1
|
Wang Z, Qian H, Shen M, Huo J, Dai N, Fu Q, Sui B. Abnormal functional connectivity in the frontal hub regions of patients with primary insomnia: a resting-state functional magnetic resonance imaging study. Acta Radiol 2025; 66:410-416. [PMID: 39925044 DOI: 10.1177/02841851241310398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
BackgroundPrimary insomnia (PI) is one of the most common sleep disorders. Diagnosis of insomnia is mainly based on subjective sleep difficulties, and it is still necessary to find objective neurobiological markers.PurposeTo investigate the functional connectivity (FC) of frontal hub regions important for PI.Material and MethodsWe enrolled 20 patients (5 men, 15 women) with PI and 20 controls (5 men, 15 women), matching age, sex. We used resting-state functional magnetic resonance imaging (fMRI) and voxel-mirrored homotopic connectivity (VMHC) to analyze the abnormal changes of FC in the frontal lobe of PI patients.ResultsCompared to controls, abnormal FC regions were mainly concentrated in the superior frontal gyrus (L/R), middle frontal gyrus (L/R), and inferior frontal gyrus (L) of the orbital region and the inferior frontal gyrus of the opercular region (L) (P < 0.05). The VMHC results showed abnormal FC in the middle frontal gyrus of the orbital region (GFR correction, voxel P < 0.01, cluster P < 0.025) in PI patients. The FC between the orbitofrontal gyrus and the inferior frontal gyrus of the opercular region with the frontal gyrus of the medial orbital region demonstrated a significant correlation with the clinical scale (p < 0.05).ConclusionOur study identified abnormal FC, which was mainly located in the orbitofrontal gyrus and the inferior frontal gyrus of the opercular region, in the frontal lobe of patients with insomnia using resting-state fMRI. This is helpful to understand the abnormal neural activity mechanism of insomnia in the frontal lobe and provide a relatively accurate brain region basis for future prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Zhongyan Wang
- Department of Radiology, Beijing Tiantan Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
- The Department of Radiology, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, Beijing, PR China
- Tiantan Neuroimaging Center of Excellence, National Clinical Research Center for Neurological Diseases, Beijing, PR China
| | - Haiyan Qian
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Mi Shen
- Department of Radiology, Beijing Tiantan Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Jianwei Huo
- The Department of Radiology, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, Beijing, PR China
| | - Na Dai
- The Department of Radiology, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, Beijing, PR China
| | - Qingnan Fu
- The Department of Psychosomatic Medicine, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, Beijing, PR China
| | - BinBin Sui
- Department of Radiology, Beijing Tiantan Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
- Tiantan Neuroimaging Center of Excellence, National Clinical Research Center for Neurological Diseases, Beijing, PR China
| |
Collapse
|
2
|
Moneta N, Grossman S, Schuck NW. Representational spaces in orbitofrontal and ventromedial prefrontal cortex: task states, values, and beyond. Trends Neurosci 2024; 47:1055-1069. [PMID: 39547861 DOI: 10.1016/j.tins.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/17/2024]
Abstract
The orbitofrontal cortex (OFC) and ventromedial-prefrontal cortex (vmPFC) play a key role in decision-making and encode task states in addition to expected value. We review evidence suggesting a connection between value and state representations and argue that OFC / vmPFC integrate stimulus, context, and outcome information. Comparable encoding principles emerge in late layers of deep reinforcement learning (RL) models, where single nodes exhibit similar forms of mixed-selectivity, which enables flexible readout of relevant variables by downstream neurons. Based on these lines of evidence, we suggest that outcome-maximization leads to complex representational spaces that are insufficiently characterized by linear value signals that have been the focus of most prior research on the topic. Major outstanding questions concern the role of OFC/ vmPFC in learning across tasks, in encoding of task-irrelevant aspects, and the role of hippocampus-PFC interactions.
