1
|
Garland J. Unravelling the complexity of signalling networks in cancer: A review of the increasing role for computational modelling. Crit Rev Oncol Hematol 2017; 117:73-113. [PMID: 28807238 DOI: 10.1016/j.critrevonc.2017.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 06/01/2017] [Accepted: 06/08/2017] [Indexed: 02/06/2023] Open
Abstract
Cancer induction is a highly complex process involving hundreds of different inducers but whose eventual outcome is the same. Clearly, it is essential to understand how signalling pathways and networks generated by these inducers interact to regulate cell behaviour and create the cancer phenotype. While enormous strides have been made in identifying key networking profiles, the amount of data generated far exceeds our ability to understand how it all "fits together". The number of potential interactions is astronomically large and requires novel approaches and extreme computation methods to dissect them out. However, such methodologies have high intrinsic mathematical and conceptual content which is difficult to follow. This review explains how computation modelling is progressively finding solutions and also revealing unexpected and unpredictable nano-scale molecular behaviours extremely relevant to how signalling and networking are coherently integrated. It is divided into linked sections illustrated by numerous figures from the literature describing different approaches and offering visual portrayals of networking and major conceptual advances in the field. First, the problem of signalling complexity and data collection is illustrated for only a small selection of known oncogenes. Next, new concepts from biophysics, molecular behaviours, kinetics, organisation at the nano level and predictive models are presented. These areas include: visual representations of networking, Energy Landscapes and energy transfer/dissemination (entropy); diffusion, percolation; molecular crowding; protein allostery; quinary structure and fractal distributions; energy management, metabolism and re-examination of the Warburg effect. The importance of unravelling complex network interactions is then illustrated for some widely-used drugs in cancer therapy whose interactions are very extensive. Finally, use of computational modelling to develop micro- and nano- functional models ("bottom-up" research) is highlighted. The review concludes that computational modelling is an essential part of cancer research and is vital to understanding network formation and molecular behaviours that are associated with it. Its role is increasingly essential because it is unravelling the huge complexity of cancer induction otherwise unattainable by any other approach.
Collapse
Affiliation(s)
- John Garland
- Manchester Interdisciplinary Biocentre, Manchester University, Manchester, UK.
| |
Collapse
|
2
|
Stefano GB, Kream RM. Glycolytic Coupling to Mitochondrial Energy Production Ensures Survival in an Oxygen Rich Environment. Med Sci Monit 2016; 22:2571-5. [PMID: 27439008 PMCID: PMC4957629 DOI: 10.12659/msm.899610] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The mitochondrion exhibits biochemical and functional variations that emerged by random chance as an evolutionary survival strategy, which include enhanced energy production driven by anaerobic respiratory mechanisms. In invertebrates, this mitochondrial anaerobic respiration permits survival at a lower energy state suited for this type of environment while yielding more ATP than by glycolysis alone. This ability provides a protective existential advantage in naturally occurring hypoxic environments via diminished free radical generation. In the blue mussel Mytilus edulis and other marine organisms, a functionally active mitochondrial anaerobic respiratory mechanism tailored to hypoxic conditions reflects an evolutionary adaptation/reworking of ancient metabolic pathways. Components of these pathways were also discovered and characterized as metabolic intermediates in plant parasites, specifically crown gall tumors. Mechanistic similarities between anaerobically functioning mitochondria in M. edulis and crown gall tissues and metabolic processes in human tumors are known to occur, demonstrating commonalities in diverse life energy processes. Furthermore, cytoplasmic glycolytic processes are now shown also to exhibit a dynamic capacity for enhanced energy generation by increasing its efficiency in hypoxic environments, making it equally dynamic in meeting its cellular survival goal.
