1
|
Hauseman ZJ, Stauffer F, Beyer KS, Mollé S, Cavicchioli E, Marchand JR, Fodor M, Viscomi J, Dhembi A, Katz S, Faggion B, Lanter M, Kerr G, Schildknecht D, Handl C, Maddalo D, Pissot Soldermann C, Brady J, Shrestha O, Nguyen Z, Leder L, Cremosnik G, Lopez Romero S, Hassiepen U, Stams T, Linder M, Galli GG, Guthy DA, King DA, Maira SM, Thoma CR, Ehmke V, Tordella L. Targeting the SHOC2-RAS interaction in RAS-mutant cancers. Nature 2025:10.1038/s41586-025-08931-1. [PMID: 40335703 DOI: 10.1038/s41586-025-08931-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 03/24/2025] [Indexed: 05/09/2025]
Abstract
Activating mutations in the rat sarcoma (RAS) genes HRAS, NRAS and KRAS collectively represent the most frequent oncogenic driver in human cancer1. They have previously been considered undruggable, but advances in the past few years have led to the clinical development of agents that target KRAS(G12C) and KRAS(G12D) mutants, yielding promises of therapeutic responses at tolerated doses2. However, clinical agents that selectively target NRAS(Q61*) mutants (* represents 'any'), the second-most-frequent oncogenic driver in melanoma, are still lacking. Here we identify SHOC2, a component of the SHOC2-MRAS-PP1C complex, as a dependency of RAS(Q61*) tumours in a nucleotide-state-dependent and isoform-agnostic manner. Mechanistically, we found that oncogenic NRAS(Q61R) forms a direct interaction with SHOC2, evidenced by X-ray co-crystal structure. In vitro high-throughput screening enabled the discovery of small molecules that bind to SHOC2 and disrupt the interaction with NRAS(Q61*). Structure-based optimization led to a cellularly active tool compound that shows inhibition of mitogen-activated protein kinase (MAPK) signalling and proliferation in RAS-mutant cancer models, most notably in NRAS(Q61*) settings. These findings provide evidence for a neomorph SHOC2-(canonical)RAS protein interaction that is pharmacologically actionable and relevant to cancer sustenance. Overall, this work provides the concept validation and foundation for developing new therapies at the core of the RAS signalling pathway.
Collapse
Affiliation(s)
| | | | - Kim S Beyer
- Novartis BioMedical Research, Basel, Switzerland
| | - Sandra Mollé
- Novartis BioMedical Research, Basel, Switzerland
| | | | | | | | | | | | | | | | | | - Grainne Kerr
- Novartis BioMedical Research, Basel, Switzerland
| | | | | | | | | | - Jacob Brady
- Novartis BioMedical Research, Cambridge, MA, USA
| | - Om Shrestha
- Novartis BioMedical Research, Cambridge, MA, USA
| | | | - Lukas Leder
- Novartis BioMedical Research, Basel, Switzerland
| | | | | | | | - Travis Stams
- Novartis BioMedical Research, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Parolia A, Eyunni S, Verma BK, Young E, Liu Y, Liu L, George J, Aras S, Das CK, Mannan R, Ur Rasool R, Mitchell-Velasquez E, Mahapatra S, Luo J, Carson SE, Xiao L, Gajjala PR, Venkatesh S, Jaber M, Wang X, He T, Qiao Y, Pang M, Zhang Y, Tien JCY, Louw M, Alhusayan M, Cao X, Su F, Tavana O, Hou C, Wang Z, Ding K, Chinnaiyan AM, Asangani IA. NSD2 is a requisite subunit of the AR/FOXA1 neo-enhanceosome in promoting prostate tumorigenesis. Nat Genet 2024; 56:2132-2143. [PMID: 39251788 PMCID: PMC11525188 DOI: 10.1038/s41588-024-01893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 08/01/2024] [Indexed: 09/11/2024]
Abstract
Androgen receptor (AR) is a ligand-responsive transcription factor that drives terminal differentiation of the prostatic luminal epithelia. By contrast, in tumors originating from these cells, AR chromatin occupancy is extensively reprogrammed to activate malignant phenotypes, the molecular mechanisms of which remain unknown. Here, we show that tumor-specific AR enhancers are critically reliant on H3K36 dimethyltransferase activity of NSD2. NSD2 expression is abnormally induced in prostate cancer, where its inactivation impairs AR transactivation potential by disrupting over 65% of its cistrome. NSD2-dependent AR sites distinctively harbor the chimeric FOXA1:AR half-motif, which exclusively comprise tumor-specific AR enhancer circuitries defined from patient specimens. NSD2 inactivation also engenders increased dependency on the NSD1 paralog, and a dual NSD1/2 PROTAC degrader is preferentially cytotoxic in AR-dependent prostate cancer models. Altogether, we characterize NSD2 as an essential AR neo-enhanceosome subunit that enables its oncogenic activity, and position NSD1/2 as viable co-targets in advanced prostate cancer.
