1
|
Schmied C, Ebner M, Samsó P, Van Der Veen R, Haucke V, Lehmann M. OrgaMapper: a robust and easy-to-use workflow for analyzing organelle positioning. BMC Biol 2024; 22:220. [PMID: 39343900 PMCID: PMC11440938 DOI: 10.1186/s12915-024-02015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Eukaryotic cells are highly compartmentalized by a variety of organelles that carry out specific cellular processes. The position of these organelles within the cell is elaborately regulated and vital for their function. For instance, the position of lysosomes relative to the nucleus controls their degradative capacity and is altered in pathophysiological conditions. The molecular components orchestrating the precise localization of organelles remain incompletely understood. A confounding factor in these studies is the fact that organelle positioning is surprisingly non-trivial to address e.g., perturbations that affect the localization of organelles often lead to secondary phenotypes such as changes in cell or organelle size. These phenotypes could potentially mask effects or lead to the identification of false positive hits. To uncover and test potential molecular components at scale, accurate and easy-to-use analysis tools are required that allow robust measurements of organelle positioning. RESULTS Here, we present an analysis workflow for the faithful, robust, and quantitative analysis of organelle positioning phenotypes. Our workflow consists of an easy-to-use Fiji plugin and an R Shiny App. These tools enable users without background in image or data analysis to (1) segment single cells and nuclei and to detect organelles, (2) to measure cell size and the distance between detected organelles and the nucleus, (3) to measure intensities in the organelle channel plus one additional channel, (4) to measure radial intensity profiles of organellar markers, and (5) to plot the results in informative graphs. Using simulated data and immunofluorescent images of cells in which the function of known factors for lysosome positioning has been perturbed, we show that the workflow is robust against common problems for the accurate assessment of organelle positioning such as changes of cell shape and size, organelle size and background. CONCLUSIONS OrgaMapper is a versatile, robust, and easy-to-use automated image analysis workflow that can be utilized in microscopy-based hypothesis testing and screens. It effectively allows for the mapping of the intracellular space and enables the discovery of novel regulators of organelle positioning.
Collapse
Affiliation(s)
- Christopher Schmied
- Leibniz-Forschungsinstitut Für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, Berlin, 13125, Germany.
- Present address: EU-OPENSCREEN ERIC, Robert-Roessle-Straße 10, Berlin, 13125, Germany.
| | - Michael Ebner
- Leibniz-Forschungsinstitut Für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, Berlin, 13125, Germany
| | - Paula Samsó
- Leibniz-Forschungsinstitut Für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, Berlin, 13125, Germany
| | - Rozemarijn Van Der Veen
- Leibniz-Forschungsinstitut Für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, Berlin, 13125, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut Für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, Berlin, 13125, Germany
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, 14195, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut Für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, Berlin, 13125, Germany
| |
Collapse
|
3
|
Schmied C, Nelson MS, Avilov S, Bakker GJ, Bertocchi C, Bischof J, Boehm U, Brocher J, Carvalho MT, Chiritescu C, Christopher J, Cimini BA, Conde-Sousa E, Ebner M, Ecker R, Eliceiri K, Fernandez-Rodriguez J, Gaudreault N, Gelman L, Grunwald D, Gu T, Halidi N, Hammer M, Hartley M, Held M, Jug F, Kapoor V, Koksoy AA, Lacoste J, Le Dévédec S, Le Guyader S, Liu P, Martins GG, Mathur A, Miura K, Montero Llopis P, Nitschke R, North A, Parslow AC, Payne-Dwyer A, Plantard L, Ali R, Schroth-Diez B, Schütz L, Scott RT, Seitz A, Selchow O, Sharma VP, Spitaler M, Srinivasan S, Strambio-De-Castillia C, Taatjes D, Tischer C, Jambor HK. Community-developed checklists for publishing images and image analyses. Nat Methods 2024; 21:170-181. [PMID: 37710020 PMCID: PMC10922596 DOI: 10.1038/s41592-023-01987-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/26/2023] [Indexed: 09/16/2023]
Abstract
Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However, for scientists wishing to publish obtained images and image-analysis results, there are currently no unified guidelines for best practices. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here, we present community-developed checklists for preparing light microscopy images and describing image analyses for publications. These checklists offer authors, readers and publishers key recommendations for image formatting and annotation, color selection, data availability and reporting image-analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby to heighten the quality and explanatory power of microscopy data.
Collapse
Affiliation(s)
- Christopher Schmied
- Fondazione Human Technopole, Milano, Italy.