Collapse
Affiliation(s)
- Nir Moneta
- Institute of Psychology, Universität Hamburg, 20146 Hamburg, Germany; Einstein Center for Neurosciences Berlin, Charité Universitätsmedizin Berlin, 10117, Berlin, Germany.
| | - Shany Grossman
- Institute of Psychology, Universität Hamburg, 20146 Hamburg, Germany.
| | - Nicolas W Schuck
- Institute of Psychology, Universität Hamburg, 20146 Hamburg, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, 14195 Berlin, Germany.
| |
Collapse
|
3
|
Mallio CA, Buoso A, Stiffi M, Cea L, Vertulli D, Bernetti C, Di Gennaro G, van den Heuvel MP, Beomonte Zobel B. Mapping the Neural Basis of Neuroeconomics with Functional Magnetic Resonance Imaging: A Narrative Literature Review. Brain Sci 2024; 14:511. [PMID: 38790489 PMCID: PMC11120557 DOI: 10.3390/brainsci14050511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Neuroeconomics merges neuroscience, economics, and psychology to investigate the neural basis of decision making. Decision making involves assessing outcomes with subjective value, shaped by emotions and experiences, which are crucial in economic decisions. Functional MRI (fMRI) reveals key areas of the brain, including the ventro-medial prefrontal cortex, that are involved in subjective value representation. Collaborative interdisciplinary efforts are essential for advancing the field of neuroeconomics, with implications for clinical interventions and policy design. This review explores subjective value in neuroeconomics, highlighting brain regions identified through fMRI studies.
Collapse
Affiliation(s)
- Carlo A. Mallio
- Fondazione Policlinico Universitario Campus Bio-Medico, 00100 Rome, Italy; (A.B.); (M.S.); (L.C.); (D.V.); (C.B.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00100 Rome, Italy
| | - Andrea Buoso
- Fondazione Policlinico Universitario Campus Bio-Medico, 00100 Rome, Italy; (A.B.); (M.S.); (L.C.); (D.V.); (C.B.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00100 Rome, Italy
| | - Massimo Stiffi
- Fondazione Policlinico Universitario Campus Bio-Medico, 00100 Rome, Italy; (A.B.); (M.S.); (L.C.); (D.V.); (C.B.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00100 Rome, Italy
| | - Laura Cea
- Fondazione Policlinico Universitario Campus Bio-Medico, 00100 Rome, Italy; (A.B.); (M.S.); (L.C.); (D.V.); (C.B.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00100 Rome, Italy
| | - Daniele Vertulli
- Fondazione Policlinico Universitario Campus Bio-Medico, 00100 Rome, Italy; (A.B.); (M.S.); (L.C.); (D.V.); (C.B.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00100 Rome, Italy
| | - Caterina Bernetti
- Fondazione Policlinico Universitario Campus Bio-Medico, 00100 Rome, Italy; (A.B.); (M.S.); (L.C.); (D.V.); (C.B.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00100 Rome, Italy
| | - Gianfranco Di Gennaro
- Department of Health Sciences, Medical Statistics, University of Catanzaro “Magna Græcia”, 88100 Catanzaro, Italy;
| | - Martijn P. van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 Amsterdam, The Netherlands;
- Department of Child and Adolescent Psychiatry and Psychology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands
| | - Bruno Beomonte Zobel
- Fondazione Policlinico Universitario Campus Bio-Medico, 00100 Rome, Italy; (A.B.); (M.S.); (L.C.); (D.V.); (C.B.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00100 Rome, Italy
| |
Collapse
|
4
|
Kraemer PM, Gluth S. Episodic Memory Retrieval Affects the Onset and Dynamics of Evidence Accumulation during Value-based Decisions. J Cogn Neurosci 2023; 35:692-714. [PMID: 36724395 DOI: 10.1162/jocn_a_01968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In neuroeconomics, there is much interest in understanding simple value-based choices where agents choose between visually presented goods, comparable to a shopping scenario in a supermarket. However, many everyday decisions are made in the physical absence of the considered goods, requiring agents to recall information about the goods from memory. Here, we asked whether and how this reliance on an internal memory representation affects the temporal dynamics of decision making on a cognitive and neural level. Participants performed a remember-and-decide task in which they made simple purchasing decisions between money offers and snack items while undergoing EEG. Snack identity was presented either visually (value trials) or had to be recalled from memory (memory trials). Behavioral data indicated comparable choice consistency across both trial types, but considerably longer RTs in memory trials. Drift-diffusion modeling suggested that this RT difference was because of longer nondecision time of decision processes as well as altered evidence accumulation dynamics (lower accumulation rate and higher decision threshold). The nondecision time effect was supported by a delayed onset of the lateralized readiness potential. These results show that both decision and nondecision processes are prolonged when participants need to resort to internal memory representations during value-based decisions.
