1
|
Nguyen A, Roy JJS, Kim JH, Yun KH, Lee W, Kim KK, Kim T, Chaurasia AK. Repeated Exposure of Vancomycin to Vancomycin-Susceptible Staphylococcus aureus (VSSA) Parent Emerged VISA and VRSA Strains with Enhanced Virulence Potentials. J Microbiol 2024; 62:535-553. [PMID: 38814539 DOI: 10.1007/s12275-024-00139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/31/2024]
Abstract
The emergence of resistance against the last-resort antibiotic vancomycin in staphylococcal infections is a serious concern for human health. Although various drug-resistant pathogens of diverse genetic backgrounds show higher virulence potential, the underlying mechanism behind this is not yet clear due to variability in their genetic dispositions. In this study, we investigated the correlation between resistance and virulence in adaptively evolved isogenic strains. The vancomycin-susceptible Staphylococcus aureus USA300 was exposed to various concentrations of vancomycin repeatedly as a mimic of the clinical regimen to obtain mutation(s)-accrued-clonally-selected (MACS) strains. The phenotypic analyses followed by expression of the representative genes responsible for virulence and resistance of MACS strains were investigated. MACS strains obtained under 2 and 8 µg/ml vancomycin, named Van2 and Van8, respectively; showed enhanced vancomycin minimal inhibitory concentrations (MIC) to 4 and 16 µg/ml, respectively. The cell adhesion and invasion of MACS strains increased in proportion to their MICs. The correlation between resistance and virulence potential was partially explained by the differential expression of genes known to be involved in both virulence and resistance in MACS strains compared to parent S. aureus USA300. Repeated treatment of vancomycin against vancomycin-susceptible S. aureus (VSSA) leads to the emergence of vancomycin-resistant strains with variable levels of enhanced virulence potentials.
Collapse
Affiliation(s)
- An Nguyen
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - J Jean Sophy Roy
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Ji-Hoon Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyung-Hee Yun
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Truc Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| | - Akhilesh Kumar Chaurasia
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
2
|
Meredith EM, Harven LT, Berti AD. Antimicrobial Efficacy against Antibiotic-Tolerant Staphylococcus aureus Depends on the Mechanism of Antibiotic Tolerance. Antibiotics (Basel) 2022; 11:antibiotics11121810. [PMID: 36551467 PMCID: PMC9774428 DOI: 10.3390/antibiotics11121810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/22/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Bacteria can adapt to a changing environment by adopting alternate metabolic states favoring small molecule synthesis and resilience over growth. In Staphylococcus aureus, these states are induced by factors present during infection, including nutritional limitations, host responses and competition with other bacteria. Isogenic "tolerant" populations have variable responses to antibiotics and can remain viable. In this study, we compared the capability of antibiotics to reduce the viability of S. aureus made tolerant by different mechanisms. Tolerance was induced with mupirocin, HQNO, peroxynitrite or human serum. Tolerant cultures were exposed to ceftaroline, daptomycin, gentamicin, levofloxacin, oritavancin or vancomycin at physiological concentrations, and the viability was assessed by dilution plating. The minimum duration for 3-log viability reduction and 24 h viability reduction were calculated independently for each of three biological replicates. Each tolerance mechanism rendered at least one antibiotic ineffective, and each antibiotic was rendered ineffective by at least one mechanism of tolerance. Further studies to evaluate additional antibiotics, combination therapy and different tolerance inducers are warranted.
Collapse
Affiliation(s)
- Emily M. Meredith
- Department of Pharmacy Practice, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Lauren T. Harven
- Department of Pharmacy Practice, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Andrew D. Berti
- Department of Pharmacy Practice, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, Wayne State University, Detroit, MI 48201, USA
- Correspondence: ; Tel.: +1-313-577-3565
| |
Collapse
|
3
|
Bleul L, Francois P, Wolz C. Two-Component Systems of S. aureus: Signaling and Sensing Mechanisms. Genes (Basel) 2021; 13:34. [PMID: 35052374 PMCID: PMC8774646 DOI: 10.3390/genes13010034] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus encodes 16 two-component systems (TCSs) that enable the bacteria to sense and respond to changing environmental conditions. Considering the function of these TCSs in bacterial survival and their potential role as drug targets, it is important to understand the exact mechanisms underlying signal perception. The differences between the sensing of appropriate signals and the transcriptional activation of the TCS system are often not well described, and the signaling mechanisms are only partially understood. Here, we review present insights into which signals are sensed by histidine kinases in S. aureus to promote appropriate gene expression in response to diverse environmental challenges.
