1
|
Loder S, Patel N, Morgani S, Sambon M, Leucht P, Levi B. Genetic models for lineage tracing in musculoskeletal development, injury, and healing. Bone 2023; 173:116777. [PMID: 37156345 PMCID: PMC10860167 DOI: 10.1016/j.bone.2023.116777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023]
Abstract
Musculoskeletal development and later post-natal homeostasis are highly dynamic processes, marked by rapid structural and functional changes across very short periods of time. Adult anatomy and physiology are derived from pre-existing cellular and biochemical states. Consequently, these early developmental states guide and predict the future of the system as a whole. Tools have been developed to mark, trace, and follow specific cells and their progeny either from one developmental state to the next or between circumstances of health and disease. There are now many such technologies alongside a library of molecular markers which may be utilized in conjunction to allow for precise development of unique cell 'lineages'. In this review, we first describe the development of the musculoskeletal system beginning as an embryonic germ layer and at each of the key developmental stages that follow. We then discuss these structures in the context of adult tissues during homeostasis, injury, and repair. Special focus is given in each of these sections to the key genes involved which may serve as markers of lineage or later in post-natal tissues. We then finish with a technical assessment of lineage tracing and the techniques and technologies currently used to mark cells, tissues, and structures within the musculoskeletal system.
Collapse
Affiliation(s)
- Shawn Loder
- Department of Plastic Surgery, University of Pittsburgh, Scaife Hall, Suite 6B, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Nicole Patel
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | - Benjamin Levi
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Shah S, Mudigonda S, Underhill TM, Salo PT, Mitha AP, Krawetz RJ. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:200-212. [PMID: 35259263 PMCID: PMC8929447 DOI: 10.1093/stcltm/szab014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/14/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sophia Shah
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Sathvika Mudigonda
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Tully Michael Underhill
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Paul T Salo
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alim P Mitha
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Roman J Krawetz
- Corresponding author: Roman J. Krawetz, McCaig Institute for Bone and Joint Health, University of Calgary, HRIC 3AA10, 3330 Hospital Dr NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
3
|
Gao Z, Lu A, Daquinag AC, Yu Y, Huard M, Tseng C, Gao X, Huard J, Kolonin MG. Partial Ablation of Non-Myogenic Progenitor Cells as a Therapeutic Approach to Duchenne Muscular Dystrophy. Biomolecules 2021; 11:biom11101519. [PMID: 34680151 PMCID: PMC8534118 DOI: 10.3390/biom11101519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/27/2021] [Accepted: 10/12/2021] [Indexed: 01/04/2023] Open
Abstract
Duchenne muscular dystrophy (DMD), caused by the loss of dystrophin, remains incurable. Reduction in muscle regeneration with DMD is associated with the accumulation of fibroadipogenic progenitors (FAPs) differentiating into myofibroblasts and leading to a buildup of the collagenous tissue aggravating DMD pathogenesis. Mesenchymal stromal cells (MSCs) expressing platelet-derived growth factor receptors (PDGFRs) are activated in muscle during DMD progression and give rise to FAPs promoting DMD progression. Here, we hypothesized that muscle dysfunction in DMD could be delayed via genetic or pharmacologic depletion of MSC-derived FAPs. In this paper, we test this hypothesis in dystrophin-deficient mdx mice. To reduce fibro/adipose infiltration and potentiate muscle progenitor cells (MPCs), we used a model for inducible genetic ablation of proliferating MSCs via a suicide transgene, viral thymidine kinase (TK), expressed under the Pdgfrb promoter. We also tested if MSCs from fat tissue, the adipose stromal cells (ASCs), contribute to FAPs and could be targeted in DMD. Pharmacological ablation was performed with a hunter-killer peptide D-CAN targeting ASCs. MSC depletion with these approaches resulted in increased endurance, measured based on treadmill running, as well as grip strength, without significantly affecting fibrosis. Although more research is needed, our results suggest that depletion of pathogenic MSCs mitigates muscle damage and delays the loss of muscle function in mouse models of DMD.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Proliferation/genetics
- Disease Models, Animal
- Dystrophin/genetics
- Humans
- Mesenchymal Stem Cells/metabolism
- Mice
- Mice, Inbred mdx
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Myofibroblasts/cytology
- Myofibroblasts/metabolism
- Promoter Regions, Genetic/genetics
- Receptors, Platelet-Derived Growth Factor/genetics
- Stem Cells/cytology
- Stem Cells/metabolism
Collapse
Affiliation(s)
- Zhanguo Gao
- Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA; (Z.G.); (A.C.D.); (Y.Y.)