Collapse
|
5
|
Garr AK. The role of the ventromedial prefrontal cortex in moral cognition: A value-centric hypothesis. PHILOSOPHICAL PSYCHOLOGY 2023. [DOI: 10.1080/09515089.2023.2166820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Anna K. Garr
- Department of Psychiatry, McGill University, Montréal, QC, Canada
| |
Collapse
|
6
|
Abstract
For over 100 years, eye movements have been studied and used as indicators of human sensory and cognitive functions. This review evaluates how eye movements contribute to our understanding of the processes that underlie decision-making. Eye movement metrics signify the visual and task contexts in which information is accumulated and weighed. They indicate the efficiency with which we evaluate the instructions for decision tasks, the timing and duration of decision formation, the expected reward associated with a decision, the accuracy of the decision outcome, and our ability to predict and feel confident about a decision. Because of their continuous nature, eye movements provide an exciting opportunity to probe decision processes noninvasively in real time. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Miriam Spering
- Department of Ophthalmology & Visual Sciences and the Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, Canada;
| |
Collapse
|
7
|
Horr NK, Han K, Mousavi B, Tang R. Neural Signature of Buying Decisions in Real-World Online Shopping Scenarios – An Exploratory Electroencephalography Study Series. Front Hum Neurosci 2022; 15:797064. [PMID: 35237138 PMCID: PMC8882609 DOI: 10.3389/fnhum.2021.797064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
The neural underpinnings of decision-making are critical to understanding and predicting human behavior. However, findings from decision neuroscience are limited in their practical applicability due to the gap between experimental decision-making paradigms and real-world choices. The present manuscript investigates the neural markers of buying decisions in a fully natural purchase setting: participants are asked to use their favorite online shopping applications to buy common goods they are currently in need of. Their electroencephalography (EEG) is recorded while they view the product page for each item. EEG responses to pages for products that are eventually bought are compared to those that are discarded. Study 1 repeats this procedure in three batches with different participants, product types, and time periods. In an explorative analysis, two neural markers for buying compared to no-buying decisions are discovered over all three batches: frontal alpha asymmetry peak and frontal theta power peak. Occipital alpha power at alpha asymmetry peaks differs in only one of the three batches. No further significant markers are found. Study 2 compares the natural product search to a design in which subjects are told which product pages to view. In both settings, the frontal alpha asymmetry peak is increased for buying decisions. Frontal theta peak increase is replicated only when subjects search through product pages by themselves. The present study series represents an attempt to find neural markers of real-world decisions in a fully natural environment and explore how those markers can change due to small adjustments for the sake of experimental control. Limitations and practical applicability of the real-world approach to studying decision-making are discussed.
Collapse
|
8
|
Kraemer PM, Weilbächer RA, Mechera-Ostrovsky T, Gluth S. Cognitive and neural principles of a memory bias on preferential choices. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100029. [PMID: 36685759 PMCID: PMC9846459 DOI: 10.1016/j.crneur.2022.100029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 01/25/2023] Open
Abstract
Value-based decisions depend on different forms of memory. However, the respective roles of memory and valuation processes that give rise to these decisions are often vaguely described and have rarely been investigated jointly. In this review article, we address the problem of memory-based decision making from a neuroeconomic perspective. We first describe the neural and cognitive processes involved in decisions requiring memory processes, with a focus on episodic memory. Based on the results of a systematic research program, we then spotlight the phenomenon of the memory bias, a general preference for choice options that can be retrieved from episodic memory more successfully. Our findings indicate that failed memory recall biases neural valuation processes as indicated by altered effective connectivity between the hippocampus and ventromedial prefrontal cortex. This bias can be attributed to meta-cognitive beliefs about the relationship between subjective value and memory as well as to uncertainty aversion. After summarizing the findings, we outline potential future research endeavors to integrate the two research traditions of memory and decision making.