Collapse
Affiliation(s)
- Lisa Bleul
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tubingen, Germany;
- Cluster of Excellence EXC 2124 “Controlling Microbes to Fight Infections”, University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tubingen, Germany
| | - Patrice Francois
- Genomic Research Laboratory, Infectious Diseases Service, University Hospitals of Geneva University Medical Center, Michel Servet 1, CH-1211 Geneva, Switzerland;
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tubingen, Germany;
- Cluster of Excellence EXC 2124 “Controlling Microbes to Fight Infections”, University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tubingen, Germany
| |
Collapse
|
4
|
King A, Blackledge MS. Evaluation of small molecule kinase inhibitors as novel antimicrobial and antibiofilm agents. Chem Biol Drug Des 2021; 98:1038-1064. [PMID: 34581492 PMCID: PMC8616828 DOI: 10.1111/cbdd.13962] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 12/25/2022]
Abstract
Antibiotic resistance is a global and pressing concern. Our current therapeutic arsenal is increasingly limited as bacteria are developing resistance at a rate that far outpaces our ability to create new treatments. Novel approaches to treating and curing bacterial infections are urgently needed. Bacterial kinases have been increasingly explored as novel drug targets and are poised for development into novel therapeutic agents to combat bacterial infections. This review describes several general classes of bacterial kinases that play important roles in bacterial growth, antibiotic resistance, and biofilm formation. General features of these kinase classes are discussed and areas of particular interest for the development of inhibitors will be highlighted. Small molecule kinase inhibitors are described and organized by phenotypic effect, spotlighting particularly interesting inhibitors with novel functions and potential therapeutic benefit. Finally, we provide our perspective on the future of bacterial kinase inhibition as a viable strategy to combat bacterial infections and overcome the pressures of increasing antibiotic resistance.
Collapse
Affiliation(s)
- Ashley King
- Department of Chemistry, High Point University, One University Parkway, High Point, NC 27268
| | - Meghan S. Blackledge
- Department of Chemistry, High Point University, One University Parkway, High Point, NC 27268
| |
Collapse
|
5
|
Five major two components systems of Staphylococcus aureus for adaptation in diverse hostile environment. Microb Pathog 2021; 159:105119. [PMID: 34339796 DOI: 10.1016/j.micpath.2021.105119] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/21/2021] [Accepted: 07/28/2021] [Indexed: 11/21/2022]
Abstract
Staphylococcus aureus is an eminent and opportunistic human pathogen that can colonize in the intestines, skin tissue and perineal regions of the host and cause severe infectious diseases. The presence of complex regulatory network and existence of virulent gene expression along with tuning metabolism enables the S. aureus to adopt the diversity of environments. Two component system (TCS) is a widely distributed mechanism in S. aureus that permit it for changing gene expression profile in response of environment stimuli. TCS usually consist of transmembrane histidine kinase (HK) and cytosolic response regulator. S. aureus contains totally 16 conserved pairs of two component systems, involving in different signaling mechanisms. There is a connection among these regulatory circuits and they can easily have effect on each other's expression. This review has discussed five major types of TCS in S. aureus and covers the recent knowledge of their virulence gene expression. We can get more understanding towards staphylococcal pathogenicity by getting insights about gene regulatory pathways via TCS, which can further provide implications in vaccine formation and new ways for drug design to combat serious infections caused by S. aureus in humans.
Collapse
|
6
|
Liu WT, Chen EZ, Yang L, Peng C, Wang Q, Xu Z, Chen DQ. Emerging resistance mechanisms for 4 types of common anti-MRSA antibiotics in Staphylococcus aureus: A comprehensive review. Microb Pathog 2021; 156:104915. [PMID: 33930416 DOI: 10.1016/j.micpath.2021.104915] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 01/10/2023]
Abstract
Staphylococcus aureus is one of the leading hospital-associated and community-associated pathogens, which has caused a global public health concern. The emergence of methicillin-resistant S. aureus (MRSA) along with the widespread use of different classes of antibiotics has become a significant therapeutic challenge. Antibiotic resistance is a disturbing problem that poses a threat to humans. Treatment options for S. aureus resistant to β-lactam antibiotics include glycopeptide antibiotic, cyclic lipopeptide antibiotic, cephalosporins and oxazolidinone antibiotic. The most representative types of these antibiotics are vancomycin, daptomycin, ceftaroline and linezolid. The frequent use of the first-line drug vancomycin for MRSA treatment has increased the number of resistant strains, namely vancomycin intermediate resistant S. aureus (VISA) and vancomycin resistant S. aureus (VRSA). A systematic literature review of relevant published studies in PubMed before 2020 was conducted. In recent years, there have been some reports on the relevant resistant mechanisms of vancomycin, daptomycin, ceftaroline and linezolid. In this review, we have summarized the antibiotic molecular modes of action and different gene mutants at the whole-genome level, which will aid in further development on new drugs for effective MRSA treatment based on describing different resistance mechanisms of classic antibiotics.
