1
|
Reyes-Umana V, Ewens SD, Meier DAO, Coates JD. Integration of molecular and computational approaches paints a holistic portrait of obscure metabolisms. mBio 2023; 14:e0043123. [PMID: 37855625 PMCID: PMC10746228 DOI: 10.1128/mbio.00431-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Microorganisms are essential drivers of earth's geochemical cycles. However, the significance of elemental redox cycling mediated by microorganisms is often underestimated beyond the most well-studied nutrient cycles. Phosphite, (per)chlorate, and iodate are each considered esoteric substrates metabolized by microorganisms. However, recent investigations have indicated that these metabolisms are widespread and ubiquitous, affirming a need to continue studying the underlying microbiology to understand their biogeochemical effects and their interface with each other and our biosphere. This review focuses on combining canonical techniques of culturing microorganisms with modern omic approaches to further our understanding of obscure metabolic pathways and elucidate their importance in global biogeochemical cycles. Using these approaches, marker genes of interest have already been identified for phosphite, (per)chlorate, and iodate using traditional microbial physiology and genetics. Subsequently, their presence was queried to reveal the distribution of metabolic pathways in the environment using publicly available databases. In conjunction with each other, computational and experimental techniques provide a more comprehensive understanding of the location of these microorganisms, their underlying biochemistry and genetics, and how they tie into our planet's geochemical cycles.
Collapse
Affiliation(s)
- Victor Reyes-Umana
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Sophia D. Ewens
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - David A. O. Meier
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - John D. Coates
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| |
Collapse
|
2
|
Carlson HK, Piya D, Moore ML, Magar RT, Elisabeth NH, Deutschbauer AM, Arkin AP, Mutalik VK. Geochemical constraints on bacteriophage infectivity in terrestrial environments. ISME COMMUNICATIONS 2023; 3:78. [PMID: 37596312 PMCID: PMC10439110 DOI: 10.1038/s43705-023-00297-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
Lytic phages can be potent and selective inhibitors of microbial growth and can have profound impacts on microbiome composition and function. However, there is uncertainty about the biogeochemical conditions under which phage predation modulates microbial ecosystem function, particularly in terrestrial systems. Ionic strength is critical for infection of bacteria by many phages, but quantitative data is limited on the ion thresholds for phage infection that can be compared with environmental ion concentrations. Similarly, while carbon composition varies in the environment, we do not know how this variability influences the impact of phage predation on microbiome function. Here, we measured the half-maximal effective concentrations (EC50) of 80 different inorganic ions for the infection of E. coli with two canonical dsDNA and ssRNA phages, T4 and MS2, respectively. Many alkaline earth metals and alkali metals enabled lytic infection but the ionic strength thresholds varied for different ions between phages. Additionally, using a freshwater nitrate-reducing microbiome, we found that the ability of lytic phages to influence nitrate reduction end-products depended upon the carbon source as well as ionic strength. For all phage:host pairs, the ion EC50s for phage infection exceeded the ion concentrations found in many terrestrial freshwater systems. Thus, our findings support a model where phages most influence terrestrial microbial functional ecology in hot spots and hot moments such as metazoan guts, drought influenced soils, or biofilms where ion concentration is locally or transiently elevated and nutrients are available to support the growth of specific phage hosts.
Collapse
Affiliation(s)
- Hans K Carlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA.
| | - Denish Piya
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Madeline L Moore
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Roniya T Magar
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Nathalie H Elisabeth
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Adam P Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Vivek K Mutalik
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA.
