1
|
Xie Q, Li K, Chen Y, Li Y, Jiang W, Cao W, Yu H, Fan D, Deng B. Gene therapy breakthroughs in ALS: a beacon of hope for 20% of ALS patients. Transl Neurodegener 2025; 14:19. [PMID: 40234983 PMCID: PMC12001736 DOI: 10.1186/s40035-025-00477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/05/2025] [Indexed: 04/17/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease that remains incurable. Although the etiologies of ALS are diverse and the precise pathogenic mechanisms are not fully understood, approximately 20% of ALS cases are caused by genetic factors. Therefore, advancing targeted gene therapies holds significant promise, at least for the 20% of ALS patients with genetic etiologies. In this review, we summarize the main strategies and techniques of current ALS gene therapies based on ALS risk genes, and review recent findings from animal studies and clinical trials. Additionally, we highlight ALS-related genes with well-understood pathogenic mechanisms and the potential of numerous emerging gene-targeted therapeutic approaches for ALS.
Collapse
Affiliation(s)
- Qingjian Xie
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kezheng Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yinuo Chen
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yaojia Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China
| | - Wenhua Jiang
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China
| | - Wen Cao
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Huan Yu
- Department of Pediatrics, Second Affiliated Hospital and Yuying Children'S Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Binbin Deng
- Department of Rehabilitation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China.
| |
Collapse
|
2
|
Sun Z, Zhang B, Peng Y. Development of novel treatments for amyotrophic lateral sclerosis. Metab Brain Dis 2024; 39:467-482. [PMID: 38078970 DOI: 10.1007/s11011-023-01334-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/01/2023] [Indexed: 03/22/2024]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that causes paralysis whose etiology and pathogenesis have not been fully elucidated. Presently it is incurable and rapidly progressive with a survival of 2-5 years from onset, and no treatments could cure it. Therefore, it is urgent to identify which therapeutic target(s) are more promising to develop treatments that could effectively treat ALS. So far, more than 90 novel treatments for ALS patients have been registered on ClinicalTrials.gov, of which 23 are in clinical trials, 12 have been terminated and the rest suspended. This review will systematically summarize the possible targets of these novel treatments under development or failing based on published literature and information released by sponsors, so as to provide basis and support for subsequent drug research and development.
Collapse
Affiliation(s)
- Zhuo Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Bo Zhang
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China.
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
3
|
The Advent of Omics Sciences in Clinical Trials of Motor Neuron Diseases. J Pers Med 2022; 12:jpm12050758. [PMID: 35629180 PMCID: PMC9144989 DOI: 10.3390/jpm12050758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
The “omics revolution” has totally changed the scientific research approach and is contributing to the development of personalized therapies. In motor neuron diseases (MNDs), a set of complex, multifactorial, late-onset and chronic neurodegenerative diseases, the use of multi-omics approaches in clinical trials is providing new opportunities to stratify patients and develop target therapies. To show how omics science is gaining momentum in MNDs, in this work, we review the interventional clinical trials for MNDs based on the application of omics sciences. We analyze a total of 62 clinical trials listed in the ClinicalTrials database where different omics approaches have been applied in an initial phase, for diagnosis or patient selection, or in subsequent stages to cluster subjects, identify molecular signatures or evaluate drugs security or efficacy. The rise of omics sciences in clinical experimentation of MNDs is leading to an upheaval in their diagnosis and therapy that will require significant investments and means to ensure the correct and rapid evolution of personalized medicine.