Collapse
Affiliation(s)
| | | | | | - Sebastian Gluth
- Department of Psychology, University of Hamburg, Germany
- Corresponding author. Von-Melle-Park 11, 20146, Hamburg, Germany.
| |
Collapse
|
9
|
Xue AM, Foerde K, Walsh BT, Steinglass JE, Shohamy D, Bakkour A. Neural Representations of Food-Related Attributes in the Human Orbitofrontal Cortex during Choice Deliberation in Anorexia Nervosa. J Neurosci 2022; 42:109-120. [PMID: 34759030 PMCID: PMC8741166 DOI: 10.1523/jneurosci.0958-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 11/21/2022] Open
Abstract
Decisions about what to eat recruit the orbitofrontal cortex (OFC) and involve the evaluation of food-related attributes such as taste and health. These attributes are used differently by healthy individuals and patients with disordered eating behavior, but it is unclear whether these attributes are decodable from activity in the OFC in both groups and whether neural representations of these attributes are differentially related to decisions about food. We used fMRI combined with behavioral tasks to investigate the representation of taste and health attributes in the human OFC and the role of these representations in food choices in healthy women and women with anorexia nervosa (AN). We found that subjective ratings of tastiness and healthiness could be decoded from patterns of activity in the OFC in both groups. However, health-related patterns of activity in the OFC were more related to the magnitude of choice preferences among patients with AN than healthy individuals. These findings suggest that maladaptive decision-making in AN is associated with more consideration of health information represented by the OFC during deliberation about what to eat.SIGNIFICANCE STATEMENT An open question about the OFC is whether it supports the evaluation of food-related attributes during deliberation about what to eat. We found that healthiness and tastiness information was decodable from patterns of neural activity in the OFC in both patients with AN and healthy controls. Critically, neural representations of health were more strongly related to choices in patients with AN, suggesting that maladaptive overconsideration of healthiness during deliberation about what to eat is related to activity in the OFC. More broadly, these results show that activity in the human OFC is associated with the evaluation of relevant attributes during value-based decision-making. These findings may also guide future research into the development of treatments for AN.
Collapse
Affiliation(s)
- Alice M Xue
- Mortimer B. Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, New York 10027
- Department of Psychology, Columbia University, New York, New York 10027
| | - Karin Foerde
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10032
- New York State Psychiatric Institute, New York, New York 10032
| | - B Timothy Walsh
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10032
- New York State Psychiatric Institute, New York, New York 10032
| | - Joanna E Steinglass
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10032
- New York State Psychiatric Institute, New York, New York 10032
| | - Daphna Shohamy
- Mortimer B. Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, New York 10027
- Department of Psychology, Columbia University, New York, New York 10027
- Kavli Institute for Brain Science, Columbia University, New York, New York 10027
| | - Akram Bakkour
- Mortimer B. Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, New York 10027
- Department of Psychology, Columbia University, New York, New York 10027
| |
Collapse
|
10
|
Zoh Y, Chang SWC, Crockett MJ. The prefrontal cortex and (uniquely) human cooperation: a comparative perspective. Neuropsychopharmacology 2022; 47:119-133. [PMID: 34413478 PMCID: PMC8617274 DOI: 10.1038/s41386-021-01092-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/03/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Humans have an exceptional ability to cooperate relative to many other species. We review the neural mechanisms supporting human cooperation, focusing on the prefrontal cortex. One key feature of human social life is the prevalence of cooperative norms that guide social behavior and prescribe punishment for noncompliance. Taking a comparative approach, we consider shared and unique aspects of cooperative behaviors in humans relative to nonhuman primates, as well as divergences in brain structure that might support uniquely human aspects of cooperation. We highlight a medial prefrontal network common to nonhuman primates and humans supporting a foundational process in cooperative decision-making: valuing outcomes for oneself and others. This medial prefrontal network interacts with lateral prefrontal areas that are thought to represent cooperative norms and modulate value representations to guide behavior appropriate to the local social context. Finally, we propose that more recently evolved anterior regions of prefrontal cortex play a role in arbitrating between cooperative norms across social contexts, and suggest how future research might fruitfully examine the neural basis of norm arbitration.
