1
|
Popy NN, Hoque MN, Khan MFR, Biswas L, Rahman MH, Saiduzzaman M, Rahman M, Rahman MB. Draft genome sequencing of a multidrug-resistant Salmonella enterica subspecies enterica serovar Typhimurium strain isolated from chicken in Bangladesh. Microbiol Resour Announc 2024; 13:e0061923. [PMID: 38088574 DOI: 10.1128/mra.00619-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/21/2023] [Indexed: 01/18/2024] Open
Abstract
Herein this study, we sequenced the genome of a multidrug-resistant Salmonella enterica serovar Typhimurium strain MBR-MFRK-23 isolated from the liver tissue of a diseased layer chicken. The 4,964,854-bp draft genome comprises 50 contigs with 50.5× coverage and 52.1% GC content and is typed as S. enterica sequence type 19.
Collapse
Affiliation(s)
- Najmun Nahar Popy
- Department of Microbiology and Hygiene, Bangladesh Agricultural University , Mymensingh, Bangladesh
| | - M Nazmul Hoque
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU) , Gazipur, Bangladesh
| | | | - Limon Biswas
- Department of Microbiology and Hygiene, Bangladesh Agricultural University , Mymensingh, Bangladesh
| | - Mohammad Habibur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University , Mymensingh, Bangladesh
| | - Md Saiduzzaman
- Department of Neurology, Mymensingh Medical College Hospital , Mymensingh, Bangladesh
| | - Marzia Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University , Mymensingh, Bangladesh
| | - Md Bahanur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University , Mymensingh, Bangladesh
| |
Collapse
|
2
|
Artavia G, Cortés-Herrera C, Granados-Chinchilla F. Selected Instrumental Techniques Applied in Food and Feed: Quality, Safety and Adulteration Analysis. Foods 2021; 10:1081. [PMID: 34068197 PMCID: PMC8152966 DOI: 10.3390/foods10051081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/13/2021] [Accepted: 03/19/2021] [Indexed: 12/28/2022] Open
Abstract
This review presents an overall glance at selected instrumental analytical techniques and methods used in food analysis, focusing on their primary food science research applications. The methods described represent approaches that have already been developed or are currently being implemented in our laboratories. Some techniques are widespread and well known and hence we will focus only in very specific examples, whilst the relatively less common techniques applied in food science are covered in a wider fashion. We made a particular emphasis on the works published on this topic in the last five years. When appropriate, we referred the reader to specialized reports highlighting each technique's principle and focused on said technologies' applications in the food analysis field. Each example forwarded will consider the advantages and limitations of the application. Certain study cases will typify that several of the techniques mentioned are used simultaneously to resolve an issue, support novel data, or gather further information from the food sample.
Collapse
Affiliation(s)
- Graciela Artavia
- Centro Nacional de Ciencia y Tecnología de Alimentos, Sede Rodrigo Facio, Universidad de Costa Rica, San José 11501-2060, Costa Rica;
| | - Carolina Cortés-Herrera
- Centro Nacional de Ciencia y Tecnología de Alimentos, Sede Rodrigo Facio, Universidad de Costa Rica, San José 11501-2060, Costa Rica;
| | | |
Collapse
|
3
|
Ortega-Paredes D, de Janon S, Villavicencio F, Ruales KJ, De La Torre K, Villacís JE, Wagenaar JA, Matheu J, Bravo-Vallejo C, Fernández-Moreira E, Vinueza-Burgos C. Broiler Farms and Carcasses Are an Important Reservoir of Multi-Drug Resistant Escherichia coli in Ecuador. Front Vet Sci 2020; 7:547843. [PMID: 33324692 PMCID: PMC7724036 DOI: 10.3389/fvets.2020.547843] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/29/2020] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial resistance (AMR) is a major health threat for public and animal health in the twenty-first century. In Ecuador, antibiotics have been used by the poultry industry for decades resulting in the presence of multi-drug resistant (MDR) bacteria in the poultry meat production chain, with the consequent risk for public health. This study evaluated the prevalence of ESBL/AmpC and mcr genes in third-generation cephalosporin-resistant Escherichia coli (3GC-R E. coli) isolated from broiler farms (animal component), broiler carcasses (food component), and human enteritis (human component) in Quito-Ecuador. Samples were collected weekly from November 2017 to November 2018. For the animal, food, and human components, 133, 335, and 302 samples were analyzed, respectively. Profiles of antimicrobial resistance were analyzed by an automated microdilution system. Resistance genes were studied by PCR and Sanger sequencing. From all samples, 122 (91.7%), 258 (77%), and 146 (48.3%) samples were positive for 3GC-R E. coli in the animal, food, and human components, respectively. Most of the isolates (472/526, 89.7%) presented MDR phenotypes. The ESBL blaCTX-M-55, blaCTX-M-3, blaCTX-M-15, blaCTX-M-65, blaCTX-M-27, and blaCTX-M-14 were the most prevalent ESBL genes while blaCMY-2 was the only AmpC detected gene. The mcr-1 gene was found in 20 (16.4%), 26 (10.1%), and 3 (2.1%) of isolates from animal, food, and human components, respectively. The implication of poultry products in the prevalence of ESBL/AmpC and mcr genes in 3GC-R must be considered in the surveillance of antimicrobial resistance.