Collapse
|
4
|
Martín-Cámara O, Arribas M, Wells G, Morales-Tenorio M, Martín-Requero Á, Porras G, Martínez A, Giorgi G, López-Alvarado P, Lastres-Becker I, Menéndez JC. Multitarget Hybrid Fasudil Derivatives as a New Approach to the Potential Treatment of Amyotrophic Lateral Sclerosis. J Med Chem 2022; 65:1867-1882. [PMID: 34985276 PMCID: PMC9132363 DOI: 10.1021/acs.jmedchem.1c01255] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 12/12/2022]
Abstract
Hybrid compounds containing structural fragments of the Rho kinase inhibitor fasudil and the NRF2 inducers caffeic and ferulic acids were designed with the aid of docking and molecular mechanics studies. Following the synthesis of the compounds using a peptide-coupling methodology, they were characterized for their ROCK2 inhibition, radical scavenging, effects on cell viability (MTT assay), and NRF2 induction (luciferase assay). One of the compounds (1d) was selected in view of its good multitarget profile and good tolerability. It was able to induce the NRF2 signature, promoting the expression of the antioxidant response enzymes HO-1 and NQO1, via a KEAP1-dependent mechanism. Analysis of mRNA and protein levels of the NRF2 pathway showed that 1d induced the NRF2 signature in control and SOD1-ALS lymphoblasts but not in sALS, where it was already increased in the basal state. These results show the therapeutic potential of this compound, especially for ALS patients with a SOD1 mutation.
Collapse
Affiliation(s)
- Olmo Martín-Cámara
- Unidad
de Química Orgánica y Farmacéutica, Departamento
de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - Marina Arribas
- Instituto
de Investigaciones Biomédicas “Alberto Sols”
UAM-CSIC, Department of Biochemistry, School of Medicine, and Institute
Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Geoffrey Wells
- UCL
School of Pharmacy, University College London, 29/39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Marcos Morales-Tenorio
- Centro
de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ángeles Martín-Requero
- Centro
de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro
de Investigación Biomédica en Red de Enfermedades Neurodegenerativas
(CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Gracia Porras
- Centro
de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana Martínez
- Centro
de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro
de Investigación Biomédica en Red de Enfermedades Neurodegenerativas
(CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Giorgio Giorgi
- Unidad
de Química Orgánica y Farmacéutica, Departamento
de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - Pilar López-Alvarado
- Unidad
de Química Orgánica y Farmacéutica, Departamento
de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - Isabel Lastres-Becker
- Instituto
de Investigaciones Biomédicas “Alberto Sols”
UAM-CSIC, Department of Biochemistry, School of Medicine, and Institute
Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Centro
de Investigación Biomédica en Red de Enfermedades Neurodegenerativas
(CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - J. Carlos Menéndez
- Unidad
de Química Orgánica y Farmacéutica, Departamento
de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| |
Collapse
|
5
|
Wobst HJ, Mack KL, Brown DG, Brandon NJ, Shorter J. The clinical trial landscape in amyotrophic lateral sclerosis-Past, present, and future. Med Res Rev 2020; 40:1352-1384. [PMID: 32043626 PMCID: PMC7417284 DOI: 10.1002/med.21661] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/08/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease marked by progressive loss of muscle function. It is the most common adult-onset form of motor neuron disease, affecting about 16 000 people in the United States alone. The average survival is about 3 years. Only two interventional drugs, the antiglutamatergic small-molecule riluzole and the more recent antioxidant edaravone, have been approved for the treatment of ALS to date. Therapeutic strategies under investigation in clinical trials cover a range of different modalities and targets, and more than 70 different drugs have been tested in the clinic to date. Here, we summarize and classify interventional therapeutic strategies based on their molecular targets and phenotypic effects. We also discuss possible reasons for the failure of clinical trials in ALS and highlight emerging preclinical strategies that could provide a breakthrough in the battle against this relentless disease.