Collapse
Affiliation(s)
- Abhijit Parolia
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
- Department of Urology, University of Michigan, Ann Arbor, MI, USA.
| | - Sanjana Eyunni
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Molecular and Cellular Pathology Program, University of Michigan, Ann Arbor, MI, USA
| | - Brijesh Kumar Verma
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eleanor Young
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yihan Liu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Cancer Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Lianchao Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - James George
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Shweta Aras
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chandan Kanta Das
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Reyaz Ur Rasool
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erick Mitchell-Velasquez
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Somnath Mahapatra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jie Luo
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sandra E Carson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Prathibha R Gajjala
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sharan Venkatesh
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mustapha Jaber
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoju Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Tongchen He
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Matthew Pang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yuping Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jean Ching-Yi Tien
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Micheala Louw
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Mohammed Alhusayan
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Fengyun Su
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Omid Tavana
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, MA, USA
| | - Caiyun Hou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
- Department of Urology, University of Michigan, Ann Arbor, MI, USA.
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Irfan A Asangani
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Meslin PA, Kelly LM, Benbarche S, Lecourt S, Lin K, Rutter J, Bassil C, Itzykson R, Wood K, Puissant A, Lobry C. PitViper: a software for comparative meta-analysis and annotation of functional screening data. NAR Genom Bioinform 2024; 6:lqae059. [PMID: 38800827 PMCID: PMC11127635 DOI: 10.1093/nargab/lqae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/19/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Recent advancements in shRNA and Cas protein technologies have enabled functional screening methods targeting genes or non-coding regions using single or pooled shRNA and sgRNA. CRISPR-based systems have also been developed for modulating DNA accessibility, resulting in CRISPR-mediated interference (CRISPRi) or activation (CRISPRa) of targeted genes or genomic DNA elements. However, there is still a lack of software tools for integrating diverse array of functional genomics screening outputs that could offer a cohesive framework for comprehensive data integration. Here, we developed PitViper, a flexible and interactive open-source software designed to fill this gap, providing reliable results for the type of elements being screened. It is an end-to-end automated and reproducible bioinformatics pipeline integrating gold-standard methods for functional screening analysis. Our sensitivity analyses demonstrate that PitViper is a useful tool for identifying potential super-enhancer liabilities in a leukemia cell line through genome-wide CRISPRi-based screening. It offers a robust, flexible, and interactive solution for integrating data analysis and reanalysis from functional screening methods, making it a valuable resource for researchers in the field.