| | - Aiping Lu
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA; (A.L.); (M.H.); (X.G.)
| | - Alexes C. Daquinag
- Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA; (Z.G.); (A.C.D.); (Y.Y.)
| | - Yongmei Yu
- Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA; (Z.G.); (A.C.D.); (Y.Y.)
| | - Matthieu Huard
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA; (A.L.); (M.H.); (X.G.)
| | - Chieh Tseng
- M.D. Anderson Cancer Center, The University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Xueqin Gao
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA; (A.L.); (M.H.); (X.G.)
| | - Johnny Huard
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA; (A.L.); (M.H.); (X.G.)
- Correspondence: (J.H.); (M.G.K.); Tel.: +970-479-1595 (J.H.); +713-500-3146 (M.G.K.)
| | - Mikhail G. Kolonin
- Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA; (Z.G.); (A.C.D.); (Y.Y.)
- Correspondence: (J.H.); (M.G.K.); Tel.: +970-479-1595 (J.H.); +713-500-3146 (M.G.K.)
| |
Collapse
|
4
|
Santini MP, Malide D, Hoffman G, Pandey G, D'Escamard V, Nomura-Kitabayashi A, Rovira I, Kataoka H, Ochando J, Harvey RP, Finkel T, Kovacic JC. Tissue-Resident PDGFRα + Progenitor Cells Contribute to Fibrosis versus Healing in a Context- and Spatiotemporally Dependent Manner. Cell Rep 2021; 30:555-570.e7. [PMID: 31940496 DOI: 10.1016/j.celrep.2019.12.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/11/2019] [Accepted: 12/12/2019] [Indexed: 11/24/2022] Open
Abstract
PDGFRα+ mesenchymal progenitor cells are associated with pathological fibro-adipogenic processes. Conversely, a beneficial role for these cells during homeostasis or in response to revascularization and regeneration stimuli is suggested, but remains to be defined. We studied the molecular profile and function of PDGFRα+ cells in order to understand the mechanisms underlying their role in fibrosis versus regeneration. We show that PDGFRα+ cells are essential for tissue revascularization and restructuring through injury-stimulated remodeling of stromal and vascular components, context-dependent clonal expansion, and ultimate removal of pro-fibrotic PDGFRα+-derived cells. Tissue ischemia modulates the PDGFRα+ phenotype toward cells capable of remodeling the extracellular matrix and inducing cell-cell and cell-matrix adhesion, likely favoring tissue repair. Conversely, pathological healing occurs if PDGFRα+-derived cells persist as terminally differentiated mesenchymal cells. These studies support a context-dependent "yin-yang" biology of tissue-resident mesenchymal progenitor cells, which possess an innate ability to limit injury expansion while also promoting fibrosis in an unfavorable environment.
Collapse
Affiliation(s)
- Maria Paola Santini
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA.
| | - Daniela Malide
- Light Microscopy Core Facility, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Gabriel Hoffman
- Icahn Institute for Data Science and Genomic Technology, ISMMS, New York, NY 10029, USA
| | - Gaurav Pandey
- Icahn Institute for Data Science and Genomic Technology, ISMMS, New York, NY 10029, USA
| | - Valentina D'Escamard
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
| | - Aya Nomura-Kitabayashi
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
| | - Ilsa Rovira
- Center for Molecular Medicine, NHLBI, NIH, Bethesda, MD 20892, USA
| | | | - Jordi Ochando
- Department of Medicine and Oncological Sciences, ISMMS, New York, NY 10029, USA
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, Kensington, NSW 2052, Australia; Stem Cells Australia, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Toren Finkel
- Aging Institute, University of Pittsburgh/UPMC, 100 Technology Drive, Pittsburgh, PA 15219, USA
| | - Jason C Kovacic
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA.
