong, China.
| |
Collapse
|
3
|
Chao L, Yang S, Li H, Long C, Xi Q, Zuo Y. Competitive binding of TET1 and DNMT3A/B cooperates the DNA methylation pattern in human embryonic stem cells. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194861. [PMID: 35998875 DOI: 10.1016/j.bbagrm.2022.194861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
DNMT3A/B and TET1 play indispensable roles in regulating DNA methylation that undergoes extensive reprogramming during mammalian embryogenesis. Yet the competitive and cooperative relationships between TET1 and DNMT3A/B remain largely unknown in the human embryonic stem cells. Here, we revealed that the main DNA-binding domain of TET1 contains more positive charges by using charge reduction of amino acid alphabet, followed by DNMT3A and DNMT3B. The genome-wide binding profiles showed that TET1 prefers binding to the proximal promoters and CpG islands compared with DNMT3A/B. Moreover, the binding regions of these three transcription factors can be divided into specific and co-binding regions. And a stronger inhibitory effect of DNMT3A on TET1 demethylation was observed in co-binding regions. Furthermore, we integrated TET1 knockout data to further discuss the competitive binding patterns of TET1 and DNMT3A/B. The lack of TET1 increased the occupation of DNMT3A/B at the specific binding regions of TET1 causing focal hypermethylation. The knockout of TET1 was also accompanied by a reduction of DNMT3A/B binding in the co-binding regions, further confirming the cooperative binding function between TET1 and DNMT3A/B. In conclusion, our studies found that the competitive binding of TET1 and DNMT3A/B cooperatively shapes the global DNA methylation pattern in human embryonic stem cells.
Collapse
Affiliation(s)
- Lemuge Chao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Siqi Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Hanshuang Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Chunshen Long
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Qilemuge Xi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China..
| |
Collapse
|