Collapse
Affiliation(s)
- Paul-Arthur Meslin
- Université de Paris Cité, Inserm U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France
| | - Lois M Kelly
- Université de Paris Cité, Inserm U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France
| | - Salima Benbarche
- Université de Paris Cité, Inserm U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France
| | - Séverine Lecourt
- Université de Paris Cité, Inserm U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Kevin H Lin
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Justine C Rutter
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | | | - Raphael Itzykson
- Université de Paris Cité, Inserm U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France
- Department of Hematology, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Alexandre Puissant
- Université de Paris Cité, Inserm U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France
| | - Camille Lobry
- Université de Paris Cité, Inserm U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France
| |
Collapse
|
4
|
Parolia A, Eyunni S, Verma BK, Young E, Liu L, George J, Aras S, Das CK, Mannan R, Rasool RU, Luo J, Carson SE, Mitchell-Velasquez E, Liu Y, Xiao L, Gajjala PR, Jaber M, Wang X, He T, Qiao Y, Pang M, Zhang Y, Alhusayan M, Cao X, Tavana O, Hou C, Wang Z, Ding K, Chinnaiyan AM, Asangani IA. NSD2 is a requisite subunit of the AR/FOXA1 neo-enhanceosome in promoting prostate tumorigenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581560. [PMID: 38464251 PMCID: PMC10925163 DOI: 10.1101/2024.02.22.581560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The androgen receptor (AR) is a ligand-responsive transcription factor that binds at enhancers to drive terminal differentiation of the prostatic luminal epithelia. By contrast, in tumors originating from these cells, AR chromatin occupancy is extensively reprogrammed to drive hyper-proliferative, metastatic, or therapy-resistant phenotypes, the molecular mechanisms of which remain poorly understood. Here, we show that the tumor-specific enhancer circuitry of AR is critically reliant on the activity of Nuclear Receptor Binding SET Domain Protein 2 (NSD2), a histone 3 lysine 36 di-methyltransferase. NSD2 expression is abnormally gained in prostate cancer cells and its functional inhibition impairs AR trans-activation potential through partial off-loading from over 40,000 genomic sites, which is greater than 65% of the AR tumor cistrome. The NSD2-dependent AR sites distinctly harbor a chimeric AR-half motif juxtaposed to a FOXA1 element. Similar chimeric motifs of AR are absent at the NSD2-independent AR enhancers and instead contain the canonical palindromic motifs. Meta-analyses of AR cistromes from patient tumors uncovered chimeric AR motifs to exclusively participate in tumor-specific enhancer circuitries, with a minimal role in the physiological activity of AR. Accordingly, NSD2 inactivation attenuated hallmark cancer phenotypes that were fully reinstated upon exogenous NSD2 re-expression. Inactivation of NSD2 also engendered increased dependency on its paralog NSD1, which independently maintained AR and MYC hyper-transcriptional programs in cancer cells. Concordantly, a dual NSD1/2 PROTAC degrader, called LLC0150, was preferentially cytotoxic in AR-dependent prostate cancer as well as NSD2-altered hematologic malignancies. Altogether, we identify NSD2 as a novel subunit of the AR neo-enhanceosome that wires prostate cancer gene expression programs, positioning NSD1/2 as viable paralog co-targets in advanced prostate cancer.
Collapse
Affiliation(s)
- Abhijit Parolia
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Sanjana Eyunni
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Molecular and Cellular Pathology Program, University of Michigan, Ann Arbor, MI, USA
- These authors contributed equally
| | - Brijesh Kumar Verma
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- These authors contributed equally
| | - Eleanor Young
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Lianchao Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - James George
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Shweta Aras
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chandan Kanta Das
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Reyaz ur Rasool
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jie Luo
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sandra E. Carson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Erick Mitchell-Velasquez
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yihan Liu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Cancer Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Prathibha R. Gajjala
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Mustapha Jaber
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoju Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Tongchen He
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Matthew Pang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yuping Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Mohammed Alhusayan
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Omid Tavana
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, MA, USA
| | - Caiyun Hou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zhen Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Ke Ding
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Irfan A. Asangani