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
| | - Michael S Nelson
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Sergiy Avilov
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Gert-Jan Bakker
- Medical BioSciences Department, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Cristina Bertocchi
- Laboratory for Molecular Mechanics of Cell Adhesions, Pontificia Universidad Católica de Chile Santiago, Santiago de Chile, Chile
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | | | | | - Jan Brocher
- Scientific Image Processing and Analysis, BioVoxxel, Ludwigshafen, Germany
| | - Mariana T Carvalho
- Nanophotonics and BioImaging Facility at INL, International Iberian Nanotechnology Laboratory, Braga, Portugal
| | | | - Jana Christopher
- Biochemistry Center Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Beth A Cimini
- Imaging Platform, Broad Institute, Cambridge, MA, USA
| | - Eduardo Conde-Sousa
- i3S, Instituto de Investigação e Inovação Em Saúde and INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Michael Ebner
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Rupert Ecker
- Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- TissueGnostics GmbH, Vienna, Austria
| | - Kevin Eliceiri
- Department of Medical Physics and Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Julia Fernandez-Rodriguez
- Centre for Cellular Imaging Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Laurent Gelman
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - David Grunwald
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Nadia Halidi
- Advanced Light Microscopy Unit, Centre for Genomic Regulation, Barcelona, Spain
| | - Mathias Hammer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Matthew Hartley
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Hinxton, UK
| | - Marie Held
- Centre for Cell Imaging, the University of Liverpool, Liverpool, UK
| | | | - Varun Kapoor
- Department of AI Research, Kapoor Labs, Paris, France
| | | | | | - Sylvia Le Dévédec
- Division of Drug Discovery and Safety, Cell Observatory, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | | | - Penghuan Liu
- Key Laboratory for Modern Measurement Technology and Instruments of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, China
| | - Gabriel G Martins
- Advanced Imaging Facility, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Kota Miura
- Bioimage Analysis and Research, Heidelberg, Germany
| | | | - Roland Nitschke
- Life Imaging Center, Signalling Research Centres CIBSS and BIOSS, University of Freiburg, Freiburg, Germany
| | - Alison North
- Bio-Imaging Resource Center, the Rockefeller University, New York, NY, USA
| | - Adam C Parslow
- Baker Institute Microscopy Platform, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Alex Payne-Dwyer
- School of Physics, Engineering and Technology, University of York, Heslington, UK
| | - Laure Plantard
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Rizwan Ali
- King Abdullah International Medical Research Center (KAIMRC), Medical Research Core Facility and Platforms (MRCFP), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Britta Schroth-Diez
- Light Microscopy Facility, Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Dresden, Germany
| | | | - Ryan T Scott
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Arne Seitz
- BioImaging and Optics Platform, Faculty of Life Sciences (SV), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Olaf Selchow
- Microscopy and BioImaging Consulting, Image Processing and Large Data Handling, Gera, Germany
| | - Ved P Sharma
- Bio-Imaging Resource Center, the Rockefeller University, New York, NY, USA
| | | | - Sathya Srinivasan
- Imaging and Morphology Support Core, Oregon National Primate Research Center, OHSU West Campus, Beaverton, OR, USA
| | | | - Douglas Taatjes
- Department of Pathology and Laboratory Medicine, Microscopy Imaging Center, Center for Biomedical Shared Resources, University of Vermont, Burlington, VT, USA
| | | | | |
Collapse
|
6
|
Lu V, Roy IJ, Torres A, Joly JH, Ahsan FM, Graham NA, Teitell MA. Glutamine-dependent signaling controls pluripotent stem cell fate. Dev Cell 2022; 57:610-623.e8. [PMID: 35216682 PMCID: PMC8930616 DOI: 10.1016/j.devcel.2022.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/01/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022]
Abstract
Human pluripotent stem cells (hPSCs) can self-renew indefinitely or can be induced to differentiate. We previously showed that exogenous glutamine (Gln) withdrawal biased hPSC differentiation toward ectoderm and away from mesoderm. We revealed that, although all three germ lineages are capable of de novo Gln synthesis, only ectoderm generates sufficient Gln to sustain cell viability and differentiation, and this finding clarifies lineage fate restrictions under Gln withdrawal. Furthermore, we found that Gln acts as a signaling molecule for ectoderm that supersedes lineage-specifying cytokine induction. In contrast, Gln in mesoderm and endoderm is the preferred precursor of α-ketoglutarate without a direct signaling role. Our work raises a question about whether the nutrient environment functions directly in cell differentiation during development. Interestingly, transcriptome analysis of a gastrulation-stage human embryo shows that unique Gln enzyme-encoding gene expression patterns may also distinguish germ lineages in vivo. Together, our study suggests that intracellular Gln may help coordinate differentiation of the three germ layers.
Collapse
Affiliation(s)
- Vivian Lu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Irena J Roy
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Alejandro Torres
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA, USA
| | - James H Joly
- Mork Family Department of Chemical Engineering and Materials Science, Los Angeles, CA 90089, USA
| | - Fasih M Ahsan
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Nicholas A Graham
- Mork Family Department of Chemical Engineering and Materials Science, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Michael A Teitell
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA, USA; Department of Bioengineering, Department of Pediatrics, California NanoSystems Institute, and Broad Center for Regenerative Medicine and Stem Cell Research, University of California at Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|