| |
Collapse
|
3
|
Rios-Valenciana EE, Moreno-Perlin T, Briones-Gallardo R, Sierra-Alvarez R, Celis LB. The key role of biogenic arsenic sulfides in the removal of soluble arsenic and propagation of arsenic mineralizing communities. ENVIRONMENTAL RESEARCH 2023; 220:115124. [PMID: 36563982 DOI: 10.1016/j.envres.2022.115124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/04/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Biogeochemical processes govern the transport and availability of arsenic in sediments. However, little is known about the transition from indigenous communities to cultivable consortia when exposed to high arsenic concentrations. Such cultivable communities could be exploited for arsenic bioremediation of waste streams and polluted sites. Thus, it is crucial to understand the dynamics and selective pressures that shape the communities during the development of customized bacterial consortia. First, from the arsenic partitioning of two sediments with high arsenic concentrations, we found that up to 55% of arsenic was bioavailable because it was associated with the soluble, carbonate, and ionically exchangeable fractions. Next, we prepared sediment enrichment cultures under arsenate- and sulfate-reducing conditions to precipitate arsenic sulfide biominerals and analyze the communities. The produced biominerals were used as the inoculum to develop bacterial consortia via successive transfers. Tracking of the 16S rRNA gene in the fresh sediments, sediment enrichments, biogenic minerals, and bacterial consortia revealed differences in the bacterial communities. Removing the sediment caused a substantial decrease in diversity and shifts toward the dominance of the Firmicutes phylum to the detriment of Proteobacteria. In agreement with the 16S rRNA gene results, the sequencing of the arrA gene confirmed the presence of phylotypes closely related to Desulfosporosinus sp. Y5 (100% similarity), highlighting the pivotal role of this genus in the removal of soluble arsenic. Here, we demonstrated for the first time that besides being important as arsenic sinks, the biogenic arsenic sulfide minerals are reservoirs of arsenic resistant/respiring bacteria and can be used to culture them.
Collapse
Affiliation(s)
- Erika E Rios-Valenciana
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a La Presa San José 2055, Lomas 4a. Sección, 78216, San Luis Potosí, SLP, Mexico
| | - Tonatiuh Moreno-Perlin
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma Del Estado de Morelos, Avenida Universidad 1001, Chamilpa, 62210, Cuernavaca, Mor, Mexico
| | - Roberto Briones-Gallardo
- Facultad de Ingeniería-Instituto de Metalurgia, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, Lomas 2a. Sección, 78216, San Luis Potosí, SLP, Mexico
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering, The University of Arizona, P.O. Box 210011, Tucson, AZ, 85721, USA
| | - Lourdes B Celis
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a La Presa San José 2055, Lomas 4a. Sección, 78216, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
4
|
Kolodkin-Gal I, Cohen-Cymberknoh M, Zamir G, Tsesis I, Rosen E. Targeting Persistent Biofilm Infections: Reconsidering the Topography of the Infection Site during Model Selection. Microorganisms 2022; 10:microorganisms10061164. [PMID: 35744683 PMCID: PMC9231179 DOI: 10.3390/microorganisms10061164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/17/2022] Open
Abstract
The physiology of an organism in the environment reflects its interactions with the diverse physical, chemical, and biological properties of the surface. These principles come into consideration during model selection to study biofilm–host interactions. Biofilms are communities formed by beneficial and pathogenic bacteria, where cells are held together by a structured extracellular matrix. When biofilms are associated with a host, chemical gradients and their origins become highly relevant. Conventional biofilm laboratory models such as multiwall biofilm models and agar plate models poorly mimic these gradients. In contrast, ex vivo models possess the partial capacity to mimic the conditions of tissue-associated biofilm and a biofilm associated with a mineralized surface enriched in inorganic components, such as the human dentin. This review will highlight the progress achieved using these settings for two models of persistent infections: the infection of the lung tissue by Pseudomonas aeruginosa and the infection of the root canal by Enterococcus faecalis. For both models, we conclude that the limitations of the conventional in vitro systems necessitate a complimentary experimentation with clinically relevant ex vivo models during therapeutics development.
Collapse
Affiliation(s)
- Ilana Kolodkin-Gal
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
- Correspondence: (I.K.-G.); (I.T.); (E.R.)
| | - Malena Cohen-Cymberknoh
- Pediatric Pulmonary Unit and Cystic Fibrosis Center, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Gideon Zamir
- Department of Experimental Surgery, Hadassah Hebrew University Medical School, Jerusalem 9112001, Israel;
| | - Igor Tsesis
- Department of Endodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: (I.K.-G.); (I.T.); (E.R.)
| | - Eyal Rosen
- Department of Endodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: (I.K.-G.); (I.T.); (E.R.)