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Edwards AC, Stalnecker CA, Morales AJ, Taylor KE, Klomp JE, Klomp JA, Waters AM, Sudhakar N, Hallin J, Tang TT, Olson P, Post L, Christensen JG, Cox AD, Der CJ. TEAD Inhibition Overcomes YAP1/TAZ-Driven Primary and Acquired Resistance to KRASG12C Inhibitors. Cancer Res 2023; 83:4112-4129. [PMID: 37934103 PMCID: PMC10821578 DOI: 10.1158/0008-5472.can-23-2994] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Primary/intrinsic and treatment-induced acquired resistance limit the initial response rate to and long-term efficacy of direct inhibitors of the KRASG12C mutant in cancer. To identify potential mechanisms of resistance, we applied a CRISPR/Cas9 loss-of-function screen and observed loss of multiple components of the Hippo tumor suppressor pathway, which acts to suppress YAP1/TAZ-regulated gene transcription. YAP1/TAZ activation impaired the antiproliferative and proapoptotic effects of KRASG12C inhibitor (G12Ci) treatment in KRASG12C-mutant cancer cell lines. Conversely, genetic suppression of YAP1/WWTR1 (TAZ) enhanced G12Ci sensitivity. YAP1/TAZ activity overcame KRAS dependency through two distinct TEAD transcription factor-dependent mechanisms, which phenocopy KRAS effector signaling. First, TEAD stimulated ERK-independent transcription of genes normally regulated by ERK (BIRC5, CDC20, ECT2, FOSL1, and MYC) to promote progression through the cell cycle. Second, TEAD caused activation of PI3K-AKT-mTOR signaling to overcome apoptosis. G12Ci treatment-induced acquired resistance was also caused by YAP1/TAZ-TEAD activation. Accordingly, concurrent treatment with pharmacologic inhibitors of TEAD synergistically enhanced KRASG12C inhibitor antitumor activity in vitro and prolonged tumor suppression in vivo. In summary, these observations reveal YAP1/TAZ-TEAD signaling as a crucial driver of primary and acquired resistance to KRAS inhibition and support the use of TEAD inhibitors to enhance the antitumor efficacy of KRAS-targeted therapies. SIGNIFICANCE YAP1/TAZ-TEAD activation compensates for loss of KRAS effector signaling, establishing a mechanistic basis for concurrent inhibition of TEAD to enhance the efficacy of KRASG12C-selective inhibitor treatment of KRASG12C-mutant cancers. See related commentary by Johnson and Haigis, p. 4005.
Collapse
Affiliation(s)
- A. Cole Edwards
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Clint A. Stalnecker
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alexis Jean Morales
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Khalilah E. Taylor
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jennifer E. Klomp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jeffrey A. Klomp
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Andrew M. Waters
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Jill Hallin
- Mirati Therapeutics, Inc., San Diego, California
| | | | - Peter Olson
- Mirati Therapeutics, Inc., San Diego, California
| | - Leonard Post
- Vivace Therapeutics, Inc., San Mateo, California
| | | | - Adrienne D. Cox
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Channing J. Der
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
6
|
Hauseman ZJ, Fodor M, Dhembi A, Viscomi J, Egli D, Bleu M, Katz S, Park E, Jang DM, Porter KA, Meili F, Guo H, Kerr G, Mollé S, Velez-Vega C, Beyer KS, Galli GG, Maira SM, Stams T, Clark K, Eck MJ, Tordella L, Thoma CR, King DA. Structure of the MRAS-SHOC2-PP1C phosphatase complex. Nature 2022; 609:416-423. [PMID: 35830882 PMCID: PMC9452295 DOI: 10.1038/s41586-022-05086-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Abstract
RAS-MAPK signalling is fundamental for cell proliferation and is altered in most human cancers1-3. However, our mechanistic understanding of how RAS signals through RAF is still incomplete. Although studies revealed snapshots for autoinhibited and active RAF-MEK1-14-3-3 complexes4, the intermediate steps that lead to RAF activation remain unclear. The MRAS-SHOC2-PP1C holophosphatase dephosphorylates RAF at serine 259, resulting in the partial displacement of 14-3-3 and RAF-RAS association3,5,6. MRAS, SHOC2 and PP1C are mutated in rasopathies-developmental syndromes caused by aberrant MAPK pathway activation6-14-and SHOC2 itself has emerged as potential target in receptor tyrosine kinase (RTK)-RAS-driven tumours15-18. Despite its importance, structural understanding of the SHOC2 holophosphatase is lacking. Here we determine, using X-ray crystallography, the structure of the MRAS-SHOC2-PP1C complex. SHOC2 bridges PP1C and MRAS through its concave surface and enables reciprocal interactions between all three subunits. Biophysical characterization indicates a cooperative assembly driven by the MRAS GTP-bound active state, an observation that is extendible to other RAS isoforms. Our findings support the concept of a RAS-driven and multi-molecular model for RAF activation in which individual RAS-GTP molecules recruit RAF-14-3-3 and SHOC2-PP1C to produce downstream pathway activation. Importantly, we find that rasopathy and cancer mutations reside at protein-protein interfaces within the holophosphatase, resulting in enhanced affinities and function. Collectively, our findings shed light on a fundamental mechanism of RAS biology and on mechanisms of clinically observed enhanced RAS-MAPK signalling, therefore providing the structural basis for therapeutic interventions.
Collapse
Affiliation(s)
| | - Michelle Fodor
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Anxhela Dhembi
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Jessica Viscomi
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - David Egli
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Melusine Bleu
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stephanie Katz
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Eunyoung Park
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Dong Man Jang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Fabian Meili
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Hongqiu Guo
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Grainne Kerr
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Sandra Mollé
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Kim S Beyer
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Giorgio G Galli
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Travis Stams
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Kirk Clark
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Michael J Eck
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Luca Tordella
- Novartis Institutes for BioMedical Research, Basel, Switzerland.
| | - Claudio R Thoma
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA.
| | - Daniel A King
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA.
| |
Collapse
|
7
|
Moein S, Tenen DG, Amabile G, Chai L. SALL4: An Intriguing Therapeutic Target in Cancer Treatment. Cells 2022; 11:cells11162601. [PMID: 36010677 PMCID: PMC9406946 DOI: 10.3390/cells11162601] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Spalt-Like Transcription Factor 4 (SALL4) is a critical factor for self-renewal ability and pluripotency of stem cells. On the other hand, various reports show tight relation of SALL4 to cancer occurrence and metastasis. SALL4 exerts its effects not only by inducing gene expression but also repressing a large cluster of genes through interaction with various epigenetic modifiers. Due to high expression of SALL4 in cancer cells and its silence in almost all adult tissues, it is an ideal target for cancer therapy. However, targeting SALL4 meets various challenges. SALL4 is a transcription factor and designing appropriate drug to inhibit this intra-nucleus component is challenging. On the other hand, due to lack of our knowledge on structure of the protein and the suitable active sites, it becomes more difficult to reach the appropriate drugs against SALL4. In this review, we have focused on approaches applied yet to target this oncogene and discuss the potential of degrader systems as new therapeutics to target oncogenes.
Collapse
Affiliation(s)
- Shiva Moein
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Daniel G. Tenen
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
- Harvard Stem Cells Institute, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (D.G.T.); (G.A.); (L.C.)
| | - Giovanni Amabile
- Believer Pharmaceuticals, Inc., Wilmington, DE 19801, USA
- Correspondence: (D.G.T.); (G.A.); (L.C.)
| | - Li Chai
- Harvard Stem Cells Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (D.G.T.); (G.A.); (L.C.)
| |
Collapse
|
8
|
Sato N, Tamada Y, Yu G, Okuno Y. CBNplot: Bayesian network plots for enrichment analysis. Bioinformatics 2022; 38:2959-2960. [PMID: 35561164 PMCID: PMC9113354 DOI: 10.1093/bioinformatics/btac175] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/20/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
SUMMARY When investigating gene expression profiles, determining important directed edges between genes can provide valuable insights in addition to identifying differentially expressed genes. In the subsequent functional enrichment analysis (EA), understanding how enriched pathways or genes in the pathway interact with one another can help infer the gene regulatory network (GRN), important for studying the underlying molecular mechanisms. However, packages for easy inference of the GRN based on EA are scarce. Here, we developed an R package, CBNplot, which infers the Bayesian network (BN) from gene expression data, explicitly utilizing EA results obtained from curated biological pathway databases. The core features include convenient wrapping for structure learning, visualization of the BN from EA results, comparison with reference networks, and reflection of gene-related information on the plot. As an example, we demonstrate the analysis of bladder cancer-related datasets using CBNplot, including probabilistic reasoning, which is a unique aspect of BN analysis. We display the transformability of results obtained from one dataset to another, the validity of the analysis as assessed using established knowledge and literature, and the possibility of facilitating knowledge discovery from gene expression datasets. AVAILABILITY AND IMPLEMENTATION The library, documentation and web server are available at https://github.com/noriakis/CBNplot. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Noriaki Sato
- Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yoshinori Tamada
- Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Innovation Center for Health Promotion, Hirosaki University, Aomori 036-8562, Japan
| | - Guangchuang Yu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | | |
Collapse
|