1
|
Mosharaf MP, Kibria MK, Hossen MB, Islam MA, Reza MS, Mahumud RA, Alam K, Gow J, Mollah MNH. Meta-Data Analysis to Explore the Hub of the Hub-Genes That Influence SARS-CoV-2 Infections Highlighting Their Pathogenetic Processes and Drugs Repurposing. Vaccines (Basel) 2022; 10:vaccines10081248. [PMID: 36016137 PMCID: PMC9415433 DOI: 10.3390/vaccines10081248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 01/09/2023] Open
Abstract
The pandemic of SARS-CoV-2 infections is a severe threat to human life and the world economic condition. Although vaccination has reduced the outspread, but still the situation is not under control because of the instability of RNA sequence patterns of SARS-CoV-2, which requires effective drugs. Several studies have suggested that the SARS-CoV-2 infection causing hub differentially expressed genes (Hub-DEGs). However, we observed that there was not any common hub gene (Hub-DEGs) in our analyses. Therefore, it may be difficult to take a common treatment plan against SARS-CoV-2 infections globally. The goal of this study was to examine if more representative Hub-DEGs from published studies by means of hub of Hub-DEGs (hHub-DEGs) and associated potential candidate drugs. In this study, we reviewed 41 articles on transcriptomic data analysis of SARS-CoV-2 and found 370 unique hub genes or studied genes in total. Then, we selected 14 more representative Hub-DEGs (AKT1, APP, CXCL8, EGFR, IL6, INS, JUN, MAPK1, STAT3, TNF, TP53, UBA52, UBC, VEGFA) as hHub-DEGs by their protein-protein interaction analysis. Their associated biological functional processes, transcriptional, and post-transcriptional regulatory factors. Then we detected hHub-DEGs guided top-ranked nine candidate drug agents (Digoxin, Avermectin, Simeprevir, Nelfinavir Mesylate, Proscillaridin, Linifanib, Withaferin, Amuvatinib, Atazanavir) by molecular docking and cross-validation for treatment of SARS-CoV-2 infections. Therefore, the findings of this study could be useful in formulating a common treatment plan against SARS-CoV-2 infections globally.
Collapse
Affiliation(s)
- Md. Parvez Mosharaf
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.P.M.); (M.K.K.); (M.B.H.); (M.A.I.); (M.S.R.)
- School of Business, Faculty of Business, Education, Law and Arts, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (K.A.); (J.G.)
| | - Md. Kaderi Kibria
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.P.M.); (M.K.K.); (M.B.H.); (M.A.I.); (M.S.R.)
| | - Md. Bayazid Hossen
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.P.M.); (M.K.K.); (M.B.H.); (M.A.I.); (M.S.R.)
| | - Md. Ariful Islam
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.P.M.); (M.K.K.); (M.B.H.); (M.A.I.); (M.S.R.)
| | - Md. Selim Reza
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.P.M.); (M.K.K.); (M.B.H.); (M.A.I.); (M.S.R.)
| | - Rashidul Alam Mahumud
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia;
| | - Khorshed Alam
- School of Business, Faculty of Business, Education, Law and Arts, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (K.A.); (J.G.)
| | - Jeff Gow
- School of Business, Faculty of Business, Education, Law and Arts, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (K.A.); (J.G.)
- School of Accounting, Economics and Finance, University of KwaZulu Natal, Durban 4001, South Africa
| | - Md. Nurul Haque Mollah
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.P.M.); (M.K.K.); (M.B.H.); (M.A.I.); (M.S.R.)