Collapse
Affiliation(s)
- George B Stefano
- Department of Research, MitoGenetics Research Institute, Farmingdale, NY, USA
| | - Richard M Kream
- Department of Research, MitoGenetics Research Institute, Farmingdale, NY, USA
| |
Collapse
|
3
|
Stefano GB, Kream RM. Hypoxia defined as a common culprit/initiation factor in mitochondrial-mediated proinflammatory processes. Med Sci Monit 2015; 21:1478-84. [PMID: 25997954 PMCID: PMC4451716 DOI: 10.12659/msm.894437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In mammals and invertebrates, the activities of neuro- and immuno-competent cells, e.g., glia, which are present in nervous tissues, are deemed of critical importance to normative neuronal function. The responsiveness of invertebrate and vertebrate immuno-competent glia to a common set of signal molecules, such as nitric oxide and endogenous morphine, is functionally linked to physiologically driven innate immunological and neuronal activities. Importantly, the presence of a common, evolutionarily conserved, set of signal molecules in comparative animal groups strongly suggests an expansive intermediate metabolic profile dependent on high output mitochondrial ATP production and utilization. Normative bidirectional neural-immune communication across invertebrate and vertebrate species requires common anatomical and biochemical substrates and pathways involved in energy production and mitochondrial integrity. Within this closed-loop system, abnormal perturbation of the respective tissue functions will have profound ramifications in functionally altering associated nervous and vascular systems and it is highly likely that the initial trigger to the induction of a physiologically debilitating pro-inflammatory state is a micro-environmental hypoxic event. This is surmised by the need for an unwavering constant oxygen supply. In this case, temporal perturbations of normative oxygen tension may be tolerated for short, but not extended, periods and ischemic/hypoxic perturbations in oxygen delivery represent significant physiological challenges to overall cellular and multiple organ system viability. Hence, hypoxic triggering of multiple pro-inflammatory events, if not corrected, will promote pathophysiological amplification leading to a deleterious cascade of bio-senescent cellular and molecular signaling pathways, which converge to markedly impair mitochondrial energy utilization and ATP production.
Collapse
|
4
|
Witkiewicz H, Oh P, Schnitzer JE. II. Capsular vaso-mimicry formed by transgenic mammary tumor spheroids implanted ectopically into mouse dorsal skin fold: implications for cellular mechanisms of metastasis. F1000Res 2013; 2:9. [PMID: 24555024 PMCID: PMC3869488 DOI: 10.12688/f1000research.2-9.v2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2013] [Indexed: 12/12/2022] Open
Abstract
Most cancer patients die of metastatic disease, not primary tumors, while biological mechanisms leading to metastases remain unclear and effective therapies are missing. Using a mouse dorsal skin chamber model we had observed that tumor growth and vasculature formation could be influenced by the way in vitro cultured (avascular) spheroids of N202 breast tumor cells were implanted; co-implantation of lactating breast tissue created stimulating microenvironment, whereas the absence of the graft resulted in temporary tumor dormancy. This report addressed the issue of cellular mechanisms of the vasculogenic switch that ended the dormancy. In situ ultrastructural analysis revealed that the tumors survived in ectopic microenvironment until some of host and tumor stem cells evolved independently into cells initiating the vasculogenic switch. The tumor cells that survived and proliferated under hypoxic conditions for three weeks were supported by erythrogenic autophagy of others. However, the host microenvironment first responded as it would to non-immunogenic foreign bodies, i.e., by encapsulating the tumor spheroids with collagen-producing fibroblasts. That led to a form of vaso-mimicry consisting of tumor cells amid tumor-derived erythrosomes (synonym of erythrocytes), megakaryocytes and platelets, and encapsulating them all, the host fibroblasts. Such capsular vaso-mimicry could potentially facilitate metastasis by fusing with morphologically similar lymphatic vessels or veins. Once incorporated into the host circulatory system, tumor cells could be carried away passively by blood flow, regardless of their genetic heterogeneity. The fake vascular segment would have permeability properties different from genuine vascular endothelium. The capsular vaso-mimicry was different from vasculogenic mimicry earlier observed in metastases-associated malignant tumors where channels formed by tumor cells were said to contain circulating blood. Structures similar to the vasculogenic mimicry were seen here as well but contained non-circulating erythrosomes formed between tumor nodules. The host's response to the implantation included coordinated formation of new vessels and peripheral nerves.