Collapse
Affiliation(s)
- Heike J Wobst
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Boston, Massachusetts
| | - Korrie L Mack
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Merck & Co, Inc, Kenilworth, New Jersey
| | - Dean G Brown
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Boston, Massachusetts
| | - Nicholas J Brandon
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Boston, Massachusetts
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
GM6 Attenuates Alzheimer's Disease Pathology in APP Mice. Mol Neurobiol 2019; 56:6386-6396. [PMID: 30798443 DOI: 10.1007/s12035-019-1517-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 01/29/2019] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) results in the deposition of amyloid β (Aβ) peptide into amyloid fibrils and tau into neurofibrillary tangles. Regardless of whether or not these entities are a cause or consequence of the disease process, preventing their accumulation or accelerating their clearance may slow the rate of AD onset. Motoneuronotrophic factor (MNTF) is an endogenous neurotrophin that is specific for the human nervous system, and some of the observed effects of MNTF include motoneuron differentiation, maintenance, survival, and reinnervation of target muscles and organs. GM6 is a six-amino-acid component of MNTF that appears to replicate its activity spectrum. In this study, we investigated the effect of GM6 in a mouse model of AD before the development of amyloid plaques and determined how this treatment affected the accumulation of Aβ peptide and related pathologic changes (e.g., inflammation, nerve growth factor (NGF) expression, cathepsin B, and memory impairment). Application of GM6 over a 4-month period in young APP/ΔPS1 double-transgenic mice resulted in attenuation in Aβ peptide levels, reduction of inflammation and amyloid load, increased cathepsin B expression, and improved spatial orientation. In addition, treatment with GM6 increased brain NGF levels and tempered memory impairment by ∼ 50% at the highest dose. These data suggest that GM6 may modulate disease-determining pathways at an early stage to slow the histological and clinical progression of AD.
Collapse
|
7
|
Valko K, Ciesla L. Amyotrophic lateral sclerosis. PROGRESS IN MEDICINAL CHEMISTRY 2019; 58:63-117. [DOI: 10.1016/bs.pmch.2018.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Swindell WR, Bojanowski K, Kindy MS, Chau RMW, Ko D. GM604 regulates developmental neurogenesis pathways and the expression of genes associated with amyotrophic lateral sclerosis. Transl Neurodegener 2018; 7:30. [PMID: 30524706 PMCID: PMC6276193 DOI: 10.1186/s40035-018-0135-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/21/2018] [Indexed: 12/11/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is currently an incurable disease without highly effective pharmacological treatments. The peptide drug GM604 (GM6 or Alirinetide) was developed as a candidate ALS therapy, which has demonstrated safety and good drug-like properties with a favorable pharmacokinetic profile. GM6 is hypothesized to bolster neuron survival through the multi-target regulation of developmental pathways, but mechanisms of action are not fully understood. Methods This study used RNA-seq to evaluate transcriptome responses in SH-SY5Y neuroblastoma cells following GM6 treatment (6, 24 and 48 h). Results We identified 2867 protein-coding genes with expression significantly altered by GM6 (FDR < 0.10). Early (6 h) responses included up-regulation of Notch and hedgehog signaling components, with increased expression of developmental genes mediating neurogenesis and axon growth. Prolonged GM6 treatment (24 and 48 h) altered the expression of genes contributing to cell adhesion and the extracellular matrix. GM6 further down-regulated the expression of genes associated with mitochondria, inflammatory responses, mRNA processing and chromatin organization. GM6-increased genes were located near GC-rich motifs interacting with C2H2 zinc finger transcription factors, whereas GM6-decreased genes were located near AT-rich motifs associated with helix-turn-helix homeodomain factors. Such motifs interacted with a diverse network of transcription factors encoded by GM6-regulated genes (STAT3, HOXD11, HES7, GLI1). We identified 77 ALS-associated genes with expression significantly altered by GM6 treatment (FDR < 0.10), which were known to function in neurogenesis, axon guidance and the intrinsic apoptosis pathway. Conclusions Our findings support the hypothesis that GM6 acts through developmental-stage pathways to influence neuron survival. Gene expression responses were consistent with neurotrophic effects, ECM modulation, and activation of the Notch and hedgehog neurodevelopmental pathways. This multifaceted mechanism of action is unique among existing ALS drug candidates and may be applicable to multiple neurodegenerative diseases. Electronic supplementary material The online version of this article (10.1186/s40035-018-0135-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- William R Swindell
- 1Heritage College of Osteopathic Medicine, Ohio University, Athens, OH USA
| | | | - Mark S Kindy
- 3Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL USA.,4James A. Haley VAMC, Tampa, FL USA
| | | | - Dorothy Ko
- Genervon Biopharmaceuticals LLC, Pasadena, CA USA
| |
Collapse
|
9
|
Theme 1 Genetics and genomics. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19:91-111. [DOI: 10.1080/21678421.2018.1510210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|