Collapse
Affiliation(s)
- Yoonseo Zoh
- grid.47100.320000000419368710Department of Psychology, Yale University, New Haven, USA
| | - Steve W. C. Chang
- grid.47100.320000000419368710Department of Psychology, Yale University, New Haven, USA
| | - Molly J. Crockett
- grid.47100.320000000419368710Department of Psychology, Yale University, New Haven, USA
| |
Collapse
|
11
|
Pelletier G, Aridan N, Fellows LK, Schonberg T. A Preferential Role for Ventromedial Prefrontal Cortex in Assessing "the Value of the Whole" in Multiattribute Object Evaluation. J Neurosci 2021; 41:5056-5068. [PMID: 33906899 PMCID: PMC8197643 DOI: 10.1523/jneurosci.0241-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/22/2021] [Accepted: 04/18/2021] [Indexed: 11/21/2022] Open
Abstract
Everyday decision-making commonly involves assigning values to complex objects with multiple value-relevant attributes. Drawing on object recognition theories, we hypothesized two routes to multiattribute evaluation: assessing the value of the whole object based on holistic attribute configuration or summing individual attribute values. In two samples of healthy human male and female participants undergoing eye tracking and functional magnetic resonance imaging (fMRI) while evaluating novel pseudo objects, we found evidence for both forms of evaluation. Fixations to and transitions between attributes differed systematically when the value of pseudo objects was associated with individual attributes or attribute configurations. Ventromedial prefrontal cortex (vmPFC) and perirhinal cortex were engaged when configural processing was required. These results converge with our recent findings that individuals with vmPFC lesions were impaired in decisions requiring configural evaluation but not when evaluating the sum of the parts. This suggests that multiattribute decision-making engages distinct evaluation mechanisms relying on partially dissociable neural substrates, depending on the relationship between attributes and value.SIGNIFICANCE STATEMENT Decision neuroscience has only recently begun to address how multiple choice-relevant attributes are brought together during evaluation and choice among complex options. Object recognition research makes a crucial distinction between individual attribute and holistic/configural object processing, but how the brain evaluates attributes and whole objects remains unclear. Using fMRI and eye tracking, we found that the vmPFC and the perirhinal cortex contribute to value estimation specifically when value was related to whole objects, that is, predicted by the unique configuration of attributes and not when value was predicted by the sum of individual attribute values. This perspective on the interactions between subjective value and object processing mechanisms provides a novel bridge between the study of object recognition and reward-guided decision-making.