| |
Collapse
|
5
|
Carlson HK, Youngblut MD, Redford SA, Williamson AJ, Coates JD. Sulfate adenylyl transferase kinetics and mechanisms of metabolic inhibitors of microbial sulfate respiration. ISME COMMUNICATIONS 2021; 1:67. [PMID: 37938298 PMCID: PMC9723548 DOI: 10.1038/s43705-021-00069-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2023]
Abstract
Sulfate analog oxyanions that function as selective metabolic inhibitors of dissimilatory sulfate reducing microorganisms (SRM) are widely used in ecological studies and industrial applications. As such, it is important to understand the mode of action and mechanisms of tolerance or adaptation to these compounds. Different oxyanions vary widely in their inhibitory potency and mechanism of inhibition, but current evidence suggests that the sulfate adenylyl transferase/ATP sulfurylase (Sat) enzyme is an important target. We heterologously expressed and purified the Sat from the model SRM, Desulfovibrio alaskensis G20. With this enzyme we determined the turnover kinetics (kcat, KM) for alternative substrates (molybdate, selenate, arsenate, monofluorophosphate, and chromate) and inhibition constants (KI) for competitive inhibitors (perchlorate, chlorate, and nitrate). These measurements enable the first quantitative comparisons of these compounds as substrates or inhibitors of a purified Sat from a respiratory sulfate reducer. We compare predicted half-maximal inhibitory concentrations (IC50) based on Sat kinetics with measured IC50 values against D. alaskensis G20 growth and discuss our results in light of known mechanisms of sensitivity or resistance to oxyanions. This analysis helps with the interpretation of recent adaptive laboratory evolution studies and illustrates the value of interpreting gene-microbe-environment interactions through the lens of enzyme kinetics.
Collapse
Affiliation(s)
- Hans K Carlson
- Energy & Biosciences Institute, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94704, USA.
| | - Matthew D Youngblut
- Energy & Biosciences Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Twist Bioscience, 681 Gateway Blvd, South San Francisco, CA, 94080, USA
| | - Steven A Redford
- Energy & Biosciences Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, USA
| | - Adam J Williamson
- Energy & Biosciences Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- CENBG, Université de Bordeaux, CNRS-IN2P3/, 19 Chemin du Solarium, CS10120, 33175, Gradignan, France
| | - John D Coates
- Energy & Biosciences Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
6
|
Lui LM, Majumder ELW, Smith HJ, Carlson HK, von Netzer F, Fields MW, Stahl DA, Zhou J, Hazen TC, Baliga NS, Adams PD, Arkin AP. Mechanism Across Scales: A Holistic Modeling Framework Integrating Laboratory and Field Studies for Microbial Ecology. Front Microbiol 2021; 12:642422. [PMID: 33841364 PMCID: PMC8024649 DOI: 10.3389/fmicb.2021.642422] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Over the last century, leaps in technology for imaging, sampling, detection, high-throughput sequencing, and -omics analyses have revolutionized microbial ecology to enable rapid acquisition of extensive datasets for microbial communities across the ever-increasing temporal and spatial scales. The present challenge is capitalizing on our enhanced abilities of observation and integrating diverse data types from different scales, resolutions, and disciplines to reach a causal and mechanistic understanding of how microbial communities transform and respond to perturbations in the environment. This type of causal and mechanistic understanding will make predictions of microbial community behavior more robust and actionable in addressing microbially mediated global problems. To discern drivers of microbial community assembly and function, we recognize the need for a conceptual, quantitative framework that connects measurements of genomic potential, the environment, and ecological and physical forces to rates of microbial growth at specific locations. We describe the Framework for Integrated, Conceptual, and Systematic Microbial Ecology (FICSME), an experimental design framework for conducting process-focused microbial ecology studies that incorporates biological, chemical, and physical drivers of a microbial system into a conceptual model. Through iterative cycles that advance our understanding of the coupling across scales and processes, we can reliably predict how perturbations to microbial systems impact ecosystem-scale processes or vice versa. We describe an approach and potential applications for using the FICSME to elucidate the mechanisms of globally important ecological and physical processes, toward attaining the goal of predicting the structure and function of microbial communities in chemically complex natural environments.