| |
Collapse
|
5
|
Forte E, Furtado MB, Rosenthal N. The interstitium in cardiac repair: role of the immune-stromal cell interplay. Nat Rev Cardiol 2019; 15:601-616. [PMID: 30181596 DOI: 10.1038/s41569-018-0077-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiac regeneration, that is, restoration of the original structure and function in a damaged heart, differs from tissue repair, in which collagen deposition and scar formation often lead to functional impairment. In both scenarios, the early-onset inflammatory response is essential to clear damaged cardiac cells and initiate organ repair, but the quality and extent of the immune response vary. Immune cells embedded in the damaged heart tissue sense and modulate inflammation through a dynamic interplay with stromal cells in the cardiac interstitium, which either leads to recapitulation of cardiac morphology by rebuilding functional scaffolds to support muscle regrowth in regenerative organisms or fails to resolve the inflammatory response and produces fibrotic scar tissue in adult mammals. Current investigation into the mechanistic basis of homeostasis and restoration of cardiac function has increasingly shifted focus away from stem cell-mediated cardiac repair towards a dynamic interplay of cells composing the less-studied interstitial compartment of the heart, offering unexpected insights into the immunoregulatory functions of cardiac interstitial components and the complex network of cell interactions that must be considered for clinical intervention in heart diseases.
Collapse
Affiliation(s)
| | | | - Nadia Rosenthal
- The Jackson Laboratory, Bar Harbor, ME, USA. .,National Heart and Lung Institute, Imperial College London, Faculty of Medicine, Imperial Centre for Translational and Experimental Medicine, London, UK.
| |
Collapse
|
6
|
Bollini S. One step closer to finding the Fountain of Youth in our muscles: can we grow old while staying young at heart? Cardiovasc Res 2019; 115:e85-e87. [PMID: 31038166 DOI: 10.1093/cvr/cvz099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sveva Bollini
- Department of Experimental Medicine (DIMES), University of Genova, Via A. Pastore 3, 16132 Genova, Italy
| |
Collapse
|
7
|
Martewicz S, Luni C, Serena E, Pavan P, Chen HSV, Rampazzo A, Elvassore N. Transcriptomic Characterization of a Human In Vitro Model of Arrhythmogenic Cardiomyopathy Under Topological and Mechanical Stimuli. Ann Biomed Eng 2018; 47:852-865. [DOI: 10.1007/s10439-018-02134-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/15/2018] [Indexed: 12/11/2022]
|
8
|
Chen G, Bracamonte-Baran W, Diny NL, Hou X, Talor MV, Fu K, Liu Y, Davogustto G, Vasquez H, Taegtmeyer H, Frazier OH, Waisman A, Conway SJ, Wan F, Čiháková D. Sca-1 + cardiac fibroblasts promote development of heart failure. Eur J Immunol 2018; 48:1522-1538. [PMID: 29953616 DOI: 10.1002/eji.201847583] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/09/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022]
Abstract
The causative effect of GM-CSF produced by cardiac fibroblasts to development of heart failure has not been shown. We identified the pathological GM-CSF-producing cardiac fibroblast subset and the specific deletion of IL-17A signaling to these cells attenuated cardiac inflammation and heart failure. We describe here the CD45- CD31- CD29+ mEF-SK4+ PDGFRα+ Sca-1+ periostin+ (Sca-1+ ) cardiac fibroblast subset as the main GM-CSF producer in both experimental autoimmune myocarditis and myocardial infarction mouse models. Specific ablation of IL-17A signaling to Sca-1+ periostin+ cardiac fibroblasts (PostnCre Il17rafl/fl ) protected mice from post-infarct heart failure and death. Moreover, PostnCre Il17rafl/fl mice had significantly fewer GM-CSF-producing Sca-1+ cardiac fibroblasts and inflammatory Ly6Chi monocytes in the heart. Sca-1+ cardiac fibroblasts were not only potent GM-CSF producers, but also exhibited plasticity and switched their cytokine production profiles depending on local microenvironments. Moreover, we also found GM-CSF-positive cardiac fibroblasts in cardiac biopsy samples from heart failure patients of myocarditis or ischemic origin. Thus, this is the first identification of a pathological GM-CSF-producing cardiac fibroblast subset in human and mice hearts with myocarditis and ischemic cardiomyopathy. Sca-1+ cardiac fibroblasts direct the type of immune cells infiltrating the heart during cardiac inflammation and drive the development of heart failure.