Collapse
Affiliation(s)
- Gabriel Pelletier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Nadav Aridan
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lesley K Fellows
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Tom Schonberg
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
12
|
Azzalini D, Buot A, Palminteri S, Tallon-Baudry C. Responses to Heartbeats in Ventromedial Prefrontal Cortex Contribute to Subjective Preference-Based Decisions. J Neurosci 2021; 41:5102-5114. [PMID: 33926998 PMCID: PMC8197644 DOI: 10.1523/jneurosci.1932-20.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 11/21/2022] Open
Abstract
Forrest Gump or The Matrix? Preference-based decisions are subjective and entail self-reflection. However, these self-related features are unaccounted for by known neural mechanisms of valuation and choice. Self-related processes have been linked to a basic interoceptive biological mechanism, the neural monitoring of heartbeats, in particular in ventromedial prefrontal cortex (vmPFC), a region also involved in value encoding. We thus hypothesized a functional coupling between the neural monitoring of heartbeats and the precision of value encoding in vmPFC. Human participants of both sexes were presented with pairs of movie titles. They indicated either which movie they preferred or performed a control objective visual discrimination that did not require self-reflection. Using magnetoencephalography, we measured heartbeat-evoked responses (HERs) before option presentation and confirmed that HERs in vmPFC were larger when preparing for the subjective, self-related task. We retrieved the expected cortical value network during choice with time-resolved statistical modeling. Crucially, we show that larger HERs before option presentation are followed by stronger value encoding during choice in vmPFC. This effect is independent of overall vmPFC baseline activity. The neural interaction between HERs and value encoding predicted preference-based choice consistency over time, accounting for both interindividual differences and trial-to-trial fluctuations within individuals. Neither cardiac activity nor arousal fluctuations could account for any of the effects. HERs did not interact with the encoding of perceptual evidence in the discrimination task. Our results show that the self-reflection underlying preference-based decisions involves HERs, and that HER integration to subjective value encoding in vmPFC contributes to preference stability.SIGNIFICANCE STATEMENT Deciding whether you prefer Forrest Gump or The Matrix is based on subjective values, which only you, the decision-maker, can estimate and compare, by asking yourself. Yet, how self-reflection is biologically implemented and its contribution to subjective valuation are not known. We show that in ventromedial prefrontal cortex, the neural response to heartbeats, an interoceptive self-related process, influences the cortical representation of subjective value. The neural interaction between the cortical monitoring of heartbeats and value encoding predicts choice consistency (i.e., whether you consistently prefer Forrest Gump over Matrix over time. Our results pave the way for the quantification of self-related processes in decision-making and may shed new light on the relationship between maladaptive decisions and impaired interoception.
Collapse
Affiliation(s)
- Damiano Azzalini
- Laboratoire de Neurosciences Cognitives et Computationnelles, Ecole Normale Supérieure, PSL University, 75005 Paris, France
- Institut National de la Santé et de la Recherche Médicale, 75005 Paris, France
| | - Anne Buot
- Laboratoire de Neurosciences Cognitives et Computationnelles, Ecole Normale Supérieure, PSL University, 75005 Paris, France
- Institut National de la Santé et de la Recherche Médicale, 75005 Paris, France
| | - Stefano Palminteri
- Laboratoire de Neurosciences Cognitives et Computationnelles, Ecole Normale Supérieure, PSL University, 75005 Paris, France
- Institut National de la Santé et de la Recherche Médicale, 75005 Paris, France
| | - Catherine Tallon-Baudry
- Laboratoire de Neurosciences Cognitives et Computationnelles, Ecole Normale Supérieure, PSL University, 75005 Paris, France
- Institut National de la Santé et de la Recherche Médicale, 75005 Paris, France
| |
Collapse
|
13
|
Physiological Correlates of Processing Health-Related Information: An Idea for the Adoption of a Foreign Field. NURSING REPORTS 2021; 11:175-186. [PMID: 34968322 PMCID: PMC8608086 DOI: 10.3390/nursrep11010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022] Open
Abstract
Measuring health may refer to the measurement of general health status through measures of physical function, pain, social health, psychological aspects, and specific disease. Almost no evidence is available on the possible interaction of physiological measures and correlating emotional–affective states that are triggered by dealing with individual health-relevant issues and their specific processing modes. Public health research has long been concerned with the processing of health-related information. However, it is not yet clear which factors influence access and the handling of health-related information in detail. One way to close this research gap could be adopting methods from neurocognitive experiments to add psychophysiological data to existing approaches in health-related research. In this article, we present some of these methods and give a narrative overview and description of their usefulness for enlarged research in public health.
