1
|
Chang YH, Yanckello LM, Chlipala GE, Green SJ, Aware C, Runge A, Xing X, Chen A, Wenger K, Flemister A, Wan C, Lin AL. Prebiotic inulin enhances gut microbial metabolism and anti-inflammation in apolipoprotein E4 mice with sex-specific implications. Sci Rep 2023; 13:15116. [PMID: 37704738 PMCID: PMC10499887 DOI: 10.1038/s41598-023-42381-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023] Open
Abstract
Gut dysbiosis has been identified as a crucial factor of Alzheimer's disease (AD) development for apolipoprotein E4 (APOE4) carriers. Inulin has shown the potential to mitigate dysbiosis. However, it remains unclear whether the dietary response varies depending on sex. In the study, we fed 4-month-old APOE4 mice with inulin for 16 weeks and performed shotgun metagenomic sequencing to determine changes in microbiome diversity, taxonomy, and functional gene pathways. We also formed the same experiments with APOE3 mice to identify whether there are APOE-genotype dependent responses to inulin. We found that APOE4 female mice fed with inulin had restored alpha diversity, significantly reduced Escherichia coli and inflammation-associated pathway responses. However, compared with APOE4 male mice, they had less metabolic responses, including the levels of short-chain fatty acids-producing bacteria and the associated kinases, especially those related to acetate and Erysipelotrichaceae. These diet- and sex- effects were less pronounced in the APOE3 mice, indicating that different APOE variants also play a significant role. The findings provide insights into the higher susceptibility of APOE4 females to AD, potentially due to inefficient energy production, and imply the importance of considering precision nutrition for mitigating dysbiosis and AD risk in the future.
Collapse
Affiliation(s)
- Ya-Hsuan Chang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, 40536, USA
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, 65212, USA
| | - Lucille M Yanckello
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, 40536, USA
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - George E Chlipala
- Research Informatics Core, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Stefan J Green
- Genomics and Microbiome Core Facility, Rush University, Chicago, IL, 60612, USA
| | - Chetan Aware
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, 65212, USA
| | - Amelia Runge
- Department of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Xin Xing
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, 65212, USA
- Department of Computer Science, University of Kentucky, Lexington, KY, 40506, USA
| | - Anna Chen
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - Kathryn Wenger
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Abeoseh Flemister
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, 65212, USA
| | - Caixia Wan
- Department of Biological and Biomedical Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Ai-Ling Lin
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, 40536, USA.
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA.
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA.
- NextGen Precision Health, University of Missouri, Columbia, MO, 65212, USA.
- Department of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
2
|
Umeh CC, Mahajan A, Mihailovic A, Pontone GM. APOE4 Allele, Sex, and Dementia Risk in Parkinson's Disease: Lessons From a Longitudinal Cohort. J Geriatr Psychiatry Neurol 2022; 35:810-815. [PMID: 34958617 PMCID: PMC11062588 DOI: 10.1177/08919887211060019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The effect of APOE4 allele on dementia risk is well established in Alzheimer's disease and Parkinson's disease (PD). However, it is unknown if sex modifies this relationship. We sought to determine the effect of sex on the relationship between APOE4 status and incident cognitive decline in PD. METHODS Data from the prospectively collected longitudinal National Alzheimer's Coordinating Center (NACC) Uniform Data Set (UDS) and Neuropathology Data Set (NDS) were analyzed. The NACC develops and maintains data from approximately 29 National Institutes of Aging-funded Alzheimer's Disease Research Centers. Further details may be found at the NACC web site (www.alz.washington.edu). The visit at which diagnosis of PD was made was termed the baseline visit. All patients with a PD diagnosis but without dementia at the baseline visit were included in the analyses. RESULTS Presence of APOE4 allele was associated with higher odds (OR = 7.4; P < .001) of subsequent diagnosis of dementia and with a faster time to developing dementia (P = .04). Those with APOE4 allele were more likely to have neuropathology associated with Alzheimer's disease than those without APOE4 allele. We did not find any difference by sex. There were no differences between Lewy body pathology or neuron loss in the substantia nigra between the 2 groups. Sex was not associated with dementia risk in PD (OR = 0.53, P = .15) or with the time to dementia onset (P = .22). Sex did not modify the relationship between the APOE4 allele and dementia onset in PD patients (P = .12). CONCLUSIONS APOE4 allele status in PD may be a predictor of cognitive decline in PD but does not appear to be modified by sex.
Collapse
Affiliation(s)
- Chizoba C. Umeh
- Department of Neurology, Beth Israel Lahey Health, Burlington, MA, USA
| | - Abhimanyu Mahajan
- Rush Parkinson’s Disease and Movement Disorders Program, Chicago, IL, USA
| | | | - Gregory M. Pontone
- Departments of Psychiatry and Neurology (GMP), Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|