1
|
Chahine MN, Mioulane M, Sikkel MB, O'Gara P, Dos Remedios CG, Pierce GN, Lyon AR, Földes G, Harding SE. Nuclear pore rearrangements and nuclear trafficking in cardiomyocytes from rat and human failing hearts. Cardiovasc Res 2014; 105:31-43. [PMID: 25341891 PMCID: PMC4277256 DOI: 10.1093/cvr/cvu218] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aims During cardiac hypertrophy, cardiomyocytes (CMs) increase in the size and expression of cytoskeletal proteins while reactivating a foetal gene programme. The process is proposed to be dependent on increased nuclear export and, since nuclear pore trafficking has limited capacity, a linked decrease in import. Our objective was to investigate the role of nuclear import and export in control of hypertrophy in rat and human heart failure (HF). Methods and results In myocardial tissue and isolated CMs from patients with dilated cardiomyopathy, nuclear size was increased; Nucleoporin p62, cytoplasmic RanBP1, and nuclear translocation of importins (α and β) were decreased while Exportin-1 was increased. CM from a rat HF model 16 weeks after myocardial infarction (MI) reproduced these nuclear changes. Nuclear import, determined by the rate of uptake of nuclear localization sequence (NLS)-tagged fluorescent substrate, was also decreased and this change was observed from 4 weeks after MI, before HF has developed. Treatment of isolated rat CMs with phenylephrine (PE) for 48 h produced similar cell and nuclear size increases, nuclear import and export protein rearrangement, and NLS substrate uptake decrease through p38 MAPK and HDAC-dependent pathways. The change in NLS substrate uptake occurred within 15 min of PE exposure. Inhibition of nuclear export with leptomycin B reversed established nuclear changes in PE-treated rat CMs and decreased NLS substrate uptake and cell/nuclear size in human CMs. Conclusions Nuclear transport changes related to increased export and decreased import are an early event in hypertrophic development. Hypertrophy can be prevented, or even reversed, by targeting import/export, which may open new therapeutic opportunities.
Collapse
Affiliation(s)
| | | | | | | | | | - Grant N Pierce
- Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Alexander R Lyon
- NHLI, Imperial College, London, UK NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK
| | | | | |
Collapse
|
2
|
Darlow JM, Dobson MG, Darlay R, Molony CM, Hunziker M, Green AJ, Cordell HJ, Puri P, Barton DE. A new genome scan for primary nonsyndromic vesicoureteric reflux emphasizes high genetic heterogeneity and shows linkage and association with various genes already implicated in urinary tract development. Mol Genet Genomic Med 2013; 2:7-29. [PMID: 24498626 PMCID: PMC3907909 DOI: 10.1002/mgg3.22] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/21/2013] [Indexed: 12/18/2022] Open
Abstract
Primary vesicoureteric reflux (VUR), the retrograde flow of urine from the bladder toward the kidneys, results from a developmental anomaly of the vesicoureteric valve mechanism, and is often associated with other urinary tract anomalies. It is the most common urological problem in children, with an estimated prevalence of 1–2%, and is a major cause of hypertension in childhood and of renal failure in childhood or adult life. We present the results of a genetic linkage and association scan using 900,000 markers. Our linkage results show a large number of suggestive linkage peaks, with different results in two groups of families, suggesting that VUR is even more genetically heterogeneous than previously imagined. The only marker achieving P < 0.02 for linkage in both groups of families is 270 kb from EMX2. In three sibships, we found recessive linkage to KHDRBS3, previously reported in a Somali family. In another family we discovered sex-reversal associated with VUR, implicating PRKX, for which there was weak support for dominant linkage in the overall data set. Several other candidate genes are suggested by our linkage or association results, and four of our linkage peaks are within copy-number variants recently found to be associated with renal hypodysplasia. Undoubtedly there are many genes related to VUR. Our study gives support to some loci suggested by earlier studies as well as suggesting new ones, and provides numerous indications for further investigations.
Collapse
Affiliation(s)
- J M Darlow
- National Centre for Medical Genetics, Our Lady's Children's Hospital Crumlin, Dublin, 12, Ireland ; National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, 12, Ireland
| | - M G Dobson
- National Centre for Medical Genetics, Our Lady's Children's Hospital Crumlin, Dublin, 12, Ireland ; National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, 12, Ireland
| | - R Darlay
- Institute of Genetic Medicine, Newcastle University Newcastle upon Tyne, United Kingdom
| | - C M Molony
- Merck & Co. Inc 1 Merck Drive, Whitehouse Station, New Jersey, 08889
| | - M Hunziker
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, 12, Ireland ; National Children's Hospital Tallaght, Dublin, 24, Ireland
| | - A J Green
- National Centre for Medical Genetics, Our Lady's Children's Hospital Crumlin, Dublin, 12, Ireland ; University College Dublin UCD School of Medicine and Medical Sciences, Our Lady's Children's Hospital Crumlin, Dublin, 12, Ireland
| | - H J Cordell
- Institute of Genetic Medicine, Newcastle University Newcastle upon Tyne, United Kingdom
| | - P Puri
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, 12, Ireland ; National Children's Hospital Tallaght, Dublin, 24, Ireland
| | - D E Barton
- National Centre for Medical Genetics, Our Lady's Children's Hospital Crumlin, Dublin, 12, Ireland ; University College Dublin UCD School of Medicine and Medical Sciences, Our Lady's Children's Hospital Crumlin, Dublin, 12, Ireland
| |
Collapse
|