1
|
Fan Y, Chen J, Liu M, Xu X, Zhang Y, Yue P, Cao W, Ji Z, Su X, Wen S, Kong J, Zhou G, Li B, Dong Y, Liu A, Bao F. Application of Droplet Digital PCR to Detection of Mycobacterium tuberculosis and Mycobacterium leprae Infections: A Narrative Review. Infect Drug Resist 2022; 15:1067-1076. [PMID: 35313727 PMCID: PMC8934166 DOI: 10.2147/idr.s349607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/25/2022] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (MTB) infection, which has seriously endangered human health for many years. With the emergence of multidrug-resistant and extensively drug-resistant MTB, the prevention and treatment of TB has become a pressing need. Early diagnosis, drug resistance monitoring, and control of disease transmission are critical aspects in the prevention and treatment of TB. However, the currently available diagnostic technologies and drug sensitivity tests are time consuming, and thus, it is difficult to achieve the goal of early diagnosis and detection drug sensitivity, which results in limited control of disease transmission. The development of molecular testing technology has gradually achieved the vision of rapid and accurate diagnosis of TB. Droplet digital PCR (ddPCR) is an excellent nucleic acid quantification method with high sensitivity and no need for a calibration curve. Herein, we review the application of ddPCR in TB diagnosis and drug resistance detection and transmission monitoring.
Collapse
Affiliation(s)
- Yuxin Fan
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650030, People’s Republic of China
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, The Affiliated Children Hospital, Kunming Medical University, Kunming, 650030, People’s Republic of China
| | - Jingjing Chen
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, 650030, People’s Republic of China
| | - Meixiao Liu
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650030, People’s Republic of China
| | - Xin Xu
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650030, People’s Republic of China
| | - Yu Zhang
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650030, People’s Republic of China
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, The Affiliated Children Hospital, Kunming Medical University, Kunming, 650030, People’s Republic of China
| | - Peng Yue
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, 650030, People’s Republic of China
| | - Wenjing Cao
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, 650030, People’s Republic of China
| | - Zhenhua Ji
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650030, People’s Republic of China
| | - Xuan Su
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650030, People’s Republic of China
| | - Shiyuan Wen
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650030, People’s Republic of China
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, The Affiliated Children Hospital, Kunming Medical University, Kunming, 650030, People’s Republic of China
| | - Jing Kong
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650030, People’s Republic of China
| | - Guozhong Zhou
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650030, People’s Republic of China
| | - Bingxue Li
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650030, People’s Republic of China
| | - Yan Dong
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650030, People’s Republic of China
| | - Aihua Liu
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, The Affiliated Children Hospital, Kunming Medical University, Kunming, 650030, People’s Republic of China
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, 650030, People’s Republic of China
- Correspondence: Aihua Liu; Fukai Bao, The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China, Email ;
| | - Fukai Bao
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650030, People’s Republic of China
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, The Affiliated Children Hospital, Kunming Medical University, Kunming, 650030, People’s Republic of China
| |
Collapse
|
2
|
Pan SW, Su WJ, Chan YJ, Chuang FY, Feng JY, Chen YM. Mycobacterium tuberculosis-derived circulating cell-free DNA in patients with pulmonary tuberculosis and persons with latent tuberculosis infection. PLoS One 2021; 16:e0253879. [PMID: 34166477 PMCID: PMC8224927 DOI: 10.1371/journal.pone.0253879] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/14/2021] [Indexed: 01/15/2023] Open
Abstract
Objectives The timely diagnosis of pulmonary tuberculosis (PTB) is challenging. Although pathogen-derived circulating cell-free DNA (cfDNA) has been detected in humans, the significance of Mycobacterium tuberculosis (MTB)-cfDNA detection in patients with PTB remains unclear. Methods This study enrolled patients with PTB and persons with latent tuberculosis infection (LTBI) as the study and control groups, respectively, from 2018 to 2020. We measured interferon-γ levels and calculated blood monocyte-to-lymphocyte ratio (MLR). We conducted plasma cfDNA extraction, quantitative polymerase chain reaction (qPCR), and droplet digital PCR targeting the IS6110 gene of MTB. We calculated the sensitivity and specificity of using MTB-cfDNA to identify PTB and analyzed the factors associated with PTB diagnosis and MTB-cfDNA positivity. Results We enrolled 24 patients with PTB and 57 LTBI controls. The sensitivity of using MTB-cfDNA to identify PTB was 54.2%(13/24) in total and 46.2%(6/13) in smear-negative cases. Two LTBI controls (3.5%) tested positive for MTB-cfDNA, indicating a specificity of 96.5%(55/57). By using MTB-cfDNA positivity and an MLR ≥0.42 to identify PTB, sensitivity increased to 79.2%(19/24). Among patients with PTB, MTB-specific interferon-γ levels were higher in MTB-cfDNA positive participants than in those who tested negative (7.0 ±2.7 vs 2.7±3.0 IU/mL, p<0.001). MTB-cfDNA levels declined after 2 months of anti-tuberculosis therapy (p<0.001). Conclusion The sensitivity of using MTB-cfDNA to identify PTB in participants was 54.2%, which increased to 79.2% after incorporating an MLR ≥0.42 into the analysis. MTB-cfDNA positivity was associated with MTB-specific immune response, and MTB-cfDNA levels declined after treatment. The clinical value of MTB-cfDNA in PTB management necessitates further investigation.