Collapse
Affiliation(s)
- Lauren M. Lui
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Erica L.-W. Majumder
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| | - Heidi J. Smith
- Center for Biofilm Engineering, Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Hans K. Carlson
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Frederick von Netzer
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Matthew W. Fields
- Center for Biofilm Engineering, Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - David A. Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology & Plant Biology, School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, United States
| | - Terry C. Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
| | | | - Paul D. Adams
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| | - Adam P. Arkin
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
7
|
Influences of geochemical factors and substrate availability on Gram-positive and Gram-negative bacterial distribution and bio-processes in ageing municipal landfills. Int Microbiol 2021; 24:311-324. [PMID: 33661427 DOI: 10.1007/s10123-021-00167-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
Bacteria are primary agents of organic substrate metabolisation and elemental cycling in landfills. Two major bacterial groups, namely, Gram-positive (GP) and Gram-negative (GN), drive independent metabolic functions that contribute to waste stabilisation. There is a lack of explicit exploration of how these different bacterial guilds respond to changing carbon (C) availability and substrate depletion as landfills age and how landfill geochemistry regulates their distribution. This study investigated and compared the abundance and vertical distribution of GP and GN bacteria in 14- and 36-year-old municipal landfills and explored linkages among bacterial groups, nutrient elements, heavy metals and soil texture. We found higher GP bacteria in the 14-year-old landfill, while GN bacteria dominated the 36-year-old landfill. The non-metric multidimensional scaling (nMDS) analysis showed that dissimilarities in the relative abundance of the GP and GN bacteria were linked distinctly to landfill age, and not depth. In support of this inference, we further found that GP and GN bacteria were negatively correlated with heavy metals and essential nutrients in the 14- and 36-year-old landfills, respectively. Notably, the GP/GN ratio, an indicator of relative C available for bacterial mineralisation, was greater in the14-year-old landfill, suggesting greater C availability. Conversely, the C to N ratio was higher in the 36-year-old landfill, indicating lower N mineralisation. Collectively, the results of the study reveal key insights into how landfill ageing and stabilisation influence distinct functional shifts in the abundance of GP and GN bacteria, and these are mainly driven by changes in C and N bioavailability.
Collapse
|
8
|
Carlson HK, Lui LM, Price MN, Kazakov AE, Carr AV, Kuehl JV, Owens TK, Nielsen T, Arkin AP, Deutschbauer AM. Selective carbon sources influence the end products of microbial nitrate respiration. THE ISME JOURNAL 2020; 14:2034-2045. [PMID: 32372050 PMCID: PMC7368043 DOI: 10.1038/s41396-020-0666-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/31/2020] [Accepted: 04/22/2020] [Indexed: 11/09/2022]
Abstract
Respiratory and catabolic genes are differentially distributed across microbial genomes. Thus, specific carbon sources may favor different respiratory processes. We profiled the influence of 94 carbon sources on the end products of nitrate respiration in microbial enrichment cultures from diverse terrestrial environments. We found that some carbon sources consistently favor dissimilatory nitrate reduction to ammonium (DNRA/nitrate ammonification) while other carbon sources favor nitrite accumulation or denitrification. For an enrichment culture from aquatic sediment, we sequenced the genomes of the most abundant strains, matched these genomes to 16S rDNA exact sequence variants (ESVs), and used 16S rDNA amplicon sequencing to track the differential enrichment of functionally distinct ESVs on different carbon sources. We found that changes in the abundances of strains with different genetic potentials for nitrite accumulation, DNRA or denitrification were correlated with the nitrite or ammonium concentrations in the enrichment cultures recovered on different carbon sources. Specifically, we found that either L-sorbose or D-cellobiose enriched for a Klebsiella nitrite accumulator, other sugars enriched for an Escherichia nitrate ammonifier, and citrate or formate enriched for a Pseudomonas denitrifier and a Sulfurospirillum nitrate ammonifier. Our results add important nuance to the current paradigm that higher concentrations of carbon will always favor DNRA over denitrification or nitrite accumulation, and we propose that, in some cases, carbon composition can be as important as carbon concentration in determining nitrate respiratory end products. Furthermore, our approach can be extended to other environments and metabolisms to characterize how selective parameters influence microbial community composition, gene content, and function.