- Correspondence:
| |
Collapse
|
2
|
Mahmoudi S, Dehkordi MM, Asgarshamsi MH. The effect of various compounds on the COVID mechanisms, from chemical to molecular aspects. Biophys Chem 2022; 288:106824. [PMID: 35728510 PMCID: PMC9095071 DOI: 10.1016/j.bpc.2022.106824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/13/2022] [Accepted: 05/07/2022] [Indexed: 02/07/2023]
Abstract
The novel coronavirus that caused COVID-19 pandemic is SARS-CoV-2. Although various vaccines are currently being used to prevent the disease's severe consequences, there is still a need for medications for those who become infected. The SARS-CoV-2 has a variety of proteins that have been studied extensively since the virus's advent. In this review article, we looked at chemical to molecular aspects of the various structures studied that have pharmaceutical activity and attempted to find a link between drug activity and compound structure. For example, designing of the compounds which bind to the allosteric site and modify hydrogen bonds or the salt bridges can disrupt SARS-CoV2 RBD–ACE2 complex. It seems that quaternary ammonium moiety and quinolin-1-ium structure could act as a negative allosteric modulator to reduce the tendency between spike-ACE2. Pharmaceutical structures with amino heads and hydrophobic tails can block envelope protein to prevent making mature SARS-CoV-2. Also, structures based on naphthalene pharmacophores or isosteres can form a strong bond with the PLpro and form a π-π and the Mpro's active site can be occupied by octapeptide compounds or linear compounds with a similar fitting ability to octapeptide compounds. And for protein RdRp, it is critical to consider pH and pKa so that pKa regulation of compounds to comply with patients is very effective, thus, the presence of tetrazole, phenylpyrazole groups, and analogs of pyrophosphate in the designed drugs increase the likelihood of the RdRp active site inhibition. Finally, it can be deduced that designing hybrid drug molecules along with considering the aforementioned characteristics would be a suitable approach for developing medicines in order to accurate targeting and complete inhibition this virus.
Collapse
Affiliation(s)
- Samira Mahmoudi
- Department of Microbial Biotechnology, School of Biological Sciences, Islamic Azad University Tehran North Branch, Tehran, Iran.
| | - Mehrdad Mohammadpour Dehkordi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Hossein Asgarshamsi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Ahmed FF, Reza MS, Sarker MS, Islam MS, Mosharaf MP, Hasan S, Mollah MNH. Identification of host transcriptome-guided repurposable drugs for SARS-CoV-1 infections and their validation with SARS-CoV-2 infections by using the integrated bioinformatics approaches. PLoS One 2022; 17:e0266124. [PMID: 35390032 PMCID: PMC8989220 DOI: 10.1371/journal.pone.0266124] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 03/15/2022] [Indexed: 12/18/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is one of the most severe global pandemic due to its high pathogenicity and death rate starting from the end of 2019. Though there are some vaccines available against SAER-CoV-2 infections, we are worried about their effectiveness, due to its unstable sequence patterns. Therefore, beside vaccines, globally effective supporting drugs are also required for the treatment against SARS-CoV-2 infection. To explore commonly effective repurposable drugs for the treatment against different variants of coronavirus infections, in this article, an attempt was made to explore host genomic biomarkers guided repurposable drugs for SARS-CoV-1 infections and their validation with SARS-CoV-2 infections by using the integrated bioinformatics approaches. At first, we identified 138 differentially expressed genes (DEGs) between SARS-CoV-1 infected and control samples by analyzing high throughput gene-expression profiles to select drug target key receptors. Then we identified top-ranked 11 key DEGs (SMAD4, GSK3B, SIRT1, ATM, RIPK1, PRKACB, MED17, CCT2, BIRC3, ETS1 and TXN) as hub genes (HubGs) by protein-protein interaction (PPI) network analysis of DEGs highlighting their functions, pathways, regulators and linkage with other disease risks that may influence SARS-CoV-1 infections. The DEGs-set enrichment analysis significantly detected some crucial biological processes (immune response, regulation of angiogenesis, apoptotic process, cytokine production and programmed cell death, response to hypoxia and oxidative stress), molecular functions (transcription factor binding and oxidoreductase activity) and pathways (transcriptional mis-regulation in cancer, pathways in cancer, chemokine signaling pathway) that are associated with SARS-CoV-1 infections as well as SARS-CoV-2 infections by involving HubGs. The gene regulatory network (GRN) analysis detected some transcription factors (FOXC1, GATA2, YY1, FOXL1, TP53 and SRF) and micro-RNAs (hsa-mir-92a-3p, hsa-mir-155-5p, hsa-mir-106b-5p, hsa-mir-34a-5p and hsa-mir-19b-3p) as the key transcriptional and post- transcriptional regulators of HubGs, respectively. We also detected some chemicals (Valproic Acid, Cyclosporine, Copper Sulfate and arsenic trioxide) that may regulates HubGs. The disease-HubGs interaction analysis showed that our predicted HubGs are also associated with several other diseases including different types of lung diseases. Then we considered 11 HubGs mediated proteins and their regulatory 6 key TFs proteins as the drug target proteins (receptors) and performed their docking analysis with the SARS-CoV-2 3CL protease-guided top listed 90 anti-viral drugs out of 3410. We found Rapamycin, Tacrolimus, Torin-2, Radotinib, Danoprevir, Ivermectin and Daclatasvir as the top-ranked 7 candidate-drugs with respect to our proposed target proteins for the treatment against SARS-CoV-1 infections. Then, we validated these 7 candidate-drugs against the already published top-ranked 11 target proteins associated with SARS-CoV-2 infections by molecular docking simulation and found their significant binding affinity scores with our proposed candidate-drugs. Finally, we validated all of our findings by the literature review. Therefore, the proposed candidate-drugs might play a vital role for the treatment against different variants of SARS-CoV-2 infections with comorbidities, since the proposed HubGs are also associated with several comorbidities.