Collapse
Affiliation(s)
- Sheng-Wei Pan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan
- * E-mail: (JYF); (SWP)
| | - Wei-Juin Su
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Jiun Chan
- Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fan-Yi Chuang
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jia-Yih Feng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- * E-mail: (JYF); (SWP)
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
3
|
Mayito J, Andia Biraro I, T. Reece S, R. Martineau A, P. Kateete D. Detection of Mycobacterium tuberculosis DNA in CD34 + peripheral blood mononuclear cells of Ugandan adults with latent infection: a cross-sectional and nested prospective study. AAS Open Res 2020; 3:34. [PMID: 32832853 PMCID: PMC7422845 DOI: 10.12688/aasopenres.13108.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Tuberculin skin test and interferon gamma release assay (IGRA) show limitations in diagnosing latent tuberculosis infection (LTBI) and poorly predict progression to active tuberculosis. This study will explore detection of Mycobacterium tuberculosis ( M.tb) DNA in CD34 + peripheral blood mononuclear cells (PBMCs) as a biomarker for LTBI and monitoring chemoprophylaxis response. Methods: In a cross-sectional study, 120 household contacts (60 HIV positive and 60 HIV negative) will be recruited. Also, 10 patients with sputum positive pulmonary tuberculosis and 10 visitors from low incidence countries with no history of TB treatment will be recruited as positive and negative controls, respectively. Participants will donate 100 ml (50 ml for TB patients) of blood to isolate PBMCs using density gradient centrifugation. Isolated PBMCs will be separated into CD34 + and CD34 - enriched cellular fractions. DNA from each fraction will be purified, quantified and subjected to droplet digital PCR targeting IS6110 (a M.tb Complex multi-copy gene) and rpoB, a single copy gene. Also, 4 ml of blood will be drawn for IGRA. In a nested prospective study, 60 HIV positive participants will be given 300 mg of Isoniazid Preventive Therapy (IPT) daily for six months, after which they will donate a second 100 ml blood sample that will be processed as described above. Data from the cross-sectional study will be analysed to determine the proportion of individuals in whom M.tb DNA is detectable in CD34 + and CD34 - fractions and number of M.tb genomes present. Data from the prospective study will be analysed to compare the proportion of individuals with detectable M.tb DNA in CD34 + and CD34 - fractions, and median M.tb genome copy number, post vs pre-IPT. Discussion: This study will determine whether detection of M.tb DNA in CD34 + PBMCs holds promise as a biomarker for LTBI and monitoring chemoprophylaxis response.
Collapse
Affiliation(s)
- Jonathan Mayito
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, +256, Uganda
| | - Irene Andia Biraro
- Department of Internal Medicine, School of Medicine, Makerere University College of Health Sciences, Kampala, +256, Uganda
- Immunology, MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, +256, Uganda
| | - Stephen T. Reece
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Adrian R. Martineau
- Institute of Population Health Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AD, UK
| | - David P. Kateete
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, +256, Uganda
| |
Collapse
|