Collapse
Affiliation(s)
- Halina Witkiewicz
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| | - Phil Oh
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| | - Jan E Schnitzer
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| |
Collapse
|
5
|
Witkiewicz H, Oh P, Schnitzer JE. II. Capsular vaso-mimicry formed by transgenic mammary tumor spheroids implanted ectopically into mouse dorsal skin fold: cellular mechanisms of metastasis. F1000Res 2013; 2:9. [PMID: 24555024 PMCID: PMC3869488 DOI: 10.12688/f1000research.2-9.v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/02/2013] [Indexed: 03/22/2024] Open
Abstract
Most cancer patients die of metastatic disease, not primary tumors, while biological mechanisms leading to metastases remain unclear and effective therapies are missing. Using a mouse dorsal skin chamber model we had observed that tumor growth and vasculature formation could be influenced by the way in vitro cultured (avascular) spheroids of N202 breast tumor cells were implanted; co-implantation of lactating breast tissue created stimulating microenvironment, whereas the absence of the graft resulted in temporary tumor dormancy. This report addressed the issue of cellular mechanisms of the vasculogenic switch that ended the dormancy. In situ ultrastructural analysis revealed that the tumors survived in ectopic microenvironment until some of host and tumor stem cells evolved independently into cells initiating the vasculogenic switch. The tumor cells that survived and proliferated under hypoxic conditions for three weeks were supported by erythrogenic autophagy of others. However, the host microenvironment first responded as it would to non-immunogenic foreign bodies, i.e., by encapsulating the tumor spheroids with collagen-producing fibroblasts. That led to a form of vaso-mimicry consisting of tumor cells amid tumor-derived erythrosomes (synonym of erythrocytes), megakaryocytes and platelets, and encapsulating them all, the host fibroblasts. Such capsular vaso-mimicry could potentially facilitate metastasis by fusing with morphologically similar lymphatic vessels or veins. Once incorporated into the host circulatory system, tumor cells could be carried away passively by blood flow, regardless of their genetic heterogeneity. The fake vascular segment would have permeability properties different from genuine vascular endothelium. The capsular vaso-mimicry was different from vasculogenic mimicry earlier observed in metastases-associated malignant tumors where channels formed by tumor cells were said to contain circulating blood. Structures similar to the vasculogenic mimicry were seen here as well but contained non-circulating erythrosomes formed between tumor nodules. The host's response to the implantation included coordinated formation of new vessels and peripheral nerves.
Collapse
Affiliation(s)
- Halina Witkiewicz
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| | - Phil Oh
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| | - Jan E Schnitzer
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| |
Collapse
|
6
|
Witkiewicz H, Oh P, Schnitzer JE. I. Embryonal vasculature formation recapitulated in transgenic mammary tumor spheroids implanted pseudo-orthotopicly into mouse dorsal skin fold: the organoblasts concept. F1000Res 2013; 2:8. [PMID: 24627767 PMCID: PMC3938277 DOI: 10.12688/f1000research.2-8.v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/08/2013] [Indexed: 01/18/2025] Open
Abstract
Inadequate understanding of cancer biology is a problem. This work focused on cellular mechanisms of tumor vascularization. According to earlier studies, the tumor vasculature derives from host endothelial cells (angiogenesis) or their precursors of bone marrow origin circulating in the blood (neo-vasculogenesis) unlike in embryos. In this study, we observed the neo-vasculature form in multiple ways from local precursor cells. Recapitulation of primitive as well as advanced embryonal stages of vasculature formation followed co-implantation of avascular ( in vitro cultured) N202 breast tumor spheroids and homologous tissue grafts into mouse dorsal skin chambers. Ultrastructural and immunocytochemical analysis of tissue sections exposed the interactions between the tumor and the graft tissue stem cells. It revealed details of vasculature morphogenesis not seen before in either tumors or embryos. A gradual increase in complexity of the vascular morphogenesis at