Collapse
Affiliation(s)
- Fee Faysal Ahmed
- Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
- Bioinformatics Lab., Department of Statistics, Rajshahi University, Rajshahi, Bangladesh
| | - Md. Selim Reza
- Bioinformatics Lab., Department of Statistics, Rajshahi University, Rajshahi, Bangladesh
| | - Md. Shahin Sarker
- Department of Pharmacy, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Samiul Islam
- Department of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Md. Parvez Mosharaf
- Bioinformatics Lab., Department of Statistics, Rajshahi University, Rajshahi, Bangladesh
| | - Sohel Hasan
- Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshhi, Bangladesh
| | - Md. Nurul Haque Mollah
- Bioinformatics Lab., Department of Statistics, Rajshahi University, Rajshahi, Bangladesh
| |
Collapse
|
4
|
Computational identification of host genomic biomarkers highlighting their functions, pathways and regulators that influence SARS-CoV-2 infections and drug repurposing. Sci Rep 2022; 12:4279. [PMID: 35277538 PMCID: PMC8915158 DOI: 10.1038/s41598-022-08073-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 02/15/2022] [Indexed: 12/13/2022] Open
Abstract
The pandemic threat of COVID-19 has severely destroyed human life as well as the economy around the world. Although, the vaccination has reduced the outspread, but people are still suffering due to the unstable RNA sequence patterns of SARS-CoV-2 which demands supplementary drugs. To explore novel drug target proteins, in this study, a transcriptomics RNA-Seq data generated from SARS-CoV-2 infection and control samples were analyzed. We identified 109 differentially expressed genes (DEGs) that were utilized to identify 10 hub-genes/proteins (TLR2, USP53, GUCY1A2, SNRPD2, NEDD9, IGF2, CXCL2, KLF6, PAG1 and ZFP36) by the protein–protein interaction (PPI) network analysis. The GO functional and KEGG pathway enrichment analyses of hub-DEGs revealed some important functions and signaling pathways that are significantly associated with SARS-CoV-2 infections. The interaction network analysis identified 5 TFs proteins and 6 miRNAs as the key regulators of hub-DEGs. Considering 10 hub-proteins and 5 key TFs-proteins as drug target receptors, we performed their docking analysis with the SARS-CoV-2 3CL protease-guided top listed 90 FDA approved drugs. We found Torin-2, Rapamycin, Radotinib, Ivermectin, Thiostrepton, Tacrolimus and Daclatasvir as the top ranked seven candidate drugs. We investigated their resistance performance against the already published COVID-19 causing top-ranked 11 independent and 8 protonated receptor proteins by molecular docking analysis and found their strong binding affinities, which indicates that the proposed drugs are effective against the state-of-the-arts alternatives independent receptor proteins also. Finally, we investigated the stability of top three drugs (Torin-2, Rapamycin and Radotinib) by using 100 ns MD-based MM-PBSA simulations with the two top-ranked proposed receptors (TLR2, USP53) and independent receptors (IRF7, STAT1), and observed their stable performance. Therefore, the proposed drugs might play a vital role for the treatment against different variants of SARS-CoV-2 infections.
Collapse
|
5
|
You H, Zhao Q, Dong M. The Key Genes Underlying Pathophysiology Correlation Between the Acute Myocardial Infarction and COVID-19. Int J Gen Med 2022; 15:2479-2490. [PMID: 35282650 PMCID: PMC8904943 DOI: 10.2147/ijgm.s354885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/23/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Accumulating evidences disclose that COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has a marked effect on acute myocardial infarction (AMI). Nevertheless, the underlying pathophysiology correlation between the AMI and COVID-19 remains vague. Materials and Methods Bioinformatics analyses of the altered transcriptional profiling of peripheral blood mononuclear cells (PBMCs) in patients with AMI and COVID-19 were implemented, including identification of differentially expressed genes and common genes between AMI and COVID-19, protein–protein interactions, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, TF-genes and miRNA coregulatory networks, to explore their biological functions and potential roles in the pathogenesis of COVID-19-related AMI. Conclusion Our bioinformatic analyses of gene expression profiling of PBMCs in patients with AMI and COVID-19 provide us with a unique view regarding underlying pathophysiology correlation between the two vital diseases.
