1
|
Wen S, Santander J, Barria D, Salazar LA, Sandoval C, Arias C, Iturriaga V. Epigenetic Biomarkers in Temporomandibular Joint Osteoarthritis: An Emerging Target in Treatment. Int J Mol Sci 2025; 26:3668. [PMID: 40332184 PMCID: PMC12027526 DOI: 10.3390/ijms26083668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
Osteoarthritis (OA) of the temporomandibular joint (TMJ) is a progressive disease characterized by the progressive destruction of the internal surfaces of the joint. Certain epigenetic biomarkers have been detected in TMJ-OA. We summarized the available evidence on the epigenetic biomarkers in TMJ-OA. There is an increase in the expression of non-coding RNAs related to the degradation of the extracellular matrix, chondrocyte apoptosis, and proinflammatory cytokines, while there is a decrease in the expression of those related to COL2A1, as well as the osteogenic and chondrogenic differentiation of mesenchymal stem cells. Certain methylated genes and histone modifications in TMJ-OA were also identified. In the early stage, DNA methylation was significantly decreased; that is, the expression of inflammation-related genes such as TNF and genes associated with extracellular matrix degradation, such as Adamts, were increased. While in the late stage, there was an increase in the expression of genes associated with the TGF-β and MAPK signaling pathway and angiogenesis-related genes. Although research on the role of epigenetic markers in TMJ-OA is still ongoing, the results here contribute to improving the basis for the identification of accurate diagnostic and prognostic markers and the development of new therapeutic molecules for the prevention and management of TMJ-OA. It also represents a significant advancement in elucidating its pathogenesis.
Collapse
Affiliation(s)
- Schilin Wen
- Grupo de Investigación de Pregrado en Odontología, Universidad Autónoma de Chile, Temuco 4811230, Chile; (S.W.); (J.S.); (D.B.)
- Sleep & Pain Research Group, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile
| | - Javiera Santander
- Grupo de Investigación de Pregrado en Odontología, Universidad Autónoma de Chile, Temuco 4811230, Chile; (S.W.); (J.S.); (D.B.)
| | - Daniel Barria
- Grupo de Investigación de Pregrado en Odontología, Universidad Autónoma de Chile, Temuco 4811230, Chile; (S.W.); (J.S.); (D.B.)
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Consuelo Arias
- Escuela de Medicina, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Santiago 8580745, Chile;
| | - Verónica Iturriaga
- Sleep & Pain Research Group, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile
- Department of Integral Adult Care Dentistry, Temporomandibular Disorder and Orofacial Pain Program, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
2
|
Tong L, Yu H, Huang X, Shen J, Xiao G, Chen L, Wang H, Xing L, Chen D. Current understanding of osteoarthritis pathogenesis and relevant new approaches. Bone Res 2022; 10:60. [PMID: 36127328 PMCID: PMC9489702 DOI: 10.1038/s41413-022-00226-9] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/27/2022] [Accepted: 06/19/2022] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease that causes painful swelling and permanent damage to the joints in the body. The molecular mechanisms of OA are currently unknown. OA is a heterogeneous disease that affects the entire joint, and multiple tissues are altered during OA development. To better understand the pathological mechanisms of OA, new approaches, methods, and techniques need to be used to understand OA pathogenesis. In this review, we first focus on the epigenetic regulation of OA, with a particular focus on DNA methylation, histone modification, and microRNA regulation, followed by a summary of several key mediators in OA-associated pain. We then introduce several innovative techniques that have been and will continue to be used in the fields of OA and OA-associated pain, such as CRISPR, scRNA sequencing, and lineage tracing. Next, we discuss the timely updates concerning cell death regulation in OA pathology, including pyroptosis, ferroptosis, and autophagy, as well as their individual roles in OA and potential molecular targets in treating OA. Finally, our review highlights new directions on the role of the synovial lymphatic system in OA. An improved understanding of OA pathogenesis will aid in the development of more specific and effective therapeutic interventions for OA.
Collapse
Affiliation(s)
- Liping Tong
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518005, China
| | - Huan Yu
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518005, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xingyun Huang
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518005, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jie Shen
- Department of Orthopedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Guozhi Xiao
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Huaiyu Wang
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lianping Xing
- Department of Pathology and Laboratory of Medicine, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518005, China.
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Potential Methods of Targeting Cellular Aging Hallmarks to Reverse Osteoarthritic Phenotype of Chondrocytes. BIOLOGY 2022; 11:biology11070996. [PMID: 36101377 PMCID: PMC9312132 DOI: 10.3390/biology11070996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease that causes pain, physical disability, and life quality impairment. The pathophysiology of OA remains largely unclear, and currently no FDA-approved disease-modifying OA drugs (DMOADs) are available. As has been acknowledged, aging is the primary independent risk factor for OA, but the mechanisms underlying such a connection are not fully understood. In this review, we first revisit the changes in OA chondrocytes from the perspective of cellular hallmarks of aging. It is concluded that OA chondrocytes share many alterations similar to cellular aging. Next, based on the findings from studies on other cell types and diseases, we propose methods that can potentially reverse osteoarthritic phenotype of chondrocytes back to a healthier state. Lastly, current challenges and future perspectives are summarized.
Collapse
|
4
|
Asghar S, Litherland GJ, Lockhart JC, Goodyear CS, Crilly A. Exosomes in intercellular communication and implications for osteoarthritis. Rheumatology (Oxford) 2020; 59:57-68. [PMID: 31628481 DOI: 10.1093/rheumatology/kez462] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent of the musculoskeletal conditions and represents a significant public health burden. While degeneration of articular cartilage is a key feature, it is now increasingly recognized as a complex condition affecting the whole joint, with synovial inflammation present in a significant proportion of patients. As a secretory tissue, the OA synovium is a rich source of both soluble inflammatory mediators and extracellular vesicles, including exosomes, which have been implicated in cell-cell communication. Exosome cargo has been found to include proteins, lipids and various RNA subtypes such as mRNA and miRNA, potentially capable of regulating gene expression in target cells and tissues. Profiling of exosome cargo and understanding effects on cartilage could elucidate novel regulatory mechanisms within the joint, providing insight for targeted treatment. The aim of this article is to review current literature on exosome biology, highlighting the relevance and application for OA pathogenesis.
Collapse
Affiliation(s)
- Sabha Asghar
- School of Health and Life Sciences, University of the West of Scotland, Paisley Campus, Paisley, UK
| | - Gary J Litherland
- School of Health and Life Sciences, University of the West of Scotland, Paisley Campus, Paisley, UK
| | - John C Lockhart
- School of Health and Life Sciences, University of the West of Scotland, Paisley Campus, Paisley, UK
| | - Carl S Goodyear
- Institute of Infection, Immunity and Inflammation, GBRC, University Place, University of Glasgow, Glasgow, UK
| | - Anne Crilly
- School of Health and Life Sciences, University of the West of Scotland, Paisley Campus, Paisley, UK
| |
Collapse
|
5
|
Mao G, Hu S, Zhang Z, Wu P, Zhao X, Lin R, Liao W, Kang Y. Exosomal miR-95-5p regulates chondrogenesis and cartilage degradation via histone deacetylase 2/8. J Cell Mol Med 2018; 22:5354-5366. [PMID: 30063117 PMCID: PMC6201229 DOI: 10.1111/jcmm.13808] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/27/2018] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs play critical roles in the pathogenesis of osteoarthritis, the most common chronic degenerative joint disease. Exosomes derived from miR-95-5p-overexpressing primary chondrocytes (AC-miR-95-5p) may be effective in treating osteoarthritis. Increased expression of HDAC2/8 occurs in the tissues and chondrocyte-secreted exosomes of patients with osteoarthritis and mediates cartilage-specific gene expression in chondrocytes. We have been suggested that exosomes derived from AC-miR-95-5p (AC-miR-95-5p-Exos) would enhance chondrogenesis and prevent the development of osteoarthritis by directly targeting HDAC2/8. Our in vitro experiments showed that miR-95-5p expression was significantly lower in osteoarthritic chondrocyte-secreted exosomes than in normal cartilage. Treatment with AC-miR-95-5p-Exos promoted cartilage development and cartilage matrix expression in mesenchymal stem cells induced to undergo chondrogenesis and chondrocytes, respectively. In contrast, co-culture with exosomes derived from chondrocytes transfected with an antisense inhibitor of miR-95-5p (AC-anti-miR-95-5p-Exos) prevented chondrogenic differentiation and reduced cartilage matrix synthesis by enhancing the expression of HDAC2/8. MiR-95-5p suppressed the activity of reporter constructs containing the 3'-untranslated region of HDAC2/8, inhibited HDAC2/8 expression and promoted cartilage matrix expression. Our results suggest that AC-miR-95-5p-Exos regulate cartilage development and homoeostasis by directly targeting HDAC2/8. Thus, AC-miR-95-5p-Exos may act as an HDAC2/8 inhibitor and exhibit potential as a disease-modifying osteoarthritis drug.
Collapse
Affiliation(s)
- Guping Mao
- Department of Joint SurgeryFirst Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Shu Hu
- Department of Joint SurgeryFirst Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Ziji Zhang
- Department of Joint SurgeryFirst Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Peihui Wu
- Department of Joint SurgeryFirst Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xiaoyi Zhao
- Department of Joint SurgeryFirst Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Ruifu Lin
- Department of Joint SurgeryFirst Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Weiming Liao
- Department of Joint SurgeryFirst Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yan Kang
- Department of Joint SurgeryFirst Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|