the tumor site reflected a range of steps in ontogenic evolution of the differentiating cells. Malignant- and surgical injury repair-related tissue growth prompted local cells to initiate extramedullar erythropoiesis and vascular patterning. The new findings included: interdependence between the extramedullar hematopoiesis and assembly of new vessels (both from the locally differentiating precursors); nucleo-cytoplasmic conversion (karyolysis) as the mechanism of erythroblast enucleation; the role of megakaryocytes and platelets in vascular pattern formation before emergence of endothelial cells; lineage relationships between hematopoietic and endothelial cells; the role of extracellular calmyrin in tissue morphogenesis; and calmyrite, a new ultrastructural entity associated with anaerobic energy metabolism. The central role of the extramedullar erythropoiesis in the formation of new vasculature (blood and vessels) emerged here as part of the tissue building process including the lymphatic system and nerves, and suggests a cellular mechanism for instigating variable properties of endothelial surfaces in different organs. Those findings are consistent with the organoblasts concept, previously discussed in a study on childhood tumors, and have implications for tissue definition.
Collapse
Affiliation(s)
- Halina Witkiewicz
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| | - Phil Oh
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| | - Jan E Schnitzer
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| |
Collapse
|
7
|
Witkiewicz H, Oh P, Schnitzer JE. I. Embryonal vasculature formation recapitulated in transgenic mammary tumor spheroids implanted pseudo-orthotopicly into mouse dorsal skin fold: the organoblasts concept. F1000Res 2013; 2:8. [PMID: 24627767 PMCID: PMC3938277 DOI: 10.12688/f1000research.2-8.v2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/08/2013] [Indexed: 12/22/2022] Open
Abstract
Inadequate understanding of cancer biology is a problem. This work focused on cellular mechanisms of tumor vascularization. According to earlier studies, the tumor vasculature derives from host endothelial cells (angiogenesis) or their precursors of bone marrow origin circulating in the blood (neo-vasculogenesis) unlike in embryos. In this study, we observed the neo-vasculature form in multiple ways from local precursor cells. Recapitulation of primitive as well as advanced embryonal stages of vasculature formation followed co-implantation of avascular (
in vitro cultured) N202 breast tumor spheroids and homologous tissue grafts into mouse dorsal skin chambers. Ultrastructural and immunocytochemical analysis of tissue sections exposed the interactions between the tumor and the graft tissue stem cells. It revealed details of vasculature morphogenesis not seen before in either tumors or embryos. A gradual increase in complexity of the vascular morphogenesis at the tumor site reflected a range of steps in ontogenic evolution of the differentiating cells. Malignant- and surgical injury repair-related tissue growth prompted local cells to initiate extramedullar erythropoiesis and vascular patterning. The new findings included: interdependence between the extramedullar hematopoiesis and assembly of new vessels (both from the locally differentiating precursors); nucleo-cytoplasmic conversion (karyolysis) as the mechanism of erythroblast enucleation; the role of megakaryocytes and platelets in vascular pattern formation before emergence of endothelial cells; lineage relationships between hematopoietic and endothelial cells; the role of extracellular calmyrin in tissue morphogenesis; and calmyrite, a new ultrastructural entity associated with anaerobic energy metabolism. The central role of the extramedullar erythropoiesis in the formation of new vasculature (blood and vessels) emerged here as part of the tissue building process including the lymphatic system and nerves, and suggests a cellular mechanism for instigating variable properties of endothelial surfaces in different organs. Those findings are consistent with the organoblasts concept, previously discussed in a study on childhood tumors, and have implications for tissue definition.
Collapse
Affiliation(s)
- Halina Witkiewicz
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| | - Phil Oh
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| | - Jan E Schnitzer
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| |
Collapse
|