Collapse
Affiliation(s)
- Guobao Chen
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | - Nicola L Diny
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Xuezhou Hou
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Monica V Talor
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kai Fu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Yue Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Giovanni Davogustto
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hernan Vasquez
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Heinrich Taegtmeyer
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - O Howard Frazier
- Texas Heart Institute, CHI St. Luke's Health - Baylor St. Luke's Medical Center, MC 2-114A, PO Box 20345, Houston, TX, USA
| | - Ari Waisman
- Institute for Molecular Medicine, University of Mainz, Mainz, Germany
| | - Simon J Conway
- Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniela Čiháková
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.,W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
9
|
Stadiotti I, Catto V, Casella M, Tondo C, Pompilio G, Sommariva E. Arrhythmogenic Cardiomyopathy: the Guilty Party in Adipogenesis. J Cardiovasc Transl Res 2017; 10:446-454. [PMID: 28983804 PMCID: PMC5722955 DOI: 10.1007/s12265-017-9767-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/25/2017] [Indexed: 12/23/2022]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a genetic cardiac condition characterized by the replacement of the ventricular myocardium with fibro-fatty tissue, by arrhythmias and sudden death. Adipogenesis in ACM is considered an aberrant remodeling following myocardial loss. Which cell type(s) is (are) responsible for the adipose replacement is still matter of debate. A systematic overview of the different cells that have been, over time, considered as main players in adipose replacement is provided. The comprehension of the cellular component giving rise to arrhythmogenic cardiomyopathy substrate defects may represent both an essential tool for mechanistic studies of disease pathogenesis and a novel possible therapeutic target.
Collapse
Affiliation(s)
- Ilaria Stadiotti
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, via Parea 4, 20138, Milan, Italy
| | - Valentina Catto
- Cardiac Arrhythmia Research Centre, Centro Cardiolologico Monzino-IRCCS, Milan, Italy
| | - Michela Casella
- Cardiac Arrhythmia Research Centre, Centro Cardiolologico Monzino-IRCCS, Milan, Italy
| | - Claudio Tondo
- Cardiac Arrhythmia Research Centre, Centro Cardiolologico Monzino-IRCCS, Milan, Italy
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, via Parea 4, 20138, Milan, Italy.,Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Elena Sommariva
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, via Parea 4, 20138, Milan, Italy.
| |
Collapse
|
10
|
Song J, Wang M, Chen X, Liu L, Chen L, Song Z, Teng X, Xing Y, Chen K, Zhao K, Hou J, Yang P. Prolactin mediates effects of chronic psychological stress on induction of fibrofatty cells in the heart. Am J Transl Res 2016; 8:644-652. [PMID: 27158356 PMCID: PMC4846913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/29/2015] [Indexed: 06/05/2023]
Abstract
Cardiocyte apoptosis plays an important role in the pathogenesis of heart diseases. The mechanism is unclear. It is reported that prolactin (PRL) is involved in cardiac disorders. This study aims to investigate the role of PRL in mediating the psychological stress-induced fibrofatty cell differentiation in the heart. In this study, BALB/c mice were treated with a 30-day restraint stress. The heart tissue was processed by paraffin embedding and hematoxylin and eosin. The expression of Sca1 in NIH3T3 cells was assessed by cell culture, flow cytometry and Western blotting. The results showed that chronic stress induced fibrofatty cells in the mouse heart and high serum PRL levels. The induction of fibrofatty cell was mimicked by administration with recombinant PRL. The stress also induced the expression of Sca1 in the mouse heart. Exposure of NIH3T3 cells (a fibroblast cell line) to PRL in the culture enhanced the expression of stem cell antigen-1 (Sca1), phosphorylation of signal transducer and activator of transcription 3 (STAT3) and expression of adipocyte-related protein molecules, including adiponectin, fatty acid binding protein (aP2), peroxisome proliferator activated receptor-g (PPARg) and CCAAT/enhancer binding protein (C/EBP)α, in the cells. We conclude that psychological stress-derived PRL induces fibroblasts to differentiate into fibrofatty cells in the heart.
Collapse
|
11
|
Pathological Left Ventricular Hypertrophy and Stem Cells: Current Evidence and New Perspectives. Stem Cells Int 2015; 2016:5720758. [PMID: 26798360 PMCID: PMC4699040 DOI: 10.1155/2016/5720758] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/17/2015] [Accepted: 09/06/2015] [Indexed: 12/17/2022] Open
Abstract
Left ventricular hypertrophy (LVH) is a strong predictor of adverse cardiovascular outcomes. It is the result of complex mechanisms that include not only an increase in protein synthesis and cell size but also proliferating cardiac progenitor cells and the influx of bone marrow-derived cells developing into cardiomyocytes. Stem and progenitor cells are known to contribute to the renewal of adult mammalian cardiomyocytes in case of myocardial injury or pressure and volume overload. They are activated in LVH and play a regulatory role in myocardial repair. They have high proliferative potential and secrete numerous cytokines, growth factors, and microRNAs that play important roles in cell differentiation, cardiac remodeling, and neovascularization. They are mobilized in response to either mechanical or chemical stimuli, hormones, or pharmacologic agents. Another important source of progenitor cells is the epicardial layer. It appears that precursor cells migrate from the epicardium to the myocardium in order to interact with myocardial cells. In addition, migratory cells participate in the formation of almost all cardiac structures in myocardial hypertrophy. Although the pathophysiological mechanisms are still obscure and further studies are required, their properties may open the door to regenerative cell therapy for the prevention of adverse remodeling.