Collapse
|
14
|
Serotonin depletion impairs both Pavlovian and instrumental reversal learning in healthy humans. Mol Psychiatry 2021; 26:7200-7210. [PMID: 34429517 PMCID: PMC8873011 DOI: 10.1038/s41380-021-01240-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
Serotonin is involved in updating responses to changing environmental circumstances. Optimising behaviour to maximise reward and minimise punishment may require shifting strategies upon encountering new situations. Likewise, autonomic responses to threats are critical for survival yet must be modified as danger shifts from one source to another. Whilst numerous psychiatric disorders are characterised by behavioural and autonomic inflexibility, few studies have examined the contribution of serotonin in humans. We modelled both processes, respectively, in two independent experiments (N = 97). Experiment 1 assessed instrumental (stimulus-response-outcome) reversal learning whereby individuals learned through trial and error which action was most optimal for obtaining reward or avoiding punishment initially, and the contingencies subsequently reversed serially. Experiment 2 examined Pavlovian (stimulus-outcome) reversal learning assessed by the skin conductance response: one innately threatening stimulus predicted receipt of an uncomfortable electric shock and another did not; these contingencies swapped in a reversal phase. Upon depleting the serotonin precursor tryptophan-in a double-blind randomised placebo-controlled design-healthy volunteers showed impairments in updating both actions and autonomic responses to reflect changing contingencies. Reversal deficits in each domain, furthermore, were correlated with the extent of tryptophan depletion. Initial Pavlovian conditioning, moreover, which involved innately threatening stimuli, was potentiated by depletion. These results translate findings in experimental animals to humans and have implications for the neurochemical basis of cognitive inflexibility.
Collapse
|
15
|
Yamamoto Y, Yamagata B, Hirano J, Ueda R, Yoshitake H, Negishi K, Yamagishi M, Kimura M, Kamiya K, Shino M, Mimura M. Regional Gray Matter Volume Identifies High Risk of Unsafe Driving in Healthy Older People. Front Aging Neurosci 2020; 12:592979. [PMID: 33343333 PMCID: PMC7744700 DOI: 10.3389/fnagi.2020.592979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/09/2020] [Indexed: 12/02/2022] Open
Abstract
In developed countries, the number of traffic accidents caused by older drivers is increasing. Approximately half of the older drivers who cause fatal accidents are cognitively normal. Thus, it is important to identify older drivers who are cognitively normal but at high risk of causing fatal traffic accidents. However, no standardized method for assessing the driving ability of older drivers has been established. We aimed to establish an objective assessment of driving ability and to clarify the neural basis of unsafe driving in healthy older people. We enrolled 32 healthy older individuals aged over 65 years and classified unsafe drivers using an on-road driving test. We then utilized a machine learning approach to distinguish unsafe drivers from safe drivers based on clinical features and gray matter volume data. Twenty-one participants were classified as safe drivers and 11 participants as unsafe drivers. A linear support vector machine classifier successfully distinguished unsafe drivers from safe drivers with 87.5% accuracy (sensitivity of 63.6% and specificity of 100%). Five parameters (age and gray matter volume in four cortical regions, including the left superior part of the precentral sulcus, the left sulcus intermedius primus [of Jensen], the right orbital part of the inferior frontal gyrus, and the right superior frontal sulcus), were consistently selected as features for the final classification model. Our findings indicate that the cortical regions implicated in voluntary orienting of attention, decision making, and working memory may constitute the essential neural basis of driving behavior.
Collapse
Affiliation(s)
- Yasuharu Yamamoto
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Bun Yamagata
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Jinichi Hirano
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Ryo Ueda
- Office of Radiation Technology, Keio University Hospital, Tokyo, Japan
| | - Hiroshi Yoshitake
- Department of Human and Engineered Environmental Studies, The University of Tokyo, Tokyo, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Mika Yamagishi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Mariko Kimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.,Graduate School of Psychology, Rissho University, Tokyo, Japan
| | - Kei Kamiya
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Motoki Shino
- Department of Human and Engineered Environmental Studies, The University of Tokyo, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|