Collapse
Affiliation(s)
- Hongjun You
- Department of Cardiovascular Medicine, Shaanxi Provincial People’s Hospital, Xi’an, 710068, Shaanxi, People’s Republic of China
| | - Qianqian Zhao
- Department of Clinical Immunology, The First Affiliated Hospital, Air Force Military Medical University, Xi’an, 710032, Shaanxi, People’s Republic of China
| | - Mengya Dong
- Department of Cardiovascular Medicine, Shaanxi Provincial People’s Hospital, Xi’an, 710068, Shaanxi, People’s Republic of China
- Correspondence: Mengya Dong, Department of Cardiovascular Medicine, Shaanxi Provincial People’s Hospital, 256 West Youyi Road, Xi’an, Shaanxi, 710068, People’s Republic of China, Tel +86–15802943974, Email
| |
Collapse
|
6
|
Tan C, Zuo F, Lu M, Chen S, Tian Z, Hu Y. Identification of potential genes correlated with breast cancer metastasis and prognosis. ALL LIFE 2022. [DOI: 10.1080/26895293.2021.2021302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Chao Tan
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, People’s Republic of China
| | - Fang Zuo
- Edong Healthcare Group, Huangshi Central Hospital, Affiliated Hospital of Hubei polytechnic University, Huangshi, People’s Republic of China
| | - Mingqian Lu
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, People’s Republic of China
| | - Sai Chen
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, People’s Republic of China
| | - Zhenzhen Tian
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, People’s Republic of China
| | - Yong Hu
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, People’s Republic of China
| |
Collapse
|
7
|
Kaliamurthi S, Selvaraj G, Selvaraj C, Singh SK, Wei DQ, Peslherbe GH. Structure-Based Virtual Screening Reveals Ibrutinib and Zanubrutinib as Potential Repurposed Drugs against COVID-19. Int J Mol Sci 2021; 22:7071. [PMID: 34209188 PMCID: PMC8267665 DOI: 10.3390/ijms22137071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease (COVID)-19 is the leading global health threat to date caused by a severe acute respiratory syndrome coronavirus (SARS-CoV-2). Recent clinical trials reported that the use of Bruton's tyrosine kinase (BTK) inhibitors to treat COVID-19 patients could reduce dyspnea and hypoxia, thromboinflammation, hypercoagulability and improve oxygenation. However, the mechanism of action remains unclear. Thus, this study employs structure-based virtual screening (SBVS) to repurpose BTK inhibitors acalabrutinib, dasatinib, evobrutinib, fostamatinib, ibrutinib, inositol 1,3,4,5-tetrakisphosphate, spebrutinib, XL418 and zanubrutinib against SARS-CoV-2. Molecular docking is conducted with BTK inhibitors against structural and nonstructural proteins of SARS-CoV-2 and host targets (ACE2, TMPRSS2 and BTK). Molecular mechanics-generalized Born surface area (MM/GBSA) calculations and molecular dynamics (MD) simulations are then carried out on the selected complexes with high binding energy. Ibrutinib and zanubrutinib are found to be the most potent of the drugs screened based on the results of computational studies. Results further show that ibrutinib and zanubrutinib could exploit different mechanisms at the viral entry and replication stage and could be repurposed as potential inhibitors of SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
- Satyavani Kaliamurthi
- Centre for Research in Molecular Modeling & Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H3G 1M8, Canada; (S.K.); (G.S.)
| | - Gurudeeban Selvaraj
- Centre for Research in Molecular Modeling & Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H3G 1M8, Canada; (S.K.); (G.S.)
| | - Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630003, India; (C.S.); (S.K.S.)
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630003, India; (C.S.); (S.K.S.)
| | - Dong-Qing Wei
- The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gilles H. Peslherbe
- Centre for Research in Molecular Modeling & Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H3G 1M8, Canada; (S.K.); (G.S.)
| |
Collapse
|