Collapse
Affiliation(s)
- David Ortega-Paredes
- Unidad de Investigación de Enfermedades Transmitidas por Alimentos y Resistencia a los Antimicrobianos (UNIETAR), Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | - Sofía de Janon
- Unidad de Investigación de Enfermedades Transmitidas por Alimentos y Resistencia a los Antimicrobianos (UNIETAR), Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | - Fernando Villavicencio
- Centro de Referencia Nacional de Resistencia a los Antimicrobianos, Instituto Nacional de Investigación en Salud Pública "Leopoldo Izquieta Pérez", Quito, Ecuador
| | - Katherine Jaramillo Ruales
- Centro de Referencia Nacional de Resistencia a los Antimicrobianos, Instituto Nacional de Investigación en Salud Pública "Leopoldo Izquieta Pérez", Quito, Ecuador
| | - Kenny De La Torre
- Facultad de Medicina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - José E Villacís
- Centro de Referencia Nacional de Resistencia a los Antimicrobianos, Instituto Nacional de Investigación en Salud Pública "Leopoldo Izquieta Pérez", Quito, Ecuador.,Facultad de Medicina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Jaap A Wagenaar
- Wageningen Bioveterinary Research, Lelystad, Netherlands.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jorge Matheu
- Department of Food Safety and Zoonoses, World Health Organization, Geneva, Switzerland
| | - Camila Bravo-Vallejo
- Hospital General del Sur Quito-Instituto Ecuatoriano de Seguridad Social (IESS), Quito, Ecuador
| | | | - Christian Vinueza-Burgos
- Unidad de Investigación de Enfermedades Transmitidas por Alimentos y Resistencia a los Antimicrobianos (UNIETAR), Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| |
Collapse
|
4
|
Calero-Cáceres W, Villacís J, Ishida M, Burnett E, Vinueza-Burgos C. Whole-Genome Sequencing of Salmonella enterica Serovar Infantis and Kentucky Isolates Obtained from Layer Poultry Farms in Ecuador. Microbiol Resour Announc 2020; 9:e00091-20. [PMID: 32217676 PMCID: PMC7098899 DOI: 10.1128/mra.00091-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/07/2020] [Indexed: 11/20/2022] Open
Abstract
Five strains of Salmonella enterica subsp. enterica serovar Infantis and two strains of S. enterica subsp. enterica serovar Kentucky isolated in 2017 from Ecuadorian layer poultry farms were sequenced using Illumina MiSeq technology. These isolates were collected on layer farms in central Ecuador, one of the most important areas of egg production in the country. The genome sequences of these isolates show valuable information for surveillance purposes.
Collapse
Affiliation(s)
- William Calero-Cáceres
- UTA-RAM-One Health, Centro de Investigaciones Agropecuarias, Facultad de Ciencias Agropecuarias, Universidad Técnica de Ambato (UTA), Ambato, Ecuador
- Faculty of Science and Engineering in Food and Biotechnology, Universidad Técnica de Ambato (UTA), Ambato, Ecuador
| | - Joyce Villacís
- UTA-RAM-One Health, Centro de Investigaciones Agropecuarias, Facultad de Ciencias Agropecuarias, Universidad Técnica de Ambato (UTA), Ambato, Ecuador
| | - Maria Ishida
- New York State Department of Agriculture and Markets, Food Laboratory, Albany, New York, USA
| | - Elton Burnett
- Institute of Parasitology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|