Collapse
Affiliation(s)
- Wan-Ting Liu
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - En-Zhong Chen
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Ling Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Chen Peng
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Qun Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN38163, USA; Research Institute for Food Nutrition and Human Health, Guangzhou, 510640, China; Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand.
| | - Ding-Qiang Chen
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China.
| |
Collapse
|
7
|
Novel Functions and Signaling Specificity for the GraS Sensor Kinase of Staphylococcus aureus in Response to Acidic pH. J Bacteriol 2020; 202:JB.00219-20. [PMID: 32868405 DOI: 10.1128/jb.00219-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/26/2020] [Indexed: 01/30/2023] Open
Abstract
Although the GraS sensor kinase of Staphylococcus aureus is known for the sensing of and resistance to cationic antimicrobial peptides (CAMPs), we recently established that it also signals in response to acidic pH, which is encountered on human skin concurrently with CAMPs, antimicrobial unsaturated free fatty acids (uFFA), and calcium. We therefore evaluated how these environmental signals would affect GraS function and resistance to antimicrobial uFFA. Growth at pH 5.5 promoted increased resistance of S. aureus USA300 to linoleic and arachidonic acids but not palmitoleic or sapienic acid. However, enhanced resistance to these C16:1 uFFA was achieved by supplementing acidic medium with 0.5 mM calcium or subinhibitory CAMPs. Enhanced resistance to uFFA at acidic pH was dependent on GraS and GraS-dependent expression of the lysyl-phosphatidylglycerol synthase enzyme MprF, through a mechanism that did not require the lysyl-transferase function of MprF. In addition to enhanced resistance to antimicrobial uFFA, acidic pH also promoted increased production of secreted proteases in a GraS-dependent manner. During growth at pH 5.5, downstream phenotypes of signaling through GraS, including resistance to uFFA, MprF-dependent addition of positive charge to the cell surface, and increased production of secreted proteases, all occurred independently of acidic amino acids in the extracytoplasmic sensor loop of GraS that were previously found to be required for sensing of CAMPs. Cumulatively, our data indicate that signaling through GraS at acidic pH occurs through a mechanism that is distinct from that described for CAMPs, leading to increased resistance to antimicrobial uFFA and production of secreted proteases.IMPORTANCE Staphylococcus aureus asymptomatically colonizes 30% of humans but is also a leading cause of infectious morbidity and mortality. Since infections are typically initiated by the same strain associated with asymptomatic colonization of the nose or skin, it is important to understand how the microbe can endure exposure to harsh conditions that successfully restrict the growth of other bacteria, including a combination of acidic pH, antimicrobial peptides, and antimicrobial fatty acids. The significance of our research is in showing that acidic pH combined with antimicrobial peptide or environmental calcium can signal through a single membrane sensor protein to promote traits that may aid in survival, including modification of cell surface properties, increased resistance to antimicrobial fatty acids, and enhanced production of secreted proteases.