Collapse
Affiliation(s)
- Hans K Carlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Lauren M Lui
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Morgan N Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alexey E Kazakov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alex V Carr
- Institute for Systems Biology, University of Washington, Seattle, WA, 98109, USA
- Molecular Engineering Program, University of Washington, Seattle, WA, 98105, USA
| | - Jennifer V Kuehl
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Trenton K Owens
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Torben Nielsen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Adam P Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
9
|
Carlson HK, Price MN, Callaghan M, Aaring A, Chakraborty R, Liu H, Kuehl JV, Arkin AP, Deutschbauer AM. The selective pressures on the microbial community in a metal-contaminated aquifer. ISME JOURNAL 2018; 13:937-949. [PMID: 30523276 PMCID: PMC6461962 DOI: 10.1038/s41396-018-0328-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/12/2018] [Accepted: 11/22/2018] [Indexed: 12/25/2022]
Abstract
In many environments, toxic compounds restrict which microorganisms persist. However, in complex mixtures of inhibitory compounds, it is challenging to determine which specific compounds cause changes in abundance and prevent some microorganisms from growing. We focused on a contaminated aquifer in Oak Ridge, Tennessee, USA that has large gradients of pH and widely varying concentrations of uranium, nitrate, and many other inorganic ions. In the most contaminated wells, the microbial community is enriched in the Rhodanobacter genus. Rhodanobacter abundance is positively correlated with low pH and high concentrations of uranium and 13 other ions and we sought to determine which of these ions are selective pressures that favor the growth of Rhodanobacter over other taxa. Of these ions, low pH and high UO22+, Mn2+, Al3+, Cd2+, Zn2+, Co2+, and Ni2+ are both (a) selectively inhibitory of a Pseudomonas isolate from an uncontaminated well vs. a Rhodanobacter isolate from a contaminated well, and (b) reach toxic concentrations (for the Pseudomonas isolate) in the Rhodanobacter-dominated wells. We used mixtures of ions to simulate the groundwater conditions in the most contaminated wells and verified that few isolates aside from Rhodanobacter can tolerate these eight ions. These results clarify which ions are likely causal factors that impact the microbial community at this field site and are not merely correlated with taxonomic shifts. Furthermore, our general high-throughput approach can be applied to other environments, isolates, and conditions to systematically help identify selective pressures on microbial communities.
Collapse
Affiliation(s)
- Hans K Carlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Morgan N Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mark Callaghan
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alex Aaring
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Romy Chakraborty
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hualan Liu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jennifer V Kuehl
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Adam P Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
10
|
Engelbrektson A, Briseno V, Liu Y, Figueroa I, Yee M, Shao GL, Carlson H, Coates JD. Mitigating Sulfidogenesis With Simultaneous Perchlorate and Nitrate Treatments. Front Microbiol 2018; 9:2305. [PMID: 30337913 PMCID: PMC6180152 DOI: 10.3389/fmicb.2018.02305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/10/2018] [Indexed: 11/13/2022] Open
Abstract
Sulfide biogenesis (souring) in oil reservoirs is an extensive and costly problem. Nitrate is currently used as a souring inhibitor but often requires high concentrations and yields inconsistent results. Recently, perchlorate has displayed promise as a more potent inhibitor in lab scale studies. However, combining the two treatments to determine synergy and effectiveness in a dynamic system has never been tested. Nitrate inhibits perchlorate consumption by perchlorate reducing bacteria, suggesting that the combined treatment may allow deeper penetration of the perchlorate into the reservoir matrix. Furthermore, the metabolic intermediates of perchlorate and nitrate reduction (nitrite and chlorite, respectively) are synergistic with the primary electron acceptors for inhibition of sulfate reduction. To assess the possible synergies between nitrate and perchlorate treatments, triplicate glass columns packed with pre-soured marine sediment were flushed with media containing sulfate and an inhibitor treatment [(i) perchlorate; (ii) nitrate; (iii) perchlorate and nitrate; or (iv) none]. Internal geochemistry and microbial community changes were monitored along the length of the columns during six phases of increasing treatment concentrations. In a final phase all treatments were removed. Sulfide production decreased in all treated columns in conjunction with increased inhibitor concentrations relative to the untreated control. Interestingly, the potency of the "mixed" treatment was additive relative to the individual treatments suggesting no interaction. Microbial community analyses indicated community shifts and clustering by treatment. The mixed treatment column community's trajectory closely resembled that of the community found in the perchlorate only treatment, suggesting that perchlorate was the dominant control on the "mixed" community structure. In contrast, the nitrate and untreated column communities had unique trajectories. This study indicates that concurrent nitrate and perchlorate treatment is not more effective than perchlorate treatment alone but is more effective than nitrate treatment. As such, treatment decisions may be based on economic factors.
Collapse
Affiliation(s)
- Anna Engelbrektson
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Vanessa Briseno
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Yi Liu
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Israel Figueroa
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Megan Yee
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Gong Li Shao
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Hans Carlson
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - John D Coates
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|