Collapse
|
12
|
Valente M, Nascimento DS, Cumano A, Pinto-do-Ó P. Sca-1+ cardiac progenitor cells and heart-making: a critical synopsis. Stem Cells Dev 2014; 23:2263-73. [PMID: 24926741 DOI: 10.1089/scd.2014.0197] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The identification, in the adult, of cardiomyocyte turnover events and of cardiac progenitor cells (CPCs) has revolutionized the field of cardiovascular medicine. However, the low rate of CPCs differentiation events reported both in vitro and in vivo, even after injury, raised concerns on the biological significance of these subsets. In this Comprehensive Review, we discuss the current understanding of cardiac Lin(-)Sca-1(+) cells in light of what is also known for cellular compartments with similar phenotypes in other organs. The Lin(-)Sca-1(+) heart subset is heterogeneous and displays a mesenchymal profile, characterized by a limited ability to generate cardiomyocytes in vitro and in vivo, even after injury. There is no evidence for Sca-1 expression in embryonic cardiovascular progenitors. In other organs, Sca-1 expression is mainly observed on mesoderm-derived cells, although it is not restricted to stem/progenitor cell populations. It is urgent to determine, at a single cell level, to which extent cardiac Lin(-)Sca-1(+) cells overlap with the fibroblast compartment.
Collapse
Affiliation(s)
- Mariana Valente
- 1 Stem-Cell Microenvironments in Repair/Regeneration Team, Microenvironments for NewTherapies Group, INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto , Porto, Portugal
| | | | | | | |
Collapse
|
13
|
Furtado MB, Costa MW, Pranoto EA, Salimova E, Pinto AR, Lam NT, Park A, Snider P, Chandran A, Harvey RP, Boyd R, Conway SJ, Pearson J, Kaye DM, Rosenthal NA. Cardiogenic genes expressed in cardiac fibroblasts contribute to heart development and repair. Circ Res 2014; 114:1422-34. [PMID: 24650916 DOI: 10.1161/circresaha.114.302530] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
RATIONALE Cardiac fibroblasts are critical to proper heart function through multiple interactions with the myocardial compartment, but appreciation of their contribution has suffered from incomplete characterization and lack of cell-specific markers. OBJECTIVE To generate an unbiased comparative gene expression profile of the cardiac fibroblast pool, identify and characterize the role of key genes in cardiac fibroblast function, and determine their contribution to myocardial development and regeneration. METHODS AND RESULTS High-throughput cell surface and intracellular profiling of cardiac and tail fibroblasts identified canonical mesenchymal stem cell and a surprising number of cardiogenic genes, some expressed at higher levels than in whole heart. While genetically marked fibroblasts contributed heterogeneously to interstitial but not cardiomyocyte compartments in infarcted hearts, fibroblast-restricted depletion of one highly expressed cardiogenic marker, T-box 20, caused marked myocardial dysmorphology and perturbations in scar formation on myocardial infarction. CONCLUSIONS The surprising transcriptional identity of cardiac fibroblasts, the adoption of cardiogenic gene programs, and direct contribution to cardiac development and repair provoke alternative interpretations for studies on more specialized cardiac progenitors, offering a novel perspective for reinterpreting cardiac regenerative therapies.
Collapse
Affiliation(s)
- Milena B Furtado
- From the Australian Regenerative Medicine Institute (M.B.F., M.W.C., E.A.P., E.S., A.R.P., A.C., N.A.R.), Department of Anatomy and Developmental Biology (A.R.P., R.B.), and Monash Biomedical Imaging (J.P.), Monash University, Melbourne, Victoria, Australia; Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.T.L., D.M.K.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (P.S., S.J.C.); and Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia (R.P.H.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|