Collapse
|
8
|
Prieto JM, Rapún-Araiz B, Gil C, Penadés JR, Lasa I, Latasa C. Inhibiting the two-component system GraXRS with verteporfin to combat Staphylococcus aureus infections. Sci Rep 2020; 10:17939. [PMID: 33087792 PMCID: PMC7577973 DOI: 10.1038/s41598-020-74873-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 09/21/2020] [Indexed: 12/27/2022] Open
Abstract
Infections caused by Staphylococcus aureus pose a serious and sometimes fatal health issue. With the aim of exploring a novel therapeutic approach, we chose GraXRS, a Two-Component System (TCS) that determines bacterial resilience against host innate immune barriers, as an alternative target to disarm S. aureus. Following a drug repurposing methodology, and taking advantage of a singular staphylococcal strain that lacks the whole TCS machinery but the target one, we screened 1.280 off-patent FDA-approved drug for GraXRS inhibition. Reinforcing the connection between this signaling pathway and redox sensing, we found that antioxidant and redox-active molecules were capable of reducing the expression of the GraXRS regulon. Among all the compounds, verteporfin (VER) was really efficient in enhancing PMN-mediated bacterial killing, while topical administration of such drug in a murine model of surgical wound infection significantly reduced the bacterial load. Experiments relying on the chemical mimicry existing between VER and heme group suggest that redox active residue C227 of GraS participates in the inhibition exerted by this FDA-approved drug. Based on these results, we propose VER as a promising candidate for sensitizing S. aureus that could be helpful to combat persistent or antibiotic-resistant infections.
Collapse
Affiliation(s)
| | - Beatriz Rapún-Araiz
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IDISNA, 31008, Pamplona, Spain
| | - Carmen Gil
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IDISNA, 31008, Pamplona, Spain
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Iñigo Lasa
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IDISNA, 31008, Pamplona, Spain
| | - Cristina Latasa
- RECOMBINA SL, Calle Nueva, 8 local 10, Mutilva 31192, Navarra, Spain.
| |
Collapse
|
9
|
Jani S, Sterzenbach K, Adatrao V, Tajbakhsh G, Mascher T, Golemi-Kotra D. Low phosphatase activity of LiaS and strong LiaR-DNA affinity explain the unusual LiaS to LiaR in vivo stoichiometry. BMC Microbiol 2020; 20:104. [PMID: 32349670 PMCID: PMC7191749 DOI: 10.1186/s12866-020-01796-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/20/2020] [Indexed: 11/20/2022] Open
Abstract
Background LiaRS mediates Bacillus subtilis response to cell envelope perturbations. A third protein, LiaF, has an inhibitory role over LiaRS in the absence of stimulus. Together, LiaF and LiaRS form a three-component system characterized by an unusual stoichiometry, a 4:1 ratio between LiaS and LiaR, the significance of which in the signal transduction mechanism of LiaRS is not entirely understood. Results We measured, for the first time, the kinetics of the phosphorylation-dependent processes of LiaRS, the DNA-binding affinity of LiaR, and characterized the effect of phosphorylation on LiaR oligomerization state. Our study reveals that LiaS is less proficient as a phosphatase. Consequently, unspecific phosphorylation of LiaR by acetyl phosphate may be significant in vivo. This drawback is exacerbated by the strong interaction between LiaR and its own promoter, as it can drive LiaRS into losing grip over its own control in the absence of stimuli. These intrinsic, seemingly ‘disadvantageous”, attributes of LiaRS are likely overcome by the higher concentration of LiaS over LiaR in vivo, and a pro-phosphatase role of LiaF. Conclusions Overall, our study shows that despite the conservative nature of two-component systems, they are, ultimately, tailored to meet specific cell needs by modulating the dynamics of interactions among their components and the kinetics of phosphorylation-mediated processes.
Collapse
Affiliation(s)
- Shailee Jani
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
| | - Karen Sterzenbach
- Institute for Microbiology, Technische Universität Dresden, Dresden, Germany
| | - Vijaya Adatrao
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
| | - Ghazal Tajbakhsh
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
| | - Thorsten Mascher
- Institute for Microbiology, Technische Universität Dresden, Dresden, Germany.
| | | |
Collapse
|
10
|
Mechanisms of bactericidal action and resistance of polymyxins for Gram-positive bacteria. Appl Microbiol Biotechnol 2020; 104:3771-3780. [PMID: 32157424 DOI: 10.1007/s00253-020-10525-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 10/24/2022]
Abstract
Polymyxins are cationic antimicrobial peptides used as the last-line therapy to treat multidrug-resistant Gram-negative bacterial infections. The bactericidal activity of polymyxins against Gram-negative bacteria relies on the electrostatic interaction between the positively charged polymyxins and the negatively charged lipid A of lipopolysaccharide (LPS). Given that Gram-positive bacteria lack an LPS-containing outer membrane, it is generally acknowledged that polymyxins are less active against Gram-positive bacteria. However, Gram-positive bacteria produce negatively charged teichoic acids, which may act as the target of polymyxins. More and more studies suggest that polymyxins have potential as a treatment for Gram-positive bacterial infection. This mini-review discusses recent advances in the mechanism of the antibacterial activity and resistance of polymyxins in Gram-positive bacteria.Key Points• Teichoic acids play a key role in the action of polymyxins on Gram-positive bacteria.• Polymyxin kills Gram-positive bacteria by disrupting cell surface and oxidative damage.• Modification of teichoic acids and phospholipids contributes to polymyxin resistance in Gram-positive bacteria.• Polymyxins have potential as a treatment for Gram-positive bacterial infection.
Collapse
|
11
|
Bhagirath AY, Li Y, Patidar R, Yerex K, Ma X, Kumar A, Duan K. Two Component Regulatory Systems and Antibiotic Resistance in Gram-Negative Pathogens. Int J Mol Sci 2019; 20:E1781. [PMID: 30974906 PMCID: PMC6480566 DOI: 10.3390/ijms20071781] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/17/2022] Open
Abstract
Gram-negative pathogens such as Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa are the leading cause of nosocomial infections throughout the world. One commonality shared among these pathogens is their ubiquitous presence, robust host-colonization and most importantly, resistance to antibiotics. A significant number of two-component systems (TCSs) exist in these pathogens, which are involved in regulation of gene expression in response to environmental signals such as antibiotic exposure. While the development of antimicrobial resistance is a complex phenomenon, it has been shown that TCSs are involved in sensing antibiotics and regulating genes associated with antibiotic resistance. In this review, we aim to interpret current knowledge about the signaling mechanisms of TCSs in these three pathogenic bacteria. We further attempt to answer questions about the role of TCSs in antimicrobial resistance. We will also briefly discuss how specific two-component systems present in K. pneumoniae, A. baumannii, and P. aeruginosa may serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Anjali Y Bhagirath
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Yanqi Li
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Rakesh Patidar
- Department of Microbiology, Faculty of Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Katherine Yerex
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Xiaoxue Ma
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Ayush Kumar
- Department of Microbiology, Faculty of Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Kangmin Duan
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
- Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
12
|
Mannala GK, Koettnitz J, Mohamed W, Sommer U, Lips KS, Spröer C, Bunk B, Overmann J, Hain T, Heiss C, Domann E, Alt V. Whole-genome comparison of high and low virulent Staphylococcus aureus isolates inducing implant-associated bone infections. Int J Med Microbiol 2018; 308:505-513. [DOI: 10.1016/j.ijmm.2018.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/08/2018] [Accepted: 04/22/2018] [Indexed: 11/16/2022] Open
|
13
|
Mielich-Süss B, Wagner RM, Mietrach N, Hertlein T, Marincola G, Ohlsen K, Geibel S, Lopez D. Flotillin scaffold activity contributes to type VII secretion system assembly in Staphylococcus aureus. PLoS Pathog 2017; 13:e1006728. [PMID: 29166667 PMCID: PMC5718613 DOI: 10.1371/journal.ppat.1006728] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 12/06/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022] Open
Abstract
Scaffold proteins are ubiquitous chaperones that promote efficient interactions between partners of multi-enzymatic protein complexes; although they are well studied in eukaryotes, their role in prokaryotic systems is poorly understood. Bacterial membranes have functional membrane microdomains (FMM), a structure homologous to eukaryotic lipid rafts. Similar to their eukaryotic counterparts, bacterial FMM harbor a scaffold protein termed flotillin that is thought to promote interactions between proteins spatially confined to the FMM. Here we used biochemical approaches to define the scaffold activity of the flotillin homolog FloA of the human pathogen Staphylococcus aureus, using assembly of interacting protein partners of the type VII secretion system (T7SS) as a case study. Staphylococcus aureus cells that lacked FloA showed reduced T7SS function, and thus reduced secretion of T7SS-related effectors, probably due to the supporting scaffold activity of flotillin. We found that the presence of flotillin mediates intermolecular interactions of T7SS proteins. We tested several small molecules that interfere with flotillin scaffold activity, which perturbed T7SS activity in vitro and in vivo. Our results suggest that flotillin assists in the assembly of S. aureus membrane components that participate in infection and influences the infective potential of this pathogen. The recently discovered functional membrane microdomains (FMM) of prokaryotic cells contain a protein homologous to the scaffold protein flotillin found in eukaryotic lipid rafts. It remains to be elucidated whether, like their eukaryotic counterparts, flotillin homolog proteins have a scaffold function in bacteria. Here we show that the Staphylococcus aureus flotillin FloA acts as a scaffold protein, to promote more efficient assembly of membrane-associated protein interacting partners of multi-enzyme complexes. In a case study, we provide biochemical evidence that FloA participates in assembly of the Type VII secretion system and thus contributes to S. aureus infective potential. Targeted dispersion of FMM-related processes using anti-FMM molecules opens up new perspectives for microbial therapies to treat persistent S. aureus infections.
Collapse
Affiliation(s)
- Benjamin Mielich-Süss
- Research Center for Infectious Diseases ZINF, University of Würzburg, Würzburg, Germany
- Institute for Molecular Infection Biology IMIB, University of Würzburg, Würzburg, Germany
| | - Rabea M. Wagner
- Research Center for Infectious Diseases ZINF, University of Würzburg, Würzburg, Germany
- Institute for Molecular Infection Biology IMIB, University of Würzburg, Würzburg, Germany
- National Center for Biotechnology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Nicole Mietrach
- Research Center for Infectious Diseases ZINF, University of Würzburg, Würzburg, Germany
- Institute for Molecular Infection Biology IMIB, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center - DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Tobias Hertlein
- Institute for Molecular Infection Biology IMIB, University of Würzburg, Würzburg, Germany
| | - Gabriella Marincola
- Research Center for Infectious Diseases ZINF, University of Würzburg, Würzburg, Germany
- Institute for Molecular Infection Biology IMIB, University of Würzburg, Würzburg, Germany
| | - Knut Ohlsen
- Institute for Molecular Infection Biology IMIB, University of Würzburg, Würzburg, Germany
| | - Sebastian Geibel
- Research Center for Infectious Diseases ZINF, University of Würzburg, Würzburg, Germany
- Institute for Molecular Infection Biology IMIB, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center - DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Daniel Lopez
- Research Center for Infectious Diseases ZINF, University of Würzburg, Würzburg, Germany
- Institute for Molecular Infection Biology IMIB, University of Würzburg, Würzburg, Germany
- National Center for Biotechnology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
14
|
Mörk-Mörkenstein M, Heermann R, Göpel Y, Jung K, Görke B. Non-canonical activation of histidine kinase KdpD by phosphotransferase protein PtsN through interaction with the transmitter domain. Mol Microbiol 2017; 106:54-73. [PMID: 28714556 DOI: 10.1111/mmi.13751] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2017] [Indexed: 02/02/2023]
Abstract
The two-component system KdpD/KdpE governs K+ homeostasis by controlling synthesis of the high affinity K+ transporter KdpFABC. When sensing low environmental K+ concentrations, the dimeric kinase KdpD autophosphorylates in trans and transfers the phosphoryl-group to the response regulator KdpE, which subsequently activates kdpFABC transcription. In Escherichia coli, KdpD can also be activated by interaction with the non-phosphorylated form of the accessory protein PtsN. PtsN stimulates KdpD kinase activity thereby increasing phospho-KdpE levels. Here, we analyzed the interplay between KdpD/KdpE and PtsN. PtsN binds specifically to the catalytic DHp domain of KdpD, which is also contacted by KdpE. Accordingly, PtsN and KdpE compete for binding, providing a paradox. Low levels of non-phosphorylated PtsN stimulate, whereas high amounts reduce kdpFABC expression by blocking access of KdpE to KdpD. Ligand fishing experiments provided insight as they revealed ternary complex formation of PtsN/KdpD2 /KdpE in vivo demonstrating that PtsN and KdpE bind different protomers in the KdpD dimer. PtsN may bind one protomer to stimulate phosphorylation of the second KdpD protomer, which then phosphorylates bound KdpE. Phosphorylation of PtsN prevents its incorporation in ternary complexes. Interaction with the conserved DHp domain enables PtsN to regulate additional kinases such as PhoR.
Collapse
Affiliation(s)
- Markus Mörk-Mörkenstein
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories (MFPL), University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Ralf Heermann
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Microbiology, Ludwig-Maximilians-Universität München, Martinsried/München, Germany
| | - Yvonne Göpel
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories (MFPL), University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Kirsten Jung
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Microbiology, Ludwig-Maximilians-Universität München, Martinsried/München, Germany
| | - Boris Görke